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Abstract. A magic square is a square array of order greater than two whose entries are taken from a
set of consecutive whole numbers – beginning from 1 – with the property that the numbers in any row,
column or diagonal of the array add up to the same sum. For centuries, they have been a source of exciting
mathematical amusements and challenging unsolved problems. One of the latter is the census problem of
determining the number of magic squares of order six and above. In this paper we discuss some progress
that have been made in the census problem, namely the magic squares census formulas obtained recently
by Kathleen Ollerenshaw and David Brée for most perfect magic square of doubly even order, and the
census formula derived by Uko for uniform step magic squares of odd order. We also present a result
obtained by parametrizing magic squares and show how it can be used in the study of the general magic
squares census problem.
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1. Introduction

A magic square is a square array of order greater than two whose entries are taken from a set of
consecutive whole numbers – beginning from 1 – with the property that the numbers in any row,
column or diagonal of the array add up to the same sum.

Magic squares were discovered in China from where they were subsequently introduced into India,
Japan and – much later – Europe. The first known example of a magic square is the lo shu

4 9 2
3 5 7
8 1 6

which, according to an ancient Chinese legend, was discovered by Emperor Yu on the back of a divine
tortoise while he was walking on the shores of the yellow river circa 2800 BC. For centuries, magic
squares have been a source of exciting mathematical amusements and challenging unsolved problems.
It is a classic topic in recreational mathematics which has aroused the interest of large numbers of
people of all generations over time, most of who are not (or were not) professional mathematicians.
An internet search of the term ‘magic square’ indicates that the number of contemporary enthusiasts
currently actively involved in the subject is probably at a historical high.

It is well known that there are only 8 magic squares of order three, and that there are 7040 magic
squares of order four (Bernard Freńicle de Bessy [7], 1693). In 1973 Richard Schroeppel used a
computer program to obtain a census figure of 2,202,441,792 magic squares of order five. The census
of magic squares of order six and above are still open problems. However, census formulae have been
obtained for two major classes of magic squares, namely the most-perfect magic squares of doubly
even order (Ollerenshaw and Brée [10]) and uniform step magic squares of odd order. Our main
objective in this paper is to review these key results and to fill in some missing steps in the original
proof of the main result. We also discuss a parametrization that we have developed for generic magic
squares and it’s application to the general magic squares problem.

A magic square is often considered as identical to the other seven magic squares which can be
obtained from it by performing rotations and/or reflections. For simplicity, we will not make this
identification in this paper, so we will regard two magic squares as identical only if they are identical
in the matrix sense. In the sequel, given any integers a and b, [a] will designate the largest integer
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less than or equal to a, a Mod b will designate the remainder when b divides a, a Div b will
denote the integer [a/b], (a, b) will dentoe the greatest common divisor of a and b, and we will set
Zp{0, 1, . . . , p− 1}.

2. Census of most-perfect magic squares of doubly even order

Let p = 4k for some k ∈ N. A magic square of order p is said to be most-perfect if any two of its
entries at a distance of p/2 on any diagonal sum to p2 + 1 and the sum of the entries in any 2 × 2
block of adjacent cells is 2(p2 + 1). An example is the following magic square

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

which appears in a famous 1514 engraving titled ‘The melancholia’, due to Albrecht Dürer.
Kathleen Ollerenshaw was already in her 80s when she got the main insight of a construction that

was capable of generating all magic squares of this class. Working with David Brée, she exploited this
fact to obtain the following seminal formula for the number of magic squares in this class (amplified
by a factor of 8 for consistency with our method of counting magic squares).

Theorem 1 (10) Let p, a positive integer, have prime factorization p =
∏l
i=1 q

vi
i in which q1 = 2

and v1 ≥ 2, so that p is doubly even. Then the number of most-perfect magic squares of order p is
given by

n(p) = m(p)

τ(p)∑
v=0

w(v)(w(v) + w(v + 1)),

where m(p) = 2p+2(p/2)! 2, w(v) =
∑v

i=0(−1)v+i
(
v+1
i+1

)∏l
j=1

(
vj+1
i

)
, and τ(p) is the number of divi-

sors of p.

