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Abstract 
 

Gauge Theory is coupled to 𝑵 = 𝟏 supergravity. We showed how the 𝑫 and 𝑭, terms 

are broken, and give a critical analysis mass splitting (Higgs effect), and the mass 

matrix for scalars and fermions of the O’Raifertaigh model. There is a strong evidence 

of a non-vanishing vacuum expectation of this model after supersymmetry is broken 

and there exists a massless Goldstone fermion oriented along the direction of 

supersymmetry breaking. The fermion mass matrix has one zero eigen value with eigen 

vector. 

 
 

 

1.0 Introduction 

In strongly interacting globally supersymmetry [1], there arise a condensate formation of gauge theories [2, 3]. This process leads to 

a broken chiral symmetry, but there are strong arguments that global supersymmetry remains unbroken [2-5]. The reason for this 

arguments are linked to the stability of global supersymmetry [4, 5]. The situation changes completely if these theories are coupled 

to gravity [6] where supersymmetry is realized locally. It is instructive to note that the coupling to supergravity give negative 

contributions [7,8] to the potential and the interpretation of the vacuum energy as an order parameter is lost in the process. It may be 

noted that gravity do not change qualitatively the dynamics of a strongly interacting gauge theory when the scale of these interaction 

is small compared to the planck mass 𝑀 = 1019𝐺𝑒𝑉.Thus, condensation effect is expected. 

Supersymmetry has to be broken in a realistic model, while preserving 𝐸𝑣𝑎𝑐𝑢𝑢𝑚 = 0 [7, 8]. It is thus highly suggestive in the 

proposed models [9] such as O‟Raifertaigh and super-GUTs. 

In this paper, we make an attempt in this direction, coupling a gauge theory to 𝑁 = 1 supergravity. We showed how the 𝐷 and 

𝐹terms are broken. While analyzing the mass matrix for scalars and fermions for the O‟Raifertaigh model. We find a strong 

evidence that a non-vanishing vacuum expectation value of 𝐷, the auxillary field of 𝑉 breaks supersymmetry. We find the spectrum 

of this model after supersymmetery is broken and discuss the mass splitting of the multiplet. As a result, the super-Higgs effect [10] 

occurs and the gravitino receives a mass by “eating” the Goldstino. 
 

2.0 O’Raifertaigh Model 

The O‟Raifertaigh model involves a triplet of chiral superfieldsФ1,Ф2,Ф3 for which 𝐾 … ahler and superpotential are given by  

𝐾 = Ф𝑖
+𝜙𝑖 ,𝑊 = 𝑔𝜙1 Ф3

2 −𝑚2 +𝑀𝜙2𝜙3 ,𝑀 ≥ 𝑚                                 (2.1) 

Now, 

−𝐹1
∗ =

𝜕𝑊

𝜕𝜑1

= 𝑔 𝜑3
2 −𝑚2                                                                               (2.2) 

−𝐹2
∗ =

𝜕𝑊

𝜕𝜑2

= 𝑔𝜑3                                                                                             (2.3) 

−𝐹3
∗ =

𝜕𝑊

𝜕𝜑3

= 2𝑔𝜑1𝜑3 +𝑀𝜑2                                                                       (2.4) 

Remark: Equation (2.2) – (2.4) are the 𝐹  equations of motion. If 𝐹𝑖
∗ = 0 for 𝑖 = 1, 2, 3 simultaneously the form of 𝑊 indeed 

breaks supersymmetry. 
 

2.1 F-term Breaking 

Theorem: The mass matrix for scalars and fermions for the O‟Raifertaigh model is given by 

𝑆𝑇𝑟 𝑀
2 =   −1 2𝑗+1 2𝑗 + 1 

𝑗

𝑚𝑗
2 = 0                                                      (2.5) 
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where 𝑗 represents the „spin‟ of the particles. 

Proof: 

From [1], 𝑁 = 1 supersymmetryLangrangian has theF-terms 

𝐹𝑖 = −
𝜕𝑊∗

𝜕𝜑𝑖
∗ ,𝐹𝑖

∗ = −
𝜕𝑊

𝜕𝜑𝑖
                                                                                   (2.6) 

and the scalar potential 

𝑉 =   𝐹𝑗  
2

𝑗

                                                                                                           (2.7) 

𝜑𝑖 = 𝜑𝑖,1 + 𝑖𝜑𝑖,2                                                                                                    (2.8) 

𝑀𝛼𝛽
2 =

1

2

 

 
 
 
 

𝜕2𝑉

𝜕𝜑1,1𝜕𝜑1,1

𝜕2𝑉

𝜕𝜑1,1𝜕𝜑1,2

⋯
𝜕2𝑉

𝜕𝜑1,1𝜕𝜑𝑛 ,2

𝜕2𝑉

𝜕𝜑1,2𝜕𝜑1,1

𝜕2𝑉

𝜕𝜑1,2𝜕𝜑1,2

⋯
𝜕2𝑉

𝜕𝜑1,2𝜕𝜑𝑛 ,2

𝜕2𝑉

𝜕𝜑1,𝑛𝜕𝜑1,1

𝜕2𝑉

𝜕𝜑1,𝑛𝜕𝜑1,2

⋯
𝜕2𝑉

𝜕𝜑1,𝑛𝜕𝜑𝑛 ,2 

 
 
 
 

                            (2.9) 

𝑇𝑟 𝑀𝛼𝛽
2  =

1

2
  

𝜕2𝑉

𝜕𝜑𝑖 ,𝑗
2

𝑖𝑗=1,2

                                                                                  (2.10) 

Taking into accounting [(2.8)] 

and  

𝜑𝑖.1
∗ = 𝜑𝑖 ,1 − 𝑖𝜑𝑖 ,2                                                                                                   (2.11) 

𝜕𝑉

𝜕𝜑𝑖,1
=
𝜕𝑉

𝜕𝜑𝑖
+
𝜕𝑉

𝜕𝜑𝑖
∗                                                                                                 (2.12) 

