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Abstract. In Convex Geometry, the study of theorems of Radon, Helly and Carathéodory have played
important roles and their generalizations have been studied from different points of view such as Convex
Analysis, Optimization, Discrete Geometry. These theorems give excellent introduction to the theory of
convexity. In this paper, we consider Radon’s theorem and Helly’s theorem; and extend them to the fuzzy
case. In particular, we shall state and prove the fuzzy version of Radon’s theorem and Helly’s theorem.
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1. Introduction

The concept of convexity of fuzzy sets, which is a generalisation of the notion of classical convexity
of sets, was first introduced in 1965 by Zadeh [16]. Several researchers have since then studied and
developed various notions of convex fuzzy sets. Among them are Brown [2], Liaozu-Hua et al. [5],
Lin [6], Liu [7], Lowen [8], Yang and Yang [13], Yang [14,15], Zhu [17], Al-Mayahi and Ali [1].

In 1991, Z. Feiyue [3], extended the classical theorem of Carathéodory about the generation of
convex hulls from ordinary convex analysis to the fuzzy case. He did this using fuzzy points and
fuzzy directions.

On the other hand, Y. Maruyama [10], studied some properties of (lattice) L valued-convex fuzzy
sets. He obtained the L-fuzzy version of the five classical theorems in convex geometry, that is;
Carathéodory’s theorem, Radon’s theorem, Finite and Infinite Helly’s theorem, and Kakutani’s
fixed point theorem. He recorded that, these theorems apart from Kakutani’s fixed point theorem
are fundamental results in Combinatorial Convex Geometry and they characterize the dimension of
a Euclidean spaces.

Motivated by the earlier work on fuzzy version of Carathéodory’s theorem studied by Feiyue, we
extend Radon’s theorem and Helly’s theorem to the fuzzy case using the notion of fuzzy points.

2. Preliminaries

The following definitions are from [3,8,11,16]

definition 2.1 Let X be a nonempty set. A fuzzy set σ of the set X is a function σ : X −→ I.

definition 2.2 Let σ be a fuzzy set of X, the t-level subset of σ, denoted by σt is made up of
members whose membership function is at least t. That is;

σt = {x ∈ X : σ(x) ≥ t} .

definition 2.3 Let σ and τ be two fuzzy sets of X. Then, ∀ x ∈ X, σ ⊆ τ if σ(x) ≤ τ(x).

definition 2.4 Let σ be a fuzzy set of X. Then, the support of σ, denoted by supp(σ) is defined
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by

supp(σ) = {x ∈ X : σ(x) > 0}

A fuzzy set is said to be finite if its support is finite.

definition 2.5 Let a ∈ Rd, α ∈ (0, 1] and X a nonempty set. Then, a fuzzy point, denoted by aα
is a fuzzy subset with membership function σaα(x), ∀ x ∈ X, defined by

σaα(x) =

α, if x = a

0, if x 6= a

The point a is called the support of aα and α its value.

Remark 1 Note that a fuzzy point is a fuzzy set with non-zero membership only at one point of
the support space.

definition 2.6 The fuzzy point aα belongs to a fuzzy set σ ∈ X, denoted by aα ∈ σ if α ≤
σ(x), ∀ x ∈ X.

The set of all fuzzy points in Rd is denoted by R̃d.
Two fuzzy points aα, bβ ∈ R̃d are said to be equal, that is; aα = bβ if a = b and α = β.

Let aα, bβ ∈ R̃d and λ ∈ R. Their sum aα + bβ and scalar multiplication λaα are defined by

aα + bβ = (a+ b)α∧β

and

λaα = (λa)α

respectively.

If σ, τ ⊂ R̃d and λ ∈ R,

σ + τ = {aα + bβ : aα ∈ σ, bβ ∈ τ}

and

λσ = {λaα : aα ∈ σ}.

Notation:Let F(Rd) be the family of all fuzzy sets in Rd. For σ ∈ F(Rd) and τ ⊂ R̃d, τ ∼ σ or
σ ∼ τ denote τ is a pointwise representation of σ or σ is the fuzzy set represented by τ .

definition 2.7 Let γ ∈ F(Rd), a special pointwise representation of γ, denoted by γ̃ is defined by

γ̃ = {aα : x ∈ Rd, 0 ≤ α ≤ σγ(x)}.

Namely, aα ∈ γ̃ if and only if aα ∈ σ.

definition 2.8 Let σ be a fuzzy set on Rd and a1
α1
, · · · , adαd its fuzzy points, λ ∈ R,

d∑
i=1

λi = 1.
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Then, affine fuzzy combination of the fuzzy points a1
α1
, · · · , adαd is defined by

d∑
i=1

λia
i
αi such that

σ(

d∑
i=1

λia
i
αi) ≥ σ(a1

α1
) ∧ · · · ∧ σ(adαd).

definition 2.9 A fuzzy set σ : Rd −→ I is an affine fuzzy set if

σ[λx+ (1− λ)y] ≥ σ(x) ∧ σ(y), ∀ x, y ∈ Rd, λ ∈ R.