3. Census of Uniform Step Magic Squares

A magic square is said to be of uniform step if it can be written in the form

mij = u+ p(v − 1), u, v = 1, 2, . . . , p

where

i = 1 + [(ε+ (u− 1)α+ (v − 1)β) mod p],

j = 1 + [(ρ+ (u− 1)γ + (v − 1)δ) mod p],

and ε, α, β,ρ, γ, δ ∈ Zp. In a previous paper [15], we showed that every uniform step magic square
can be written in the form

mij = 1 + [(a1i+ b1j + c1) mod p]

+ p[(a2i+ b2j + c2) mod p],
(1)
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for some a1, a2, b1, b2, c1, c2 ∈ Zp, and vice versa. We also proved in the paper that the array (1)
is a magic square if and only if

(a1b2 − b1a2, p) = 1, (2)

(p, ak) = (p, bk) = 1, k = 1, 2, (3)

ck mod uk = (uk − 1)/2, k = 1, 2, (4)

(bk + ck) mod vk = (vk − 1)/2, k = 1, 2, (5)

where uk = (p, ak + bk) and vk = (p, ak − bk) for k = 1, 2.
For any odd number p, let K(p) be the set of all [a1, b1, c1; a2, b2, c2] ∈ Z6

p satisfying the com-
patibility conditions (2) – (5). Let κ(p) be the cardinality of K(p). Then there exist precisely κ(p)
uniform step magic squares of order p. When p = 3 we can manually verify that K(3) contains the
8 distinct elements:

[1, 1, 0; 1, 2, 1], [1, 1, 0; 2, 1, 1], [1, 2, 1; 1, 1, 0], [2, 1, 1; 1, 1, 0],
[1, 2, 1; 2, 2, 2], [2, 1, 1; 2, 2, 2], [2, 2, 2; 1, 2, 1], [2, 2, 2; 2, 1, 1].

Hence κ(3) = 8. With the aid of a computer we obtained the following table of values of κ(p) for
some sample odd values of p:

p κ(p)
3 8
5 1,472
7 25,272
9 3,528
11 713,000
13 2,265,408
15 11,776
21 202,176
25 21,252,800
45 5,193,216
49 2,913,193,080

.

Observe that κ(p) values are small when p is a multiple of 3. This reason for this curious phenomenon
is given in the following census formula that we derived [15], thereby solving the magic square census
problem for odd order uniform step magic squares.

Theorem 2 [15] Let p =
∏l
i=1 q

vi
i be the prime factorization of the odd number p. Then there

exist κ(p) =
∏l
i=1 κ(qvii ) uniform step magic squares of order p, where κ(qvii ) = [τ(qvii )]2 − λ(qvii ),

λ(qvii ) = (qvii −q
vi−1
i )2[2(q2vi−1i +1)2/(qi+1)2+q3vi−1i (qvii −3qvi−1i )] and τ(qvii ) = (qvii −q

vi−1
i )(q2vi+1

i −
2q2vii − q

2vi−1
i + 2)/(qi + 1) for i = 1, . . . , l.

The idea of the proof is as follows. Let T (p) be the set of all [a, b, c] ∈ Z3
p satisfying the conditions

(a, p) = (b, p) = 1 and the further conditions:

c mod (a+ b, p) = [(a+ b, p)− 1]/2, (6)

(b+ c) mod (a− b, p) = [(a− b, p)− 1]/2. (7)

Let τ(p) be the cardinality of T (p). If we set L(p) = (T (p)× T (p)) \K(p), then since

T (p)× T (p) = K(p) ∪ L(p)

is a disjoint union, it is follows immediately from definitions that

κ(p) = (τ(p))2 − λ(p).
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Thus in order to compute κ(p), we need only compute τ(p) and λ(p), as was done in [15]. That
computation was based on the following result.