𝜕𝑉

𝜕𝜑𝑖,2
= 𝑖

𝜕𝑉

𝜕𝜑𝑖
− 𝑖

𝜕𝑉

𝜕𝜑𝑖
∗                                                                                             (2.13) 

𝜕2𝑉

𝜕𝜑𝑖 ,1
2 =

𝜕2𝑉

𝜕𝜑𝑖
2 +

𝜕2𝑉

𝜕 𝜑𝑖
∗ 2

+ 2
𝜕2𝑉

𝜕𝜑𝑖𝜕𝜑𝑖
∗                                                                   (2.14𝑎) 

𝜕2𝑉

𝜕𝜑𝑖 ,2
2 = −

𝜕2𝑉

𝜕𝜑𝑖
2 −

𝜕2𝑉

𝜕 𝜑𝑖
∗ 2

+ 2
𝜕2𝑉

𝜕𝜑𝑖𝜕𝜑𝑖
∗                                                              (2.14𝑏) 

Hence, 

𝑇𝜏 𝑀𝛼𝛽
2  =

1

2
  

𝜕2𝑉

𝜕𝜑𝑖 ,𝑗
2

𝑖𝑗=1,2

 

= 2 
𝜕2𝑉

𝜕𝜑𝑖𝜕𝜑𝑖
∗

𝑖

 

= 2 
𝜕2𝑉

𝜕𝜑𝑖𝜕𝜑𝑖
∗

𝑖

   𝐹𝑗  
2

𝑗

  

= 2 
𝜕2𝑉

𝜕𝜑𝑖𝜕𝜑𝑖
∗

𝑖

𝜕𝑊∗

𝜕𝜑𝑗
∗

𝜕𝑊

𝜕𝜑𝑗
                                                                                   (2.15) 

Now, 

𝑀𝑖𝑗 =
𝜕2𝑊

𝜕𝜑𝑖𝜕𝜑𝑗
 Fermion mass matrix                                                          (2.16) 

𝑀′ = 𝑢𝑀𝑢+ =

 

 

𝑚1𝑒
−𝑖𝜑1

𝑚2𝑒
−𝑖𝜑2

⋱
𝑚𝑛𝑒

−𝑖𝜑𝑛 

                              (2.17) 

𝑀′(𝑀′0+) =

 

 

𝑚1
2

𝑚2
2

⋱
𝑚𝑛

2 

                                                                 (2.18) 

 𝑀′ 𝑀′ + 𝑖𝜏 =  𝑈𝑖𝑗𝑀𝑗𝑘𝑈𝑘𝑙
+  𝑈𝑙𝑝𝑀𝑝𝑞

+ 𝑈𝑞𝜏
+   

=  𝑈𝑖𝑗𝑀𝑗𝑘𝑈𝑘𝑙
+  𝑈𝑙𝑝𝑀𝑝𝑞

∗ 𝑈𝑞𝜏
+   

= 𝑈𝑙𝑗𝑀𝑗𝑘𝑀𝑘𝑙
∗ 𝑈𝑙𝜏

∗                                                                                                        (2.19) 
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𝑇𝜏 𝑀
′ 𝑀′ + = 𝑈𝑙𝑗𝑀𝑗𝑘𝑀𝑘𝑙

∗ 𝑈𝑙𝜏
∗  

= 𝑀𝑗𝑘𝑀𝑘𝑙
∗  

  
𝜕2𝑊

𝜕𝜑𝑗𝜕𝜑𝑘
  

𝜕2𝑊∗

𝜕𝜑𝑗
∗𝜕𝜑𝑘

∗ 

𝑗 ,𝑘

                                                                                     (2.20) 

Therefore, 

  −1 2.
1
2

+1  2.
1

2
+ 1 

𝑗

𝐾f𝑒𝑟𝑚𝑖𝑜𝑛
2 = 2  

𝜕2𝑊

𝜕𝜑𝑗𝜕𝜑𝑘
  

𝜕2𝑊∗

𝜕𝜑𝑗
∗𝜕𝜑𝑘

∗ 

𝑗 ,𝑘

               (2.21) 

Now, consider table I 

Table I: Mass Spectrum 

O’Raifertaigh model  

Bosons Fermions 

𝜑1: 0. 0 𝜓1: 0 

𝜑2:𝑀1𝑀 𝜓:𝑀 

𝜑3: 𝑀2 − 2𝑔𝑚2 , 𝑀2 + 2𝑔𝑚2 𝜓:𝑀 

 

invoking tableI into formula for the supertrace leads to 

𝑆𝑇𝑟 𝑀 = 𝑀2 + 𝑀2 +  𝑀2 − 2𝑔𝑚2 +  𝑀2 + 2𝑔𝑚2 − 2 𝑀2 + 𝑀2 = 0  
 desired result  QED 

Remark: 

(i) We cannot have 𝐹𝑖
∗ = 0 for 𝑖 = 1, 2, 3 simultaneously, consequently, the form 𝑊 breaks supersymmetry. 

(ii) The spectrum: 

𝑉 =  
𝜕𝑊

𝜕𝜑𝑖
  
𝜕𝑊

𝜕𝜑𝑖
 
∗

= 𝑔2 𝜑3
2 −𝑚2 2 + 𝑀2 𝜑3 

2 + 𝑀2 2𝑔𝜑1𝜑3 +𝑀𝜑2 
2 

           If 𝑚2 <
𝑀2

2𝑔2 , then the minimum is at  𝜑2 −  𝜑3 = 0. 

           𝜑1  arbitrary. This implies that  𝑉 = 𝑔2𝑚4 > 0. This arbitrariness of 𝜑1 implies zero mass,𝑚𝜑1
= 0. 

