COMPLETE GEOMETRIC GRAPH AND ASYMPTOTIC FORMULA

Praise Adeyemo¹ and Musa Makanjuola²

¹Department of Mathematics, University of Ibadan, Oyo State, Nigeria

Abstract

In a complete geometric digraph \mathcal{K}_n , the number of connected subgraphs (i.e points, lines, triangles and so on) is given by the generating function $P_n(t)$. In this paper, we give a normal approximation of the distribution of connected subgraphs of \mathcal{K}_n and also give an asymptotic formula for $P_n(t)$.

Keywords: Asymptotic formula, Normal distribution, Geometric graph.

1. Introduction

In this paper, we continued with the line of research initiated in [1], [2], where we use the theory of geometric graph to classify the equations defining flag varieties and also degenerate flag varieties to toric varieties. The number of connected subgraphs in a complete geometric graph \mathcal{K}_n is given by a generating function $P_n(t)$. Our interest here is to investigate the asymptotic normality of the distribution of connected subgraphs of \mathcal{K}_n and give the asymptotic formula for $P_n(t)$.

A geometric graph G = (V, E) where V is a set of points in the plane and E is a set of line segments with endpoints in V. We assume that the points are in general position, i.e., no three points are collinear.

A complete geometric graph is a geometric graph in which any two points is joined by a line segment and is denoted by \mathcal{K}_n is the number of points and the number of lines of \mathcal{K}_n is $\frac{n(n-1)}{2}$. In section 2, we give some background and relevant result on complete geometric graph. In section 3, we consider the asymptotic normality of the distribution of connected subgraphs of \mathcal{K}_n . In section 4, we give the asymptotic formula for $P_n(t)$.

2. Complete Geometric graph

In this section we give some background definitions and result on complete geometric graphs.

Definition 2.1. Let \mathcal{K}_n be a complete geometric graph with *n*points and let $\tau \subset [n]$, x_{τ} is said to be a point if $|\tau| = 1$, a line if $|\tau| = 2$, a triangle if $|\tau| = 3$ and so on.

Remark 2.2. All the x_{τ} 's for which $|\tau| \ge 3$ are empty, that is, they have no interior points.

Figure 1 and 2 give the complete geometric digraph for n = 3 and n = 4 respectively.

In a complete geometric graph \mathcal{K}_n , let $F_r = \{x_\tau : |\tau| = r, \tau \subseteq [n]\}$, F_1 set of points, F_2 set of lines and so on, We refer to F_r 's as data in \mathcal{K}_n .

Theorem 2.4. [1] Given a complete geometric graph \mathcal{K}_n , then the cardinality of F_r is given by the coefficient of

Correspondence Author: Praise A., Email: ph.adeyemo@ui.edu.com, Tel: +2348068288896, +2348066749497 (MM)

Transactions of the Nigerian Association of Mathematical Physics Volume 7, (March, 2018), 11-14

$$P_n(t) = \sum_{r=1}^n \binom{n}{r} t^r$$

for $n \ge 3$.

Theorem 2.4 gives the cardinality of $F_r(\#F_r)$ for $1 \le r \le n$ in \mathcal{K}_n . Let the cardinality of $F_r(\#F_r)$ be d_r

Table 1. Statistics of d_r in \mathcal{K}_n										
Ν	d_1	d_2	d ₃	d_4	d_5	d ₆	d ₇	d ₈	d ₉	d ₁₀
1	1									
2	2	1								
3	3	3	1							
4	4	6	4	1						
5	5	10	10	5	1					
6	6	15	20	15	6	1				
7	7	21	35	35	21	7	1			
8	8	28	56	70	56	28	8	1		
9	9	36	84	126	126	84	36	9	1	
10	10	45	120	210	252	210	120	45	10	1

3. Normal approximation of the number of connected subgraphs of \mathcal{K}_n

In this section, we give the normal approximation of the distribution of data in \mathcal{K}_n . See [3-6] for details on asymptotic normality. 3.1 Asymptotic Normality

 d_r has a unimodal behavior which suggest that d_r may be asymptotically normal. This is studied by finding the generating function for the probability distribution of d_r for $m \le n$.

$$S_n = \sum_{\substack{r=1\\r=2}}^n \binom{n}{r}$$
$$= 2^n - 1$$

where S_n is $\sum_{r=1}^n (\mathbf{d}_r)$.

The generating function for the probability distribution is

$$E_n(t) = \frac{P_n(t)}{\sum_{r=1}^n {n \choose r}}$$
$$= \frac{P_n(t)}{2^n - 1}$$
For $1 \le r \le n$.

The moment generating function, $M_n(t)$ is calculated as follows:

$$M_{n}(t) = \frac{E_{n}(e^{t})}{2^{n}-1} = \frac{\sum_{r=1}^{n} {\binom{n}{r}} e^{rt}}{2^{n}-1} = \frac{(1+e^{t})^{n}-1}{2^{n}-1}.$$
(3.1)
(3.1)

The mean, $\mu = \frac{n2^{n-1}}{2^n-1}$ and the variance, $\sigma^2 = \frac{n2^{n-1}}{2^n-1} \left(\frac{n+1}{2} - \frac{n2^{n-1}}{2^n-1}\right)$. The probability distribution function for d_r is $f(r) = \frac{\binom{n}{r}}{2^n-1}$. (3.2)

Figure 3 to 5 show the density for a normal random variable in broken line and the continuous line curve for probability distribution function for d_r for n = 10, n = 20 and n = 50. As the order of \mathcal{K}_n increases, the continuous line curvemoves closer to the broken line curve. This implies that the approximation of f(r) to normal distribution improves as the order of \mathcal{K}_n increases.