Proposition 1 Let p = qv, where q is an odd prime. Then
τ(qv) = (qv − qv−1)(q2v+1 − 2q2v − q2v−1 + 2)/(q + 1).

The proof of this proposition given in [15] leaves the verification of several key details to the
reader, and is therefore hard to read. A more complete proof of the proposition will be presented
below.

In the sequel we will make use of Euler’s φk functions. Given k integers, d1, . . . , dk, all of which are
relatively prime to p, and a collection e1, . . . , ek of members of Zp, φk(p) is the number of distinct
elements z of Zp such that (d1z + e1, p) = · · · = (dkz + ek, p) = 1. It is well known (cf. [9, p. 539])
that φk(p) is given by the expression

φk(p) = p(1− k/q1)+ . . . (1− k/ql)+

where q1, . . . , ql are the distinct prime factors of p.
To prove Proposition 1, we first observe that T (p) is a disjoint union of the four sets:

T1(p) = {[a, b, c] ∈ T (p) (a+ b, p) = (a− b, p) = 1}

T2(p) = {[a, b, c] ∈ T (p) (a+ b, p) = 1 and q | (a− b)}

T3(p) = {[a, b, c] ∈ T (p) (a− b, p) = 1 and q | (a+ b)}

T4(p) = {[a, b, c] ∈ T (p) q | (a+ b) and q | (a− b)}.

In T1(p) we can choose a in φ1(p) ways satisfying the condition (a, p) = 1. Corresponding to each
of these choices, we can choose b in such a way that (b, p) = (a+ b, p) = (a− b, p) = 1. This can be
done in φ3(p) ways. Since (a+ b, p) = (a− b, p) = 1, conditions (6) and (7) are redundant. Therefore
we can choose c in exactly p ways. Consequently the cardinality of T1(p) is given by the expression
τ1(p) = pφ1(p)φ3(p).

In T2(p) we can choose a in φ1(p) ways satisfying (a, p) = 1. Once this is done, we observe that
a condition of the form (a − b, qv) = 1 fails to hold if and only if q | (a − b) or, equivalently, if
(a − b, qv) = ql for some integer l such that 1 ≤ l ≤ v. If l = v, then ql = qv = p, and it is easy
to verify that the equation (a − b, p) = p holds for some b ∈ Zp if and only if b = (a − p) mod p =
(p + a − p) mod p = a mod p = a, and the equation (b + c) mod qv = (qv − 1)/2 holds if and
only if c = ((p − 1)/2 − b) mod p. So in this case, b can be chosen in only one way, and c can
be chosen in one way. If 1 ≤ l ≤ v − 1, it is also straightforward to verify that the equation
(a− b, qv) = ql holds if and only if b = (a−

∑v−1−l
i=0 τiq

l+i) mod qv, where the τi’s are integers such
that 1 ≤ τ0 ≤ q − 1 and 0 ≤ τi ≤ q − 1 for i = 1, . . . , v − 1 − l. It follows that we can choose
b in (q − 1)qv−1−l ways. Corresponding to each b, the equation (b + c) mod ql = (ql − 1)/2 holds

if and only if c = ((ql − 1)/2 − b +
∑v−1−l

i=0 θiq
l+i) mod qv where the θi’s are integers such that

0 ≤ θi ≤ q − 1 for i = 0, . . . , v − 1 − l. It follows that c can be chosen in qv−l ways. Consequently,
for fixed a ∈ Zp, b and c can be chosen in 1 +

∑v−1
l=1 (q− 1)qv−1−lqv−l = 1 + (q− 1)

∑v−1
l=1 q

2(v−l)/q =

1 + (q − 1)
∑v−1

l=1 q
2l/q = 1 + q(q2v−2 − 1)/(q + 1) = (1 + q2v−1)/(q + 1) ways. Since q | (a − b), we

must have (b, p) = 1 for otherwise we would have q | b, which would imply that q | a, contradicting
the fact that (a, p) = 1. Similarly, the supposition q | (a+ b) would imply that q | 2a which, since q
is an odd prime, would imply that q | a, contradicting the fact that (a, p) = 1. Therefore we must
have (a+ b, p) = 1, which implies that condition (6) is redundant. Therefore the cardinality of T2(p)
is given by the expression τ2(p) = (qv − qv−1)(1 + q2v−1)/(q + 1).