(iii)  
𝜕2𝑊

𝜕𝜑 𝑖𝜕𝜑𝑗
 𝜑𝑖𝜑𝑗 =  

0 0 0
0 0 𝑀
0 𝑀 0

 𝜑𝑖𝜑𝑗  in the Lagrangian gives 𝜑𝑖  masses;  

𝑚𝜑1
= 0,𝑚𝜑2

= 𝑚𝜑3
= 𝑀 

(iv) 𝜑1 turns out to be goldstino due to 𝛿𝜑1 ∝  𝐹1 ≠ 0 zero mass. 

(v) The quadratic terms in  
𝑉: 𝑉𝑞𝑢𝑎𝑑 = −𝑚2𝑔2 𝜑3

2 + 𝜑3
∗2 +𝑀2 𝜑3 

2 + +𝑀2 𝜑2 
2 

 implies 𝑚𝜑1
= 0,𝑚𝜑2

= 𝑀 while 𝜑3 is regarded as a complex field  

           𝜑3 = 𝑎 + 𝑖𝑏 where real and imaginary part have different masses. Thus 

𝑚𝑎
2 = 𝑀2 − 2𝑔2𝑚2 ,𝑚𝑏

2 = 𝑀2 − 2𝑔2𝑚2  

There arise heavier and lighter superpartners, the supertrace of 𝑀 of the bosonic and fermionic parts vanishes, as seen in the 

generic for tree level of broken supersymmetry. It may be noted that 𝑊 is not renormalized to all orders in perturbation 

theory. 

(vi) If supersymmetry is unbroken at tree level, then it is also unbroken to all orders in perturbation theory. It means that in order 

to break supersymmetry we need to consider non-perturbative effects. 
 

3.0 D-Term Breaking 
Theorem: A chirasuperfield𝜙 of charge 𝑞 coupled to an Abelian vector superfield 𝑉 yield the D-term part of the Lagrangian given 

by: 

ℒ𝐷 =𝑝 𝐷 𝜑 
2 +

1

2
𝐷2 +

1

2
𝐷 

Proof 

When a chiral superfield𝜙 of charge 𝑞 coupled to an Abelian vector superfield 𝑉, the Lagrangian then reads 

ℒ =  𝜙+𝑒𝑞
𝑉
𝜙 

𝐷
+

1

4
 𝑊𝛼  𝑊𝛼  𝐹 + . 𝑐 + 𝜉𝑉𝐷                                                                  (3.1) 

Let 

𝑉𝑊𝑧 =  𝜃𝜍𝜇𝜃  + 𝑖 𝜃𝜃  𝜃 𝜙  − 𝑖 𝜃 𝜃   𝜃𝜆 +
1

2
 𝜃𝜃  𝜃 𝜃  𝐷  

𝑊𝑒𝑠𝑠 − 𝑍𝑢𝑚𝑖𝑛𝑜 𝑔𝑎𝑢𝑔𝑒                                                                                                      (3.2) 

Ф = 𝜑 +  2 𝜃𝜓 +  𝜃𝜃 𝐹 + 𝑖 𝜃𝜍𝜇𝜃  𝜕𝜇𝜑 −
1

4
 𝜃𝜃  𝜃 𝜃  𝜕𝜇𝜕

𝜇𝜑 
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−
𝑖

 2
 𝜃𝜃  𝜕𝜇𝜕

𝜇𝜃                                                                                                                           (3.3) 

Ф+ = 𝜑∗ +  2 𝜃 𝜓  +  𝜃 𝜃  𝐹∗ + 𝑖 𝜃𝜍𝜇𝜃  𝜕𝜇𝜑
∗ −

1

4
 𝜃𝜃  𝜃 𝜃  𝜕𝜇𝜕

𝜇𝜑∗ 

+
𝑖

 2
 𝜃 𝜃   𝜃𝜍𝜇𝜕𝜇𝜓                                                                                                                        (3.4) 

Ф and Ф+ are the components of chiral superfield 

NB: 

𝜕𝜇𝜑∗𝜕𝜇𝜑 − 𝑖𝜓 𝜕
𝜇𝜕𝜇𝜓 + 𝐹𝐹∗ are dut to the D-term of Ф+Ф after integration by parts. But, 

Ф+ 𝑥,𝜃,𝜃  = 𝜑∗ +  2 𝜃 𝜓  +  𝜃 𝜃  𝐹∗ + 𝑖 𝜃𝜍𝜇𝜃  𝜕𝜇𝜑
∗ −

1

4
 𝜃𝜃  𝜃 𝜃  𝜕𝜇𝜕

𝜇𝜑∗ 

+
𝑖

 2
 𝜃 𝜃   𝜃𝜍𝜇𝜕𝜇𝜓                                                                                                                        (3.5) 

