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Abstract. Investing in projects involving huge financial risks demands great care in decision making
and execution. Dealing with market uncertainty and taking effective decision for investment in oil field
project therefore, requires a reliable guide - an optimal strategy. This strategy will emerge from addressing
a problem involving an optimal stopping time with singular stochastic control for jump diffusions. The
strategy therefore would identify two unique thresholds, one indicating when to apply the control and
the other showing when to quit. In this paper, the optimal strategy for investment in oil field project is
obtained. Two particular cases are also presented.
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1. Introduction

In managing risks involved in huge financial investments such as in oil field development projects,
there is a need to develop viable strategies. Oil price is subject to fluctuations, this makes investment
on energy projects uncertain. Technical uncertainties such as quantity of oil in the ground and
geological structures also affect overall investment decisions. In order to meet the challenge of dealing
with uncertainty, managers and investors have used some traditional capital investment tools such as
net present value (NPV), discount factor analysis (DCF), expected monetary value (EMV). However,
these calculations are done with fixed prices. (It is known that oil price is not fixed.) This grossly over
estimates projected gains or severely undermines a project’s viability leading to distorted decisions
in each case.

When risk and uncertainty are involved, decisions cannot be taken with a ”flip of the coin” strategy.
To tackle the problem of ”how and when” to invest, this work goes beyond calculations of expected
return, and proposes an optimal strategy for investment in the project.

We attempt to answer the following questions: when should the investor invest and how should
the investment be made. Ogbogbo (2016) has modelled the crude oil spot price as a Jump-diffusion
process. The aim of the work is to obtain an optimal strategy for investment in an oil field project.
The optimal strategy will involve a singular control and an optimal stopping time for the investment.
Thus the work will identify two unique thresholds for the investor; One threshold points out when to
apply the control and the other indicates when to quit. The rest of the paper is presented as follows:
the second section gives a brief literature in optimal strategies, section three presents the dynamics
and PDE of the system; strategy obtained and identified thresholds are also given here. Section four
gives optimal strategy for particular cases for Brownian Motion and Geometric Brownian Motion.
Fifth section gives the conclusion.

2. Brief literature on optimal strategies

Some models for optimal strategy and control have been obtained for gas storage, number of wells
to drill and for oil discovery and extraction. The work by Bringedal (2003) was on gas storage
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valuation. He studied gas storage facility because of expanding gas market in Europe. Investing in
a gas storage facility is similar to investing in an oil field development project. The objective of his
work was to obtain a strategy which would identify a benchmark price level at which to refill the
storage facility or sell off gas in it. The value of the storage facility was calculated with constant
volatility and mean reversion parameters. Bringedal used a technique called stochastic dual dynamic
programming SDDP.

The optimal strategy he obtained defined a bench mark price level x, at which one would sell
if the spot price Pt is above it and buy if spot price is below it. i.e. sell if Pt > x and Buy if
Pt < x. Despite the effort at generating an optimal strategy, the assumption of constant volatility
is considered a major simplification of the model. Though he used a mean reverting process in his
model, the criticism of the Black- Schole model is based largely on assumption of constant volatility.

Benkherouf and Pitts (2005) obtained optimal strategy on the number of oil wells to drill. Their
work developed an oil exploration model. They obtained their results analytically, the uncertainty
element is in the fact that the wells n1 and n2 are unknown , but are represented by a two-dimensional
distribution fixed apriori.(as Euler family of distributions). The objective of the work was to obtain
optimal strategy for drilling, that maximizes the total expected return over an infinite horizon, based
on the entire history and future prospects.

Maurer and Semmler (2010) worked on an Optimal control model of oil discovery and extraction.
They obtained the optimal rate of extraction given the price trajectory, for an oil extraction and
discovery problem. Using the Hamiltonian, and maximum principles they solved the finite horizon
optimal control problem which they formulated. They solved the resulting non- linear programming
problem numerically using NUDOCCCS. i.e. they used discretization technique to transcribe the
optimal control problem into a non linear programming problem via the code NUDOCCCS.

Generally, the Maurer-Semmler model was a finite horizon optimal control model that used two
state variables - known stock of resource and cumulated past extraction.

3. The system describing the crude oil price process

Ogbogbo (2017) has set the model for optimal invest strategy in oil field project . The assumptions
of the model and background to model formulation including costs, concepts of singularity, optimal
control are given by [7]. We therefore consider the stochastic system with jump component with
singular control given in equation (1.1).