The cardinality of T3(p) is computed in the same way as that of T2(p) and is given by the same
expression τ3(p) = (qv − qv−1)(1 + q2v−1)/(q + 1).

If [a, b, c] ∈ T4(p) then q | (a± b). This implies that q | 2a and q | 2b, and since q is an odd prime,
we conclude that q | a and q | b, contradicting the fact that (a, qv) = (b, qv) = 1. Therefore T4(p) is
an empty set.
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We conclude then that the cardinality of K(qv) is given by the expression

τ(qv) = τ1(q
v) + τ2(q

v) + τ3(q
v)

= qv(qv − qv−1)(qv − 3qv−1) + 2(qv − qv−1)(1 + q2v−1)/(q + 1)

= (qv − qv−1)(q2v+1 − 2q2v − q2v−1 + 2)/(q + 1).

That complete the proof of Proposition 1.
When p is an odd prime, Theorem 2 becomes the following simpler result.

Corollary 1 (cf. [16,17]) If p is a prime odd number, then there exist κ(p) = (p−1)3(p2−6p+10)
uniform step magic squares of order p.

4. A parametrization of generic Magic Squares

Given a magic square M = (mij) of order p, if we set

aij = (mij − 1) Mod p (8)

bij = (mij − 1) Div p (9)

then it is immediately apparent that the matrices A = (aij) and B = (bij) are orthogonal in the
sense that

{(aij , bij) : i, j = 1, 2, . . . , p} = Zp × Zp (10)

and each element of the set Zp occurs p times in each of the sets A and B. If we let E be the order
p matrix with 1 in all entries, then we obtain the representation

M = E +A+ pB (11)

which we refer to in the sequel as the canonical form of the magic square M .
The basic properties of the canonical components of a magic square are contained in the following

result which is taken from [14].

Theorem 3 [14] Let Mbe a p×p magic square with canonical form (11). Then there exist integers
r1,r2,. . . , r2p+2 such that

|ri| < (p− 1)/2, i = 0, 1, . . . , 2p+ 2 (12)

p∑
i=1

ri =

p∑
i=1

rp+1+i = 0, (13)

p∑
j=1

aij + pri =

p∑
j=1

aji + prp+1+i =

p∑
j=1

ajj + pr2p+2

=

p∑
j=1

aj,p+1−j + prp+1 =
p(p− 1)

2
, (14)

p∑
j=1

bij − ri =

p∑
j=1

bji − rp+1+i =

p∑
j=1

bjj − r2p+2

=

p∑
j=1

bj,p+1−j − rp+1 =
p(p− 1)

2
. (15)
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Moreover, each element of the set Zp occurs p times in A and p times in B, and A and B satisfy
the orthogonality condition (10).

The equations in (14) and (15) are of the form

p∑
j=1

lij + zri =

p∑
j=1

lji + zrp+1+i =

p∑
j=1

ljj + zr2p+2

=

p∑
j=1

lj,p+1−j + zrp+1 =
p(p− 1)

2
.

(16)

where z = −1 or z = p and the vi satisfy conditions (12) and (13). This is a system of 2p+ 2 linear
equations. However, these equations are not independent, for if

p∑
j=1

lij + zri =

p∑
j=1

ljk + zrp+1+k = p(p− 1)/2 i = 1, . . . , p, k = 2, . . . , p,

then

p∑
j=1

lj1 =

p∑
i=1

p∑
j=1

lij −
p∑

k=2

p∑
j=1

ljk

= p2(p− 1)/2− p(p− 1)(p− 1)/2 + z

p∑
k=2

rp+1+k

= p(p− 1)/2− zrp+2.