Ф+Ф =  𝜑∗ +  2 𝜃 𝜓  +  𝜃 𝜃  𝐹∗ + 𝑖 𝜃𝜍𝜇𝜃  𝜕𝜇𝜑
∗ −

1

4
 𝜃𝜃  𝜃 𝜃  𝜕𝜇𝜕

𝜇𝜑∗ +
𝑖

 2
 𝜃 𝜃   𝜃𝜍𝜇𝜕𝜇𝜓    

 𝜑 +  2 𝜃𝜓 +  𝜃𝜃 𝐹 + 𝑖 𝜃𝜍𝜇𝜃  𝜕𝜇𝜑 −
1

4
 𝜃𝜃  𝜃 𝜃  𝜕𝜇𝜕

𝜇𝜑 −
𝑖

 2
 𝜃𝜃  𝜕𝜇𝜕

𝜇𝜃    

⊃  𝜃𝜃  𝜃 𝜃   −
1

4
𝜑∗𝜕𝜇𝜕

𝜇𝜑 −
1

4
𝜑𝜕𝜇𝜕

𝜇𝜑∗ +  𝐹 2 +  𝜃𝜍𝜇𝜕𝜇𝜃   𝜃𝜍
𝑣𝜕𝜇𝜃  𝜕𝑣𝜑𝜕𝜇𝜑

∗ 

−𝑖𝜃 𝜓  𝜃𝜃 𝜕𝜇𝜑𝜍
𝜇𝜃 + 𝑖 𝜃 𝜃   𝜃𝜍𝜇𝜕𝜇𝜓   𝜃𝜓  

=  𝜃𝜃  𝜃 𝜃   −
1

4
𝜑∗𝜕𝜇𝜕

𝜇𝜑 −
1

4
𝜑𝜕𝜇𝜕

𝜇𝜑∗ +  𝐹 2 +
1

2
 𝜃𝜃  𝜃 𝜃  𝜕𝜇𝜑𝜕𝜇𝜑

∗ 

+𝑖𝜃 𝛼𝜓 𝛼 𝜃𝜃 𝜕𝜇𝜓
𝛽  𝜍𝜇  𝛽𝛽 𝜃 

𝛽 + 𝑖 𝜃 𝜃  𝜃𝛼 𝜍𝜇  𝛼𝛼 𝜕𝜇𝜓 
𝛼 𝜃𝛽𝜑𝛽  

=  𝜃𝜃  𝜃 𝜃   −
1

4
𝜑∗𝜕𝜇𝜕

𝜇𝜑 −
1

4
𝜑𝜕𝜇𝜕

𝜇𝜑∗ +  𝐹 2 +
1

2
 𝜃𝜃  𝜃 𝜃  𝜕𝜇𝜑𝜕𝜇𝜑

∗ 

+𝑖
1

2
𝜖𝛼 𝛽

 
 𝜃 𝜃  𝜓 𝛼  𝜃𝜃 𝜕𝜇𝜓

𝛽  𝜍𝜇 𝛽𝛽 + 𝑖
1

2
 𝜃 𝜃   𝜃𝜃 𝜖𝛼𝛽  𝜍𝜇  𝛼𝛼 𝜕𝜇𝜓 

𝛼 𝜑𝛽  

=  𝜃𝜃  𝜃 𝜃   −
1

4
𝜑∗𝜕𝜇𝜕

𝜇𝜑 −
1

4
𝜑𝜕𝜇𝜕

𝜇𝜑∗ +  𝐹 2 + 𝑖
1

2
𝜕𝜇𝜓𝜕𝜇𝜑

∗ + 𝑖
1

2
𝜕𝜇𝜓 𝜍

𝜇  𝜓 − 𝑖
1

2
𝜓 𝜍𝜇  𝜕𝜇𝜓   

=  𝜃𝜃  𝜃 𝜃    𝐹 2 + 𝜕𝜇𝜑𝜕𝜇𝜑
∗ − 𝑖

1

2
𝜓 𝜍𝜇  𝜕𝜇𝜓  + 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠                            (3.6) 

hence, 
 Ф+𝑉Ф 𝐷 = −𝑖 𝜓 𝜍 𝜇𝜕𝜇𝜓 + 𝜕𝜇𝜑

∗ +  𝐹 2                                                                                   (3.7) 

Now,  

Φ+𝑉 𝜙 𝐷 = 𝜑∗ 𝜃𝜍𝜇𝜃  𝑉𝜇 𝑖 𝜃𝜍
𝑉𝜃  𝜕𝑣𝜑 − 𝑖𝜑

∗ 𝜃 𝜃   𝜃 ⋋   2𝜃𝜓 +
 𝜑 2

2
 𝜃𝜃  𝜃 𝜃  𝐷 

+ 2 𝜃 𝜓   𝜃𝜍𝜇𝜃  𝑉𝜇 2 𝜃𝜓 + 𝑖 2 𝜃 𝜓   𝜃𝜃  𝜃 ⋋  𝜑 − 𝑖 𝜃𝜍𝜇𝜃  𝜕𝜇𝜑
∗
𝜇
 𝜃𝜍𝑉𝜃  𝑉𝑣  𝜑 𝐷  

=
1

2
 𝜑 2𝐷 +

𝑖

2
 𝜑∗𝑉𝜇𝜕𝜇𝜑 − 𝜑𝑉

𝜇𝜕𝜇𝜑
∗ +

𝑖

 2
  ⋋ 𝜓  𝜑 −  ⋋ 𝜓 𝜑∗ −

1

2
 𝜓 𝜍 𝜇𝜓 𝑉𝜇      (3.8) 

Using Fierz identities, 

Ф† 𝑉
2

2
 𝜙 𝐷 =

1

2
𝜑∗ 𝜃𝜍𝜇𝜃 𝑉𝜇  𝜃𝜍

𝜇𝜃   𝑉𝑣 𝐷 

=
1

4
 𝜑 2𝑉𝜇𝑉

𝜇                                                                                                                                     (3.9) 

Ф†𝑒2 𝑜𝑟  𝑣  𝜙 𝐷 = 𝜕𝜇𝜑𝜕
𝜇𝜑∗ +  𝐹 2 − 𝑖 𝜓 𝜍 𝜇𝜕𝜇𝜓 + 𝑞𝑉𝜇  − 𝜓 𝜍 𝜇  + 𝑖 𝜑∗𝜕𝜇𝜑 − 𝜑𝜕𝜇𝜑

∗   

+ 2𝑖𝑞 𝜑 ⋋ 𝜓  − 𝜑∗ ⋋ 𝜓   + 𝑎 𝐷 + 𝑞𝑉𝜇𝑉
𝜇   𝜑 2                                                                (3.10) 

Hence the D-term part of the Lagrangian is 

ℒ𝐷 = 𝑞𝐷 𝜑 2 +
1

2
𝐷2 +

1

2
𝜉𝐷                                                                                                       (3.11) 

where 
1

2
𝐷2 term comes from 

1

4
𝑊𝛼𝑊

𝛼 + 𝑐. Solving (3.11) for 𝐷 yields 

𝐷 = −𝑞 𝜑 2 −
𝜉

2
                                                                                                                            (3.12) 
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Put *3.12) into (3.11) yields the D-term potential 

𝑉𝐷 =
1

8
 𝜉 + 2𝑎 𝜑 2 2                                                                                     (3.13) 

 

Remark: 

(i) Supersymmetry is broken when  𝑞 𝜑 2 +
𝜉

2
 = −𝐷 ≠ 0. This is the condition that the Fayet-Iliopoulos term 

and the charge 𝑞 have to satisfy for supersymmetry to be broken. 

