COMPLETE GEOMETRIC GRAPH AND ASYMPTOTIC FORMULA

Praise Adeyemo ${ }^{1}$ and Musa Makanjuola ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Ibadan, Oyo State, Nigeria

Abstract

In a complete geometric digraph $\mathcal{K}_{\boldsymbol{n}}$, the number of connected subgraphs (i.e points, lines, triangles and so on) is given by the generating function $P_{n}(t)$. In this paper, we give a normal approximation of the distribution of connected subgraphsof \mathcal{K}_{n} and also give an asymptotic formula for $\boldsymbol{P}_{n}(t)$.

Keywords: Asymptotic formula, Normal distribution, Geometric graph.

1. Introduction

In this paper, we continued with the line of research initiated in [1], [2], where we use the theory of geometric graph to classify the equations defining flag varieties and also degenerate flag varieties to toric varieties. The number of connected subgraphs in a complete geometric graph \mathcal{K}_{n} is given by a generating function $P_{n}(t)$. Our interest here is to investigate the asymptotic normality of the distribution of connected subgraphs of \mathcal{K}_{n} and give the asymptotic formula for $P_{n}(t)$.
A geometric graph $G=(V, E)$ where V is a set of points in the plane and E is a set of line segments with endpoints in V. We assume that the points are in general position, i.e, no three points are collinear.
A complete geometric graph is a geometric graph in which any two points is joined by a line segment and is denoted by $\mathcal{K}_{n} . n$ is the number of points and the number of lines of \mathcal{K}_{n} is $\frac{n(n-1)}{2}$. In section 2, we give some background and relevant result on complete geometric graph. In section 3 , we consider the asymptotic normality of the distribution of connected subgraphs of \mathcal{K}_{n}. In section 4, we give the asymptotic formula for $P_{n}(t)$.

2. Complete Geometric graph

In this section we give some background definitions and result on complete geometric graphs.
Definition 2.1. Let \mathcal{K}_{n} be a complete geometric graph with n points and let $\tau \subset[n] . x_{\tau}$ is said to be a point if $|\tau|=1$, a line if $|\tau|=2$, a triangle if $|\tau|=3$ and so on.
Remark 2.2. All the $x_{\tau}{ }^{\prime}$ sfor which $|\tau| \geq 3$ are empty, that is, they have no interior points.
Example 2.3.
i.

$$
\text { For } n=3
$$

ii. . For $n=4$

Figure 2

Figure 1 and 2 give the complete geometric digraph for $n=3$ and $n=4$ respectively.
In a complete geometric graph \mathcal{K}_{n}, let $\mathrm{F}_{r}=\left\{x_{\tau}:|\tau|=r, \tau \subseteq[n]\right\}, \mathrm{F}_{1}$ set of points, F_{2} set of lines and so on, We refer to $\mathrm{F}_{r} ' s$ as data in \mathcal{K}_{n}.
Theorem 2.4. [1] Given a complete geometric graph \mathcal{K}_{n}, then the cardinality of F_{r} is given by the coefficient of
$P_{n}(t)=\sum_{r=1}^{n}\binom{n}{r} t^{r}$
for $n \geq 3$.
Theorem 2.4 gives the cardinality of $\mathrm{F}_{r}\left(\# \mathrm{~F}_{r}\right)$ for $1 \leq r \leq n$ in \mathcal{K}_{n}. Let the cardinality of $\mathrm{F}_{r}\left(\# \mathrm{~F}_{r}\right)$ be d_{r}
Table 1. Statistics of d_{r} in \mathcal{K}_{n}

\mathbf{N}	d_{1}	$\mathrm{~d}_{2}$	$\mathrm{~d}_{3}$	$\mathrm{~d}_{4}$	$\mathrm{~d}_{5}$	$\mathrm{~d}_{6}$	$\mathrm{~d}_{7}$	$\mathrm{~d}_{8}$	$\mathrm{~d}_{9}$	$\mathrm{~d}_{10}$
1	1									
2	2	1								
3	3	3	1							
4	4	6	4	1						
5	5	10	10	5	1					
6	6	15	20	15	6	1				
7	7	21	35	35	21	7	1			
8	8	28	56	70	56	28	8	1		
9	9	36	84	126	126	84	36	9	1	
10	10	45	120	210	252	210	120	45	10	1

3. Normal approximation of the number of connected subgraphs of $\mathcal{K}_{\boldsymbol{n}}$

In this section, we give the normal approximation of the distribution of data in \mathcal{K}_{n}. See [3-6] for details on asymptotic normality. 3.1 Asymptotic Normality
d_{r} has a unimodal behavior which suggest that d_{r} may be asymptotically normal. This is studied by finding the generating function for the probability distribution of d_{r} for $m \leq n$.
$\begin{aligned} S_{n} & =\sum_{r=1}^{n}\binom{n}{r} \\ & =2^{n}-1\end{aligned}$
where S_{n} is $\sum_{r=1}^{n}\left(\mathrm{~d}_{r}\right)$.
The generating function for the probability distribution is
$E_{n}(t)=\frac{P_{n}(t)}{\sum_{r=1}^{n}\binom{n}{r}}$

$$
=\frac{P_{n}(t)}{2^{n}-1}
$$

For $1 \leq r \leq n$.
The moment generating function, $M_{n}(t)$ is calculated as follows:

$$
\begin{align*}
M_{n}(t) & =\frac{E_{n}\left(e^{t}\right)}{2^{n}-1} \\
& =\frac{\sum_{r=1}^{n}\binom{n}{r} e^{r t}}{2^{n}-1} \\
& =\frac{\left(1+e^{t}\right)^{n}-1}{2^{n}-1} . \tag{3.1}
\end{align*}
$$