This implies that the equation
∑p

j=1 lj1 = p(p − 1)/2 − zrp+2 is redundant, and hence, that (14)

contains only 2p + 1 independent linear equations for the p2 unknowns (lij). The general solution
will depend on z, r = (r1, r2, . . . , r2p+2) and on some free parameters of the form s = (s1, s2, . . . , sq),
where q = p2 − 2p − 1. In the sequel, we will define a quasi-Latin square as any matrix L = (lij)
satisfying the equations in (16) with z = p or p = −1 and the property that each element of the set
Zp occurs p times in L.

It was shown in [14] that when p = 3, the explicit solution of (16) is given by the expression

2−s2+z(−r1−r3+r4+r6−
2 r8)/3

2−s1+z(−r1−r3+r4−2 r6+r8)/3 −1+ s1 + s2 + z(2 r1 +3 r2 +5 r3−
2 r4 − 3 r5 − 2 r6 − 3 r7 + r8)/2

−2+ s1 +2 s2 + z(r1 +4 r3 −
r4 − 3 r5 − r6 + 2 r8)/3

1 + z(r1 + r3 − r4 − r6 − r8)/3 4−s1−2 s2+z(−2 r1−3 r2−5 r3+

2 r4 + 3 r5 + 2 r6 − r8)/3
3− s1 − s2 − z r3 s1 s2

and, when p > 3 by the expressions
li,j = sk, k = 1, . . . , (p− 1)2 − 2

i = p− [(k − 1) Div (p− 1)], j = 2 + [(k − 1) Mod (p− 1)],
li,1 = p(p− 1)/2− zri −

∑p
j=2 li,j , i = 3, . . . , p

l1,1 = p(p− 1)/2− zr2p+2 −
∑p

j=2 lj,j
l2,1 = p(p− 1)/2− zrp+2 − l1,1 −

∑p
i=3 li,1

l1,j = p(p− 1)/2− zrp+1+j −
∑p

i=2 li,j , j = 2, . . . , p− 2
l2,(p−1) = 1

2{p(p− 1)/2− z(r2p + rp+1 − r1) + l1,1 − lp,1
+
∑p−2

j=2 l1,j −
∑p−1

j=2 s(p−j)(p−1)−1 −
∑p−2

j=2 sp((p−1)−j)}
l2,p = p(p− 1)/2− zr2 − l2,1 − l2,(p−1) −

∑p−2
j=2 l2,j

l1,j = p(p− 1)/2− zrp+1+j − l2,j −
∑p

i=3 li,j , j = p− 1, p. If L(r; s; z) is the generic literal quasi-
Latin square that solves equation (16), then the generic magic square of order p will be expressible
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in the form

M(r; s; t) = E + L(r; s; p) + pL(r; t;−1) (17)

where s = (s1, . . . , sq) and t = (t1, . . . , tq) are taken from the set Zqp , and the components of
r = (r1, . . . , r2p+2) satisfy (12) and (13).

For instance, by computing its canonical form (17) it is easy to verify that the magic square

2 23 25 7 8
4 16 9 14 22

21 11 13 15 5
20 12 17 10 6
18 3 1 19 24

has parametrization M(r; s; t) with

r = (0, 0, 0, 0, 0, 0, 0, 1, 0,−1, 0, 0),

s = (2, 0, 3, 3, 1, 1, 4, 0, 0, 2, 4, 4, 0, 3)

t = (0, 0, 3, 4, 2, 3, 1, 1, 2, 2, 2, 0, 3, 1).

Let R(p) be the set of all r = (r1, . . . , rp, rp+1, rp+2, . . . , r2p+1, r2p+2), such that there exist (s, t) ∈
Zp × Zp such that M(r; s, t) is a magic square.