(ii) If 𝜉 and 𝑞 are given the same sign, then 𝑉𝐷  is minimized at 𝜑 = 0, with a positive potential and supersymmetry 

is broken. In this case 

                      𝑉𝐷 =
1

8
𝜉2 +

𝑞𝜉

2
 𝜑 2 +

𝑞2

2
 𝜑 4 

(iii) If  𝜑 = 0, the mass of 𝜑 is 𝑚𝜑
2 = 𝑞𝜉, as the kinetic energy terms are 𝜕𝜇𝜓𝜕

𝜇𝜑∗ 

Since now other fields obtain 𝑉𝜃𝑉𝑠, no mass is generated for the fermions. Therefore the mass splitting in the multiplet is 

𝑚𝜑 =  𝑞𝜉 and 𝑚𝜑 = 0. 

 

Theorem:  

A renormalisable𝑁 = 1 supersymmetry theory with chiral superfields Ф1 =  𝜑1,𝜓1 ,𝐹1  and vector superfields 

𝑉𝑎 𝜆𝑎 ,𝐷𝑎
𝜇

,𝐷𝑎  with both 𝐷 and 𝐹 term supersymmetry breaking  𝐹1 ≠ 0 and 𝐷𝑎 ≠ 0  in the vacuum is given by: 

𝜕𝑉

𝜕𝜑𝑖
= 𝐹𝑗

𝜕2𝑊

𝜕𝜑𝑖𝜑𝑗
+ 𝑔𝑎𝐷𝑎𝜑𝑗

† 𝑇𝑎 𝑖
𝑗

= 0 

where 𝑔𝑎𝑇𝑎  and 𝑊 are the gauge coupling condition, generators of the gauge group and superpotential respectively. 

 

Proof 

By definition 

𝑉 =   𝐹𝑖 
2 +

1

2
 𝐷𝑎

𝑎

𝐷𝑎  

=   
𝜕𝑊

𝜕𝜑𝑖
  
𝜕𝑊∗

𝜕𝜑𝑗
∗  

𝑖

+
1

2
   𝜑𝑗

†𝑇𝑎

𝑗

𝜑𝑗   𝜑𝑘
†𝑇𝑎

𝑘

𝜑𝑘 

𝑎

                 (3.14) 

Now, 

𝜕𝑉

𝜕𝜑𝑖
=   

𝜕2𝑊

𝜕𝜑𝑖𝜑𝑗
 𝐹𝑖

𝑖

+  𝐷𝑎

𝑖

  𝜑𝑘
† 𝑇𝑎 𝑘𝑗

𝑘

  

=
𝜕2𝑊

𝜕𝜑𝑖𝜑𝑗
 2 𝜑𝑘

† 𝑇𝑎 𝑘𝑗
𝑘

 

𝐹𝑖
𝐷𝑎

 2

 = 0                                                            (3.15) 

Lemma 1: 

The gauge variation of 𝑊 is given by 

𝛿𝑔𝑎𝑢𝑔𝑒
(𝑎)

𝑊 =
𝜕𝑊

𝜕𝜑𝑖
𝛿𝑔𝑎𝑢𝑔𝑒

(𝑎)
𝜑𝑗  

= −𝐹𝑖
† 𝑇𝑎 𝑗

𝑖𝜑𝑗                                                                                                      (3.17) 

multiply (3.15) with a non-vanishing complex number 𝑐, we obtained the matrix 

=  𝑐 𝜑𝑘
† 𝑇𝑎 𝑘𝑗

𝑘

0  

𝐹𝑖
𝐷𝑎

 2

                                                                          (3.18) 

Combining (3.15) and (3.18), lead to the matrix 

0 =

 

 
 

𝜕2𝑊

𝜕𝜑𝑖𝜕𝜑𝑗
 2 𝜑𝑘

† 𝑇𝑎 𝑘𝑗
𝑘

 2 𝜑𝑘
† 𝑇𝑎 𝑘𝑗

𝑘

0
 

 
 
 

𝐹𝑖
𝐷𝑎

 2

                                   (3.19) 

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 7, (March, 2018), 1 –10 



6 
 

Dynamically Broken Supersymmetry…  Alabi and Onuche          Trans. Of NAMP 

 

Lemma 2: 

The matrix (3.19) is the same as that of the fermion mass matrix 

 
𝜓𝑖
𝜆𝑎
 
𝑇

 𝑀𝑖𝑎   
𝜓𝑖
𝜆𝑎
  

 

Proof 

To find the entries of the mass matrix, we need to know the standard contribution for the fermion mass matrix given by 
𝜕2𝑊

𝜕𝜑 𝑖𝜕𝜑𝑗
. The off-diagonal terms can be obtained from the structure of the kinetic terms 

 

 𝑑2𝜃𝑑2𝜃 Ф 
†
𝑒𝑉

𝑎𝑇𝑎Ф 

Now, 

 

Ф~𝜓 +  2𝜃𝜓 + 𝜃𝜃𝐹𝑓

Ф~𝜓† +  2𝜃 𝜓 + 𝜃 𝜃 𝐹∗

𝑉𝑎~ 𝜃𝜍𝜇𝜃  𝑉𝜇
𝑎 + 𝑖𝜃𝜃𝑡𝑒𝑡𝑎𝜆𝑎

−𝑖 𝜃 𝜃 𝜃𝜆𝑎 +
1

2
𝜃𝜃𝜃 𝜃 𝐷𝑎  

 
 

 
 

                                                                      (3.20) 

As deduced for the abelian case (3.1) – (3.10), the term 𝜓𝜆 arises from Ф𝑖
†𝑒𝑉

𝑎𝑇𝑎Ф𝑖 . We identify the following cross term by 

looking at the superfield expansion (3.1) – (3.10). 