Transactions of the Nigerian Association of Mathematical Physics Volume 7, (March, 2018), 11–14

Figure 5. Comparison of the f(r) to the normal density for n = 50

Figure 6 to 8 show the ratio of probability function, f(r) to the estimate provided by normal distribution function. As the order of \mathcal{K}_n increases, the curves tend to the shape of a cowboy hat and top of the hat get broader suggesting that the approximation improves as the order of \mathcal{K}_n increases.

to the normal density for n = 10

Figure 7. Ratio of probability function, f(r)to the normal density for n = 20

Figure 8. Ratio of probability function, f(r) to the normal density for n = 50

4. Asymptotic Formula for d_r.

We are interested in the sequence $\{H_{n+r}(n), n = 1, 2, ...\}$ For $r \ge 1$, we have (n+r)

$$H_{n+r}(n) = \binom{n+r}{n}$$
$$= \frac{(n+r)!}{r! \, n!}.$$

Equation (4.1) can be approximated using Stirling's approximation (see [7] for details). $n! = \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n} \left(1 + O\left(\frac{1}{n}\right) \right).$

$$\frac{n!}{2} = \sqrt{2\pi n} \quad 2e \quad (1 + 1)$$

$$H_{n+r}(n) = \frac{(n+r)!}{r! \, n!} = \frac{\sqrt{2\pi}(n+r)^{n+r+\frac{1}{2}}e^{-(n+r)}}{\sqrt{2\pi}r^{r+\frac{1}{2}}e^{-r} \times \sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n}} \times \left(1 + O\left(\frac{1}{n}\right)\right)$$

Transactions of the Nigerian Association of Mathematical Physics Volume 7, (March, 2018), 11-14

(4.1)

$$= \frac{(n+r)^{n+r+\frac{1}{2}}}{r^{r+\frac{1}{2}} \times \sqrt{2\pi}n^{n+\frac{1}{2}}} \times \left(1 + O\left(\frac{1}{n}\right)\right)$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{n+r}{r}\right)^r \left(\frac{n+r}{n}\right)^n \left(\frac{n+r}{nr}\right)^{\frac{1}{2}} \times \left(1 + O\left(\frac{1}{n}\right)\right)$$

$$= \frac{n^r r^n}{\sqrt{2\pi}} \left(\frac{n+r}{nr}\right)^{n+r+\frac{1}{2}} \times \left(1 + O\left(\frac{1}{n}\right)\right).$$

Theorem 4.1.

$$H_{n+r}(n) = \frac{n^r r^n}{\sqrt{2\pi}} \left(\frac{n+r}{nr}\right)^{n+r+\frac{1}{2}} \times \left(1 + O\left(\frac{1}{n}\right)\right).$$

This provide an asymptotic estimate for the data in \mathcal{K}_n . Figure 9 to 11 give comparison of the $(2^n - 1)$ times the normal density density (asterisk curve) with mean, $\mu = \frac{n2^{n-1}}{2^n - 1}$ and the variance, $\sigma^2 = \frac{n2^{n-1}}{2^n - 1} \left(\frac{n+1}{2} - \frac{n2^{n-1}}{2^n - 1}\right)$, asymptotic estimate(broken line curve) and exact value of $H_n(r)$ (continuous line curve).

Figure 9. Comparison of normal density estimate to asymptotic estimate and actual $H_n(r)$ for n = 10.

Figure 10. Comparison of normal density estimate to asymptotic estimate and actual $H_n(r)$ for n = 20.

Figure 11. Comparison of normal density estimate to asymptotic estimate and actual $H_n(r)$ for n = 50.

References

- [1] Adeyemo Praise and Makanjuola Musa, *Classification of the defining equations of flag varieties* $\mathcal{F}l_n(\mathbb{C})$, (in preparation) (2018).
- [2] Adeyemo Praise and Makanjuola Musa, *Degeneration of flag varieties* $\mathcal{F}l_n(\mathbb{C})$ using complete geometric graph, in preparation) (2018).
- [3] H. Margolius Barbara, Permutations with inversions, Journal of Integer Sequences 4 (2001), Article01.2.4.
- [4] George E. Andrews, *The theory of partitions*, Ecyclopedia of Mathematics and its Applications, vol 2, 1971.
- [5] N. Sachkov Vladimir, Probabilistic methods in combinatorial analysis, Cambridge University Press, New York, NY, 1997.
- [6] Feller William, An introduction to probability theory and its applications, John Wiley and Sons, New York, NY, third edition, 1971.
- [7] Elezovi'c Tomislav, Buri'c Neven, Asymptotic expansions of the binomial coefficients, Journal of Applied Mathematics and Computing 46 (2014), 135–145.