The mean, $\mu=\frac{n 2^{n-1}}{2^{n}-1}$ and the variance, $\sigma^{2}=\frac{n 2^{n-1}}{2^{n}-1}\left(\frac{n+1}{2}-\frac{n 2^{n-1}}{2^{n}-1}\right)$. The probability distribution function ${ }^{2} \mathrm{~d}_{r}$ is
$f(r)=\frac{\binom{n}{r}}{2^{n}-1}$.
Figure 3 to 5 show the density for a normal random variable in broken line and the continuous line curve for probability distribution function for d_{r} for $n=10, n=20$ and $n=50$. As the order of \mathcal{K}_{n} increases, the continuous line curvemoves closer to the broken line curve. This implies that the approximation of $f(r)$ to normal distribution improves as the order of \mathcal{K}_{n} increases.

Figure 3. Comparison of the $f(r)$ to the normal density for $n=10$

Figure 4. Comparison of the $f(r)$ to the normal density for $n=20$

Figure 5. Comparison of the $f(r)$ to the normal density for $n=50$
Figure 6 to 8 show the ratio of probability function, $f(r)$ to the estimate provided by normal distribution function. As the order of \mathcal{K}_{n} increases, the curves tend to the shape of a cowboy hat and top of the hat get broader suggesting that the approximation improves as the order of \mathcal{K}_{n} increases.

Figure 6. Ratio of probability function, $f(r)$
to the normal density for $n=10$

Figure 8 . Ratio of probability function, $f(r)$ to the normal density for $n=50$
4. Asymptotic Formula for d_{r}.

We are interested in the sequence $\left\{H_{n+r}(n), n=1,2, \ldots\right\}$. For $r \geq 1$, we have

$$
\begin{align*}
H_{n+r}(n) & =\binom{n+r}{n} \\
& =\frac{(n+r)!}{r!n!} . \tag{4.1}
\end{align*}
$$

Equation (4.1) can be approximated using Stirling's approximation (see [7] for details).
$n!=\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}\left(1+O\left(\frac{1}{n}\right)\right)$.
Then we have

$$
\begin{aligned}
H_{n+r}(n) & =\frac{(n+r)!}{r!n!} \\
& =\frac{\sqrt{2 \pi}(n+r)^{n+r+\frac{1}{2}} e^{-(n+r)}}{\sqrt{2 \pi} r^{r+\frac{1}{2}} e^{-r} \times \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}} \times\left(1+O\left(\frac{1}{n}\right)\right)
\end{aligned}
$$

$=\frac{(n+r)^{n+r+\frac{1}{2}}}{r^{r+\frac{1}{2}} \times \sqrt{2 \pi} n^{n+\frac{1}{2}}} \times\left(1+O\left(\frac{1}{n}\right)\right)$
$=\frac{1}{\sqrt{2 \pi}}\left(\frac{n+r}{r}\right)^{r}\left(\frac{n+r}{n}\right)^{n}\left(\frac{n+r}{n r}\right)^{\frac{1}{2}} \times\left(1+O\left(\frac{1}{n}\right)\right)$
$=\frac{n^{r} r^{n}}{\sqrt{2 \pi}}\left(\frac{n+r}{n r}\right)^{n+r+\frac{1}{2}} \times\left(1+O\left(\frac{1}{n}\right)\right)$.

Theorem 4.1.

$H_{n+r}(n)=\frac{n^{r} r^{n}}{\sqrt{2 \pi}}\left(\frac{n+r}{n r}\right)^{n+r+\frac{1}{2}} \times\left(1+O\left(\frac{1}{n}\right)\right)$.
This provide an asymptotic estimate for the data in \mathcal{K}_{n}. Figure 9 to 11 give comparison of the $\left(2^{n}-1\right)$ times the normal density density (asterisk curve) with mean, $\mu=\frac{n 2^{n-1}}{2^{n}-1}$ and the variance, $\sigma^{2}=\frac{n 2^{n-1}}{2^{n}-1}\left(\frac{n+1}{2}-\frac{n 2^{n-1}}{2^{n}-1}\right)$, asymptotic estimate(broken line curve) and exact value of $H_{n}(r)$ (continuous line curve).

Figure 9. Comparison of normal density estimate to asymptotic estimate and actual $H_{n}(r)$ for $n=10$.

Figure 10. Comparison of normal density estimate to asymptotic estimate and actual $H_{n}(r)$ for $n=20$.

Figure 11. Comparison of normal density estimate to asymptotic estimate and actual $H_{n}(r)$ for $n=50$.

References

[1] Adeyemo Praise and Makanjuola Musa, Classification of the defining equations of flag varieties $\mathcal{F} l_{n}(\mathbb{C})$, (in preparation) (2018).
[2] Adeyemo Praise and Makanjuola Musa,Degeneration of flag varieties $\mathcal{F}_{n}(\mathbb{C})$ using complete geometric graph, in preparation) (2018).
[3] H. Margolius Barbara, Permutations with inversions, Journal of Integer Sequences 4 (2001), Article01.2.4.
[4] George E. Andrews, The theory of partitions, Ecyclopedia of Mathematics and its Applications, vol 2, 1971.
[5] N. Sachkov Vladimir, Probabilistic methods in combinatorial analysis, Cambridge University Press, New York, NY, 1997.
[6] Feller William, An introduction to probability theory and its applications, John Wiley and Sons, New York, NY, third edition, 1971.
[7] Elezovi'c Tomislav, Buri'c Neven, Asymptotic expansions of the binomial coefficients, Journal of Applied Mathematics and Computing 46 (2014), 135-145.