 2𝜓𝑖
†𝑇𝑖𝑗

𝑎𝜓𝑗𝜆𝑎  

From the superfield expansion, no gaugino mass term  𝜆𝜆  is generated. 

 

Hence, 

𝑀𝑖𝑎  

𝐹𝑖
𝐷𝑎

 2

 = 0                                                                                                        (3.21) 

where 𝑀𝑖𝑎  is the fermion mass matrix. 

Remark: 

Eqn. (3.21) implies that there is at least one zero eigenvalue with eigenvector 

 

𝐹𝑖
𝐷𝑎

 2

  

This means that there exists a massless Goldstone fermion, oriented along the direction of supersymmetry breaking. 

 

4.0 Yang-Mills coupled to 𝑵 = 𝟏 supergravity 

In this section, we consider pure 𝑆𝑈(𝑁) supersymmetry Yang-Mills coupled to 𝑁 = 1 supergravity and analyzed the 

effective Lagrangian formulation noted in [3]. 

Thus, the Langrangian is expressed as  

ℒ =  𝑑4𝜃  (𝑆𝑆∗)
1
3 +  

𝑆𝑆∗

𝜇4
  +  𝑑2𝜃  𝑆𝑙𝑜𝑔  

𝑆

𝜇3
 − 𝑆 + . 𝑐                       (4.1) 

where 𝑆 = 𝑊𝛼𝑊𝛼  and 𝑊𝛼 = 𝐷 2𝑒𝑉𝐷𝑎𝑒
𝑉. 𝑆 is a chiral multiplet with components. 

𝑆 =  𝜆𝜆. 𝜆𝜍𝜇𝜈𝐹
𝜇𝜈 +⋯+ 𝐹𝜇𝜈𝐹

𝜇𝜈 +⋯                                                                   (4.2) 

𝜆 denotes the gauge fermion of 𝑆𝑈(𝑁) and 𝐹𝜇𝜈  is the field strength tensor  𝐹𝜇𝜈 =
1

2
𝜖𝜇𝜈𝑝𝜆 𝐹

𝜇𝜈  . 

We observed that 𝜆𝜆 condensation occurs [3] without breaking global supersymmetry. The description is in good faith 

because of its success when applied to QCD [3]. It may be noted that 

 𝑊𝛼𝑊𝛼  𝐹 = 𝐷2 −
1

2
𝐹𝜇𝜈𝐹

𝜇𝜈 − 2𝑖𝜆𝜍𝜇𝜕𝜇𝜆 +
𝑖

2
𝐹𝜇𝜈𝐹

𝜇𝜈                                            (4.3) 

and 𝐹 term of 𝑊𝛼𝑊𝛼  is verified using 

𝑇𝜏 𝜍
𝜇𝑣𝜍𝜇𝜏  −

1

2
 𝜂𝜇𝑘 𝜂𝑣𝑘 − 𝜂𝜇𝑣𝜂𝑣𝑘 + 𝑖𝜖𝜇𝑣𝑘𝜏                                                         (4.4) 
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In the QED choice, we write 𝑓 =
1

4
 with kinetic terms of the vector superfield given by 

ℒ𝑘𝑖𝑛 =
1

4
 𝑊𝛼𝑊𝛼  𝐹 + . 𝑐 =

1

2
𝐷2 −

1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 − 𝜆𝜍𝜇𝜕𝜇𝜆                                (4.5) 

Theorem: 

The F-components of 
1

4
𝑊𝛼𝑊𝛼  is given by: 

1

4
 𝑊𝛼𝑊𝛼  𝐹 = −

1

2
𝜆𝜍𝜇𝜕𝜇𝜆 +

1

4
𝐷2 −

1

8
𝐹𝜇𝜈𝐹

𝜇𝜈 +
𝑖

8
 𝐹𝜇𝜈     𝐹

𝜇𝜈  

Proof 

The F-components of 
1

4
𝑊𝛼𝑊𝛼  is given by: 

1

4
 𝑊𝛼𝑊𝛼  𝐹 = −

1

2
𝜆𝜍𝜇𝜕𝜇𝜆 +

1

4
𝐷2 −

1

8
𝐹𝜇𝜈𝐹

𝜇𝜈 +
𝑖

8
 𝐹𝜇𝜈     𝐹

𝜇𝜈  

Proof
1

4
 𝑊𝛼𝑊𝛼  𝐹 =

1

4
 𝜃𝜃  −2𝑖 ⋋𝑎 𝜍𝛼𝛼 

𝜇
𝜕𝜇 ⋋ 

𝛼 + 𝐷2 −
1

16
 𝜍𝜇𝜍 𝜇𝜃 𝛼 𝜍𝜇𝜍 ⋋𝜃 𝛼𝐹𝜇𝜈𝐹

𝜇𝜈  

+
𝑖

4
𝐷𝜃𝛼 𝜍𝜇𝜍 𝑣𝜃 𝛼𝐹𝜇𝜈  

=
1

4
 𝜃𝜃  −2𝑖 ⋋𝑎 𝜍𝛼𝛼 

𝜇
𝜕𝜇 ⋋ 

𝛼 + 𝐷2 −
1

31
 𝜃𝜃 𝑇𝑟 𝜍

𝜇𝜍 𝜇𝜍⋋𝜍 𝑝 𝐹𝜇𝜈𝐹
𝜇𝜈          (4.6) 