Affine fuzzy sets can also be defined in terms of affine fuzzy combination as follows:

definition 2.10 Let σ be a fuzzy set on Rd and a1
α1
, · · · , adαd its fuzzy points. Then, σ is called

affine fuzzy set if for all a1
α1
, · · · , adαd ∈ σ, λ1, · · · , λd ∈ R such that

σ(

d∑
i=1

λia
i
αi) ≥ σ(a1

α1
) ∧ · · · ∧ σ(adαd)

and
d∑
i=1

λi = 1.

definition 2.11 The affine fuzzy hull of fuzzy set σ, aff(σ)f , is the set of all of fuzzy points in
σ. That is;

aff(σ)f = {
d∑
i=1

λia
i
αi : d ≥ 1, aiαi ∈ σ, λi ∈ R,

d∑
i=1

λi = 1}.

definition 2.12 Let σ be a fuzzy set and a1
α1
, a2
α2
, · · · , adαd its fuzzy points. Then, the fuzzy points

are said to be affinely independent if
d∑
i=1

λia
i
αi = 0 and

d∑
i=1

λi = 0 imply that λ1 = λ2 = · · · = λd = 0.

Otherwise, it is affinely dependent.

definition 2.13 Let σ be a fuzzy set on Rd, a1
α1
, · · · , adαd be its fuzzy points, λi are non negative,

d∑
i=1

λi = 1 then

aα =

d∑
i=1

λia
i
αi

is called a fuzzy convex combination of the fuzzy points aiαi ∈ σ.

definition 2.14 The fuzzy set σ on Rd is said to be a convex fuzzy set if;

σ[λaα + (1− λ)bβ] ≥ σ(aα) ∧ σ(bβ)

for every aα, bβ ∈ σ, α ∈ I.

Convex fuzzy sets can also be defined in terms of fuzzy convex combination as follows:

definition 2.15 Let σ be a fuzzy set on Rd and a1
α1
, · · · , adαd its fuzzy points. Then, σ is called a
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convex fuzzy set if for all a1
α1
, · · · , adαd ∈ σ, λ1, · · · , λd ∈ I such that

σ(

d∑
i=1

λia
i
αi) ≥ σ(a1

α1
) ∧ · · · ∧ σ(adαd)

and
d∑
i=1

λi = 1.

definition 2.16 Let σ be a fuzzy set on Rd. Then, the convex fuzzy hull of σ is defined as the set
of all fuzzy convex combinations of fuzzy points in σ. That is;

conv(σ)f =

{
a1
α1
, · · · , anαn ∈ σ : ∃ λi ∈ I,

p∑
i=1

λi = 1, aα =

p∑
i=1

λia
i
αi

}
,

which is the smallest convex fuzzy set containing σ.

definition 2.17 Let So be a nonempty set of points in Rd and S1 a set of directions in Rd. Then,
the convex hull conv(S) of S = S0∪S1 is defined as the smallest convex set C ∈ Rd such that S0 ⊂ C
and C recedes in all directions in S1 (i.e. for each y ∈ S1, x+ λy ∈ C ∀ x ∈ C, λ > 0).

3. Results

In this section, we state and prove the fuzzy version of Radon’s and Helly’s theorems. We first state
the classical version of the theorems and the fuzzy version of Carathéodory. The classical ones are
as follows:

Theorem 3.1 (Radon’s theorem) Any set X of d + 2 points in Rd can be partitioned into two
disjoint sets X1, X2 ⊂ X whose convex hulls intersect. that is; conv(X1) ∩ conv(X2) 6= ∅.

Theorem 3.2 (Helly’s theorem) For a family K1,K2, ...,Kn, n ≥ d + 1 of convex sets in Rd, if
every d+ 1 of the sets have a point in common, then all of the sets have a point in common.

Theorem 3.3 (Carathéodory’s theorem) If Y is a set of n points in Rd and y ∈ conv(Y ). Then,
there is a subset X of Y consisting of at most (d+ 1)-points such that x ∈ conv(X).

While the fuzzy version of Caratheodory’s theorem is as folows:

Theorem 3.4 (Fuzzy Caratheodory’s theorem) Let A = A0∪A1 be a set of fuzzy points and fuzzy
directions, and let C(A,n+ 1) denote the set of all convex combinations of n+ 1 or fewer elements
in A. Then, conv(A) v C(A,n+ 1).

In order to prove the fuzzy version of Radon’s theorem we need the following:

Theorem 3.5 (11, Prop. 3.3) For any fuzzy set of fuzzy points σ = {a1
α1
, · · · , amαm} in Rd, if

| σt |≥ d+ 2, then the fuzzy points are affinely dependent.

Proposition 3.6 (Fuzzy Radon Theorem) Let σ be a fuzzy set in Rd and a1
α1
, · · · , anαn its fuzzy

points. Then, any t-level subset of σ of at least n fuzzy points (| σt |≥ n) in Rd can be partitioned into
two disjoint fuzzy subsets τ1 and τ2 such that τ1∨τ2 = σ, τ1∧τ2 = 0 and conv(τ1)f ∧conv(τ2)f 6= ∅.