For each r ∈ R(p), letM(r, p) be the set of all magic squares which are of the form M(r; s, t) for
some (s, t) ∈ Zp × Zp, and let n(r, p) be cardinality of M(r, p). Then the number of magic squares
of order p is given by the formula

N(p) =
∑

r∈R(p)

n(r, p).

We believe that an understanding of the algebraic structure of the set R(p) will be useful in the
study of the census problem for generic magic squares. The next result is an initial (simple) step in
that direction which shows that the set R(p) is symmetric.

Theorem 4 If r ∈ R(p) then −r ∈ R(p), and n(r, p) = n(−r, p).

Proof. If M = E + A+ pB ∈ M(r, p), then M ′ = (p2 + 1)E −M is also a magic square and, for i,
j = 1, 2, . . . , p, we have

m′ij = p2 + 1−mij = p2 − aij − pbij

= 1 + (p− 1− aij) + p(p− 1− bij) ≡ 1 + a′ij + pb′ij .
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It follows that

r′p+1 =

p∑
j=1

b′j,p+1−j −
p(p− 1)

2
=

p∑
j=1

(p− 1− bj,p+1−j)−
p(p− 1)

2

= p(p− 1)−
p∑
j=1

bj,p+1−j −
p(p− 1)

2
= −rp+1,

r′2p+2 =

p∑
j=1

b′jj −
p(p− 1)

2
=

p∑
j=1

(p− 1− bjj)−
p(p− 1)

2

= p(p− 1)−
p∑
j=1

bjj −
p(p− 1)

2
= −r2p+2

and for i = 1, 2, . . . , p:

r′i =

p∑
j=1

b′ij −
p(p− 1)

2
=

p∑
j=1

(p− 1− bij)−
p(p− 1)

2

= p(p− 1)−
p∑
j=1

bij −
p(p− 1)

2
= −ri,

r′p+1+i =

p∑
j=1

b′ji −
p(p− 1)

2
=

p∑
j=1

(p− 1− bji)−
p(p− 1)

2

= p(p− 1)−
p∑
j=1

bji −
p(p− 1)

2
= −rp+1+i.

Hence r′ = −r ∈ R(p). Finally, is easy to see that the map M 7→M ′ is a bijection from M(r, p) to
M(−r, p), and hence that n(r, p) = n(−r, p) �

It follows from (12) that when p = 3, condition r = (0, 0, 0, 0, 0, 0, 0) always holds. Hence
R(3) = {r0}, where r0 = (0, 0, 0, 0, 0, 0, 0, 0). A direct verification shows that M(r0, 3)
= {M(r0; 0, 1; 0, 2), M(r0, 1; 2, 0), M(r0; 0, 2; 0, 1), M(r0; 0, 2; 2, 1), M(r0; 0, 1), M(r0; 2, 0; 2, 1),
M(r0; 2, 1; 0, 2), M(r0; 2, 1; 2, 0)}, and hence that the number of magic squares of order 3 is
N(3) = n(r0, 3) = 8.

A lengthier verification shows that R(4) = {r1, r2, r3}, where r1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), r2 =
(0, 0, 0, 0,−1, 0, 0, 0, 0, 1), and r3 = −r2. After calculating only n(r1, 4) = 5248 and n(r2, 4) = 896,
we are able to deduce from Theorem 4 that the number of magic squares of order 4 is N(4) =
n(r1, 4) + n(r2, 4) + n(r3, 4) = n(r1, 4) + 2n(r2, 4) = 7040. The time saved from not having to
calculate n(r3, 4) separately is significant.

We believe that a further study of the algebraic structure of the set R(p) will bring us closer to
the solution of the census problem for generic magic squares. Some specific problems of immediate
interest for further study are:

(1) A study of the specific characteristics of the order-4 magic square classesM(r1, 4),M(r2, 4)
and M(r3, 4).

(2) The computation of the set R(5) – a task that should lead to a a detailed classification and
deeper understanding of order-5 magic squares.

(3) The computation of the set R(6) – a task that should bring us really close to achieving the
census of magic squares of order 6.
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