From (4.6) 
𝑖

4
𝐷𝜃𝛼 𝜍𝜇𝜍 𝑣𝜃 𝛼𝐹𝜇𝜈 =

𝑖

4
𝐷𝐹𝜇𝜈𝜃

𝛼𝜃𝛾 𝜍𝜇  𝛼𝛼  𝜍 
𝑣 𝛼 𝛽𝜖𝛽𝛾𝐹𝜇𝜈  

= −
𝑖

8
𝐷𝐹𝜇𝜈  𝜃𝜃 𝜖

𝛼𝛾  𝜍𝜇  𝛼𝛼  𝜍 
𝑣 𝛼 𝛽𝜖𝛽𝛾 

=
𝑖

8
𝐷𝐹𝜇𝜈  𝜃𝜃  𝜍

𝜇  𝛼𝛼  𝜍 
𝑣 𝛼 𝛽𝛿𝛽

𝛼  

=
𝑖

8
𝐷𝐹𝜇𝜈  𝜃𝜃  𝜍𝛼𝛼 

𝜇
  𝜍 𝑣 𝛼 𝛼  

=
𝑖

4
𝐷𝐹𝜇𝜈  𝜃𝜃 𝜂

𝜇𝑣  

= 0                                                        (4.7) 

−
1

16
 𝜍𝜇𝜍𝜇𝜃 𝛼 𝜍𝜌𝜍 ⋋𝜃 𝛼𝐹𝜇𝜈𝐹𝜌⋋ = −

1

6
𝜖𝛼𝛽  𝜍

𝜇𝜍 𝑣𝜃 𝛼 𝜍𝜇𝜍 𝑣𝜃 𝛽𝐹𝜇𝜈𝐹𝜌⋋ 

= −
1

16
𝜖𝛼𝛽  𝜍𝜇  𝛼𝛼  𝜍 

𝑣 𝛼 𝛾𝜃𝛾 𝜍
𝜌 𝛽𝛽  𝜍 

⋋ 𝛽
 𝛿𝜃𝛿𝐹𝜇𝜈𝐹𝜌⋋ 

= −
1

32
 𝜃𝜃 𝑇𝑟 𝜍

𝜇𝜍 𝑣𝜍⋋𝜍 𝜌 𝐹𝜇𝜈𝐹𝜌⋋ 

= −
𝑖

16
 𝜃𝜃 𝜖𝜇⋋𝜏𝜌𝐹𝜇⋋𝐹𝜌𝜏 −

1

8
 𝜃𝜃 𝐹𝜇𝑣𝐹

𝜇𝑣                                                          (4.8) 

and  

𝑇𝜏 𝜍
𝜇𝜍 𝑣𝜍⋋𝜍 𝜌 = 2𝑖𝜖𝜇𝑣⋋𝜌 + 2𝜂𝜇𝑣𝜂⋋𝜌 − 2𝜂𝜇⋋𝜂𝑣𝜌 + 2𝜂𝜇𝜌 𝜂𝑣⋋                    4.9  

If we write 𝐹 𝜇 =
1

2
𝜖𝜇𝑣𝜌 ⋋𝐹

𝜌⋋ noted in (4.2), we have 

1

4
 𝑊𝛼𝑊𝛼  𝐹 =

𝑖

2
⋋ 𝜍𝜇𝜕𝜇 ⋋ +

1

4
𝐷2 −

1

8
𝐹𝜇𝑣𝐹

𝜇𝑣 +
𝑖

8
𝐹𝜇𝑣𝐹

𝜇𝑣                               (4.10) 

Hence the prove. 

Lemma 2: 

A new ingredient of supersymmetry theories is that an extra term can be added to the Lagrangianℒ. It is also invariant for 

𝑢(1) gauge theories know as Fayet Iliopoulos (FI) term: 

ℒ𝐹1 =  𝜉𝑉 𝐷 =
1

2
𝜉𝐷                                                                                                 (4.11) 

Now, 

ℒ𝐷 = 𝑞𝐷 𝜑 2 +
1

2
𝐷2 +

1

2
𝜉𝐷                                                                              (4.12) 

Imposing the condition  
𝛿𝑆(𝐷)

𝛿𝐷
= 0  yields 

𝐷 =
𝜉

2
− 𝑞 𝜑 2                                                                                                         (4.13) 
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Putting (4.13) into (4.12) yields 

ℒ𝐷 =
1

8
 𝜉 + 2𝑞 𝜑 2 2 

=:−𝑉 𝐷  𝜑                                                                                                              (4.14) 

Lemma 2: 

The Lagriangian depending on the auxiliary field 𝐹 takes the simple form: 

ℒ(𝐹) = 𝐹𝐹∗ +
𝜕𝑊

𝜕𝜑
𝐹 +

𝜕𝑊∗

𝜕𝜑∗
𝐹∗                                                                            (4.15) 

We eliminate 𝐹 using the field equations 
𝛿𝑆(𝐹)

𝛿𝐹
= 0 ⇒ 𝐹∗ +

𝜕𝑊

𝜕𝜑
= 0                                                                                  (4.16) 

𝛿𝑆(𝐹)

𝛿𝐹∗
= 0 ⇒ 𝐹 +

𝜕𝑊∗

𝜕𝜑∗
= 0                                                                                 (4.17) 

Put (4.16) and (4.17) into (4.15) yields 

ℒ(𝐹) → −  
𝜕𝑊

𝜕𝜑
 

2

=:−𝑉 𝐹 (𝜑)                                                                             (4.18) 

Hence, the positive definite scalar potential 𝑉 𝐹  𝜑 ,𝑉 ≥ 0. 

Now, combining (4.14) together with (4.18) yields 

𝑉 𝜑 = 𝑉 𝐹  𝜑 + 𝑉 𝐷  𝜑  

=  
𝜕𝑊

𝜕𝜑
 

2

+
1

8
 𝜉 + 2𝑞 𝜑 2 2                                                                                 (4.19) 

Hence the total potential. 

 

Remarks: When supersymmetry is broken Dynamically in the F-term simultaneously. There exists a semidefinite scalar 

potential 𝑉(𝐷) 𝜑  and 𝑉(𝐹) 𝜑  in the 𝐷 and 𝐹 term breaking respectively. Hence, the total potential is the contribution for 

both 𝑉(𝐹) 𝜑  and 𝑉(𝐷) 𝜑 . 