Proof. Consider a fuzzy set σ in Rd with fuzzy points a1
α1
, · · · , anαn . Since | σt |= n ≥ d + 2,

then these fuzzy points are affinely dependent by Theorem 3.5. Thus, there exists real numbers

λ1, · · · , λn not all of them zero such that the linear combination of the fuzzy points
n∑
i=1

λia
i
αi = 0

385 Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018)



The theorems of Radon and Helly ... Sangodapo & Ajayi Trans. of NAMP

with
n∑
i=1

λi = 0. Define the fuzzy sets

β1 =

 t, if λ > 0

0, otherwise

β2 =

 t, if λ < 0

0, otherwise

set

τ1 =

akαk , if β1 = t, k = 1, · · · , i

0, otherwise

τ2 =

ajαj , if β2 = t, j = i+ 1, · · · , n

0, otherwise

These fuzzy sets τ1 6= 0 and τ2 6= 0, τ1 ∨ τ2 = σ, τ1 ∧ τ2 = 0. It remain to show that conv(τ1)f ∧
conv(τ2)f 6= ∅.

Thus,

0 =

n∑
i=1

λia
i
αi =

∑
k∈β1

λka
k
αk +

∑
j∈β2

λja
αj
j

with ∑
k∈β1

λk +
∑
j∈β2

λj = 0.

Using, ∑
k∈β1

λk = −
∑
j∈β2

λj = λ, λ > 0

this implies

∑
k∈β1

λk
λ

= −
∑
j∈β2

λj
λ

= 1.

Define

bβ =
∑
k∈β1

λk
λ
akαk = −

∑
j∈β2

λj
λ
ajαj .

this implies bβ =
∑
k∈β1

λk
λ
akαk and bβ = −

∑
j∈β2

λj
λ
ajαj
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with

∑
k∈β1

λk
λ

= 1 = −
∑
j∈β2

λj
λ
.

Therefore, bβ is a convex combination of fuzzy points in τ1 and τ2. Hence,

conv(τ1)f ∧ conv(τ2)f 6= ∅.

�

definition 3.7 The partitions in the fuzzy Radon theorem are called fuzzy Radon partitions and
a fuzzy point in the intersection of their convex fuzzy hulls is called fuzzy Radon point.

Proposition 3.8 (Fuzzy Helly Theorem) Let σ := {σ1, · · · , σn} ∈ Rd, be convex fuzzy sets with
| σ |≥ d + 1. Suppose that the intersection of every d + 1 of these sets in nonempty, then the
intersection of all the convex fuzzy sets is nonempty.

Proof. For a fixed d, we proceed by induction on | σ |. The case n = d+ 1 holds from the statement
of the theorem, thus we suppose that | σ |≥ d + 1. Consider convex fuzzy set σ = {σ1, · · · , σn+1}
satisfying the hypothesis, that is; any d + 1 of the sets have a nonempty intersection. For i =
1, · · · , n+ 1, let aiαi ∈

⋂
j 6=i σj be fixed and consider the fuzzy points a1

α1
, · · · , anαn . Define the fuzzy

set η := {a1
α1
, · · · , an+1

αn+1
}. By Proposition 3.6, there exists η1 := {akαk |i ∈ β1} and η2 := {ajαj |i ∈ β2}

such that: (i) η1 ∧ η2 = 0 (ii) η1 ∨ η2 = σ and (iii) conv(η1)f ∧ conv(η2)f 6= ∅.
Let

bβ ∈ conv(η1)f ∧ conv(η2)f .

that is;

bβ =
∑
i∈η1

λia
i
αi +

∑
i∈η2

λia
i
αi

with ∑
i∈η1

λi +
∑
i∈η2

λi = 1

Claim:

σ(bβ) ≥ σ(a1
α1

) ∧ · · · ∧ σ(anαn).

Consider some i ∈ [n], then i /∈ η1 or i /∈ η2. Formally, each ajαj with j ∈ η1 lies in σi thus

bβ =
∑
j∈η1

λja
j
αj

then we have

σ(bβ) ≥ σ(
∑
j∈η1

λja
j
αj ) ≥ σ(ajαj )
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since each fuzzy point ajαj with j ∈ η1 lies in σi thus

bβ =
∑
j∈η1

λja
j
αj ⊆ σi.

similarly, for i /∈ η2, each ajαj with j ∈ η2 lies in σi thus

bβ =
∑
j∈η2

λja
j
αj .

then we have

σ(bβ) ≥ σ(
∑
j∈η2

λja
j
αj ) ≥ σ(ajαj )

since each fuzzy point ajαj with j ∈ η2 lies in σi thus

bβ =
∑
j∈η2

λja
j
αj ⊆ σi.

Therefore,

bβ =
∑
i∈η1

λia
i
αi +

∑
i∈η2

λia
i
αi =

n∑
i=1

λia
i
αi .

Hence,

σ(bβ) = σ(

n∑
i=1

λia
i
αi) ≥ σ(a1

α1
) ∧ · · · ∧ σ(anαn).

�
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