 

5.0 Strongly Coupled Chiral Superfield 𝑺  
In this section, we coupled the chiral superfield 𝑆  with the action (4.1) to supergravity, following the pioneering work of ref. 

[8]. We adopt the same notation chosen in [8]. Now, we deduced from   (4.1) 

𝑓:𝑔 𝑧 ⟶ 𝐺 𝑧, 𝑧∗ , where 𝑧 =  ⋋⋋  5.1  

𝐺 𝑧, 𝑧∗ = 3𝑙𝑜𝑔  −
∅

3
 − 𝑙𝑜𝑔 ∗  

 𝑔 2

𝑀6
                                                             5.2  

∅ = −1 +  
𝛼

𝑀2𝜇4
  𝑧𝑧∗ +  

𝑏

𝑀2
  𝑧𝑧∗ 

1
3                                                        (5.3) 

𝑔 𝑧 = 𝑐  𝑧𝑙𝑜𝑔  
𝑧

𝜇3
 − 𝑧                                                                                    (5.4) 

where 𝑔(𝑧) is the super-potential, 𝜇 and 𝑀 are the mass scales. Correcting the coefficients 𝑎, 𝑏 and 𝑐 to order one, we have: 

𝑉 = − exp −𝐺  3 +
 𝐺1𝑧 

2

𝐺1𝑧𝑧∗
                                                                              5.5  

This potential (𝑉) is given by [8]. 

Results 

1. If we imposed the condition 𝑉 𝑧 = 0 = ∞, and  𝑧 ≠ 0, and then ⋋⋋ condensation occurs. 

Now 

𝑉 𝑧, 𝑧∗ = 𝑓 𝑧, 𝑧∗ 𝐵 𝑧, 𝑧∗                                                                                  (5.6) 

𝑓 = 𝑒𝑥𝑝 −𝐺 /𝐺1𝑧𝑧∗∅ 𝑔 
2                                                                                   (5.7) 

𝐵 = 3∅1𝑧𝑔 𝑔1𝑧 
∗ + 3 ∅1𝑧 

∗𝑔1𝑧𝑔
∗ − 0∅1𝑧𝑧∗ 𝑔 

2 −  𝑔1𝑧  
2∅                       (5.8) 

2. If 𝑓 is strickly positive, ∅ < 0,𝐺1𝑧𝑧∗ < 0, 

𝐵1𝑧 = 0 and 𝑧0 = 𝜇3                                                                                               (5.9) 

3. If we allow 𝑏 = −9𝑎 i.e. parameter adjustment. 

𝐵 𝑧0 = 0 whenever 𝑓 > 0                                                                                (5.10) 
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Remarks: 

1. These results (5.6) – (5.10) shows that for  ⋋⋋ = 𝜇3, the potential is minimum with zero energy, where 𝜇 is the scale. 

2. If the gauge interaction is strong, then the scale governing the scale of condensation is not disturbed by the gravitational 

effect. 

3. The absolute minimum of the potential is situated at 𝐺01𝑧 = 0 with negative energy. 

This result however does not implying vacuum at 𝑧0 = 𝜇3, thus 𝐸 = 0 is stable [11]. The stable vacuum with 𝐸 = 0 was 

chosen in the history of the early universe [12]. Again 𝐸 = 0 does not imply exact local supersymmetry. 

4. The absence of the cosmological term and the appearance of Poincare supersymmetry in the local limit is noted in [13], 

thus, 

          𝑢 = −
9

2
 
𝑔0
∗

∅0

  1 +
3 ∅01𝑧  

2

∅0
2𝐺01𝑧𝑧∗

 = 0                                              (5.11) 

 

6.0 Higgs Condensate 

In this section, we discuss the mass splitting based on super-Higgs effect noted in our previous work [10]. Now, the gravitino 

mass term is  

𝑀Ψ
2 = 𝑀2𝑒𝑥𝑝 −𝐺0                                                                                    (6.1) 

The super-Higgs effect occurs when ⋋ 𝜍𝜇𝑣𝐹𝜇𝑣  of ⋋⋋ is absorbed by gravitino. One can observe these in [8]. 

𝑋 =⋋ 𝜍𝜇𝑣𝐹𝜇𝑣                                                                                                  (6.2) 

𝛿𝑋 = 2𝑒𝑥𝑝 −𝐺0/2  𝐺01𝑧𝑧∗/ −2𝐺01𝑧𝑧∗ 
1
2 𝜖 + ⋯                               (6.3) 

In 𝑆𝑈(3) × 𝑆𝑈(2) × 𝑈(1) gauge bosons. The mass splitting of 10𝑇𝑒𝑉 between gauge bosons and the ganginos will induced 

a mass for the scalar partners of quark and lepton at the two loop level of order  𝛼/𝜋 𝑚𝑔 ≈  100 − 1000 𝐸𝑔𝑉, where 𝛼 is 

one of the 𝑆𝑈(3) × 𝑆𝑈(2) × 𝑈(1) couplings. However, Higgs boons receive a negative mass-square due to the Yukawa 

interactions [10] and 𝑆𝑈(2) × 𝑈(1) is broken 𝑈 1  at a scale of 100𝐺𝑒𝑉. 

 

Finally, continuously broken gauge theories realize the Higgs mechanism in which the corresponding Goldstone is “eaten” by 

the corresponding gauge field to get a mass. In supersymmetry, the Goldstino field join the originally massless gravitino field 

and give it a mass. In this case, the gravitino receives its mass by “eating” the Goldstino. 

 

7.0 Conclusion 

In this paper, we have coupled gauge theory to 𝑁 = 1 supergravity and have analyzed super-Higgs effect. We find a strong 

evidence of a non-vanishing vacuum expectation of O‟refitaigh model after supersymmetry is broken. We have shown how 

Yang-mills theory is coupled to 𝑁 = 1 supergravity and establish a creteria for Lagrangians. The condition for strongly 

coupled chiral superfields were fully analyzed. For future work, one can establish the effects of strongly coupled superfield 

within the frame work of Higgs mechanics. 
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