3.1 Dynamics of the system

The system of interest Xt, describing the oil price process, is a stochastic system with a jump
component, also with singular control, and is of the form:

dXt = µ(Xt)dt+ σ(Xt)dWt +

∫
R
h(t−, Xt− , γ(Z))Ñ(dt, dZ)− dΓt (1.1)

X(0) = x0

With Lipschitz condition for existence of solution. Where X = XΓ = (XΓ
1 (t), · · · , XΓ

n (t). W (t)

is an n- dimensional Brownian motion independent of N̂ . N̂ is a martingale measure of jumps.
Γ(t) is the singular control applied to the process X(t). XΓ(s) = X = (X1, · · · , Xn) ∈ R, s ≤ t.
Γ(t) = (Γ1(t),Γ2(t), · · · ,Γn(t)) ⊂ Rn, t ≥ s. µ(Xt) is drift component, σ(Xt) is diffusion component.

3.2 The controller and the objective functional

The controller or investor is observing a system that is evolving with time. There are costs
involved. There is a cost paid over time for observing the system. Waiting before taking a
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decision is at a cost, anytime decision is taken, a cost is paid. Should she decide to stop, there is
a terminal cost. The control is also applied at a cost. Giving rise to the following objective functional.

The objective functional or performance criterion

J = J(s, x) of the form

J (Γ,η)(s, x) = E(s,x)

∫ η

0
g(t, xt)dt+ n(t, xt)dΓt +m(η, xη)|{η<∞} (1.2)

J (Γ,η)(s, x) = J (Γ,η)(s, x) = E(s,x)

[∫ η

0
g(t, xt)dt+m(η, xt)|η<∞

]
+

∫ η

0
n(t, xt)dΓt. (1.3)

Where m and g are continuous functions, ηs = ηs(x) = inf{t > 0 : x = x∗}, g(t, xt) is a running cost
or observation cost, m(η, xη) is the terminal cost, and n(t, xt) is the cost of applying the control.
The running cost g(t, xt) is the cost of waiting to take decision. In the formulation for this particular
problem, it is a constant which is not discounted, a sunk cost involved in production. The cost of
applying the control, n(t, xt) is also a constant in this case.

The stopping cost or terminal cost m(η, x), is actually the value of the project at the point the

decision is taken. It is the revenue accruing. Interest is in U(s, x) = inf
Γ,ηJ

(Γ,η)
(s,x) i.e.

U(s, x) = inf
Γ,ηE

(s,x)

∫ η

0
g(t, xt)dt+ n(t, xt)dΓt +m(η, xη)|{η<∞}

}
(1.4)

3.3 Threshold and time

Starting at some point in time and space the interest is in the first time the process hits the
threshold. The idea of threshold and time raises the question of ”how” and ”when”, with respect to
the investment. ”When” involves the threshold and time that the investor should call it quits and
”how” is concerned with strategy. Since we have a mixed stochastic model, we desire two thresh-
olds x∗ and xo. x = xo determines where to apply the control, x = x∗ gives the optimal stopping time.

The time (Optimal stopping time)
There is a non- empty time set. Therefore η∗ = {inf t > 0 : xt ≥ x∗}.

3.4 Characterization of the process and domain of operation

There is a PDE associated with this model. The PDE satisfies

LU(X, t) = −g(t,X) (1.5)

U(X, t) = m(t,Xt) (1.6)

U(X, t) is the solution of the PDE.

Domain of operation

The threshold separates the system into two Domains. The non-intervention region is D,
connoting “Wait” and B region is “below the threshold”. Above the threshold, the process is
described by the PDE, below the threshold we have U(X, t) = m(t,Xt). Thus we are interested in
the solution U(X,t), that defines the threshold. This is illustrated in Fig 1 below.
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For example, for investor in stock, D region connotes “wait” and the threshold is “invest”.

Remark 1 An important condition in the formulation of the model is that the process must not
jump at the threshold, otherwise the threshold which is being tracked can be missed. Hence at the
threshold, the process must be continuous and differentiable.

3.5 Generation of PDE

The price process Xt satisfies (1.1) and is a Jump-diffusion. Let

Yt = V (t,Xt) (1.7)

V is C1,2, hence by Itô’s lemma

dYt = Vt(t,Xt)dt+ Vx(t,Xt)µ(Xt, t)dt+
1

2
Vxx(t,Xt)σ

2(Xt, t)dt+ Vx(t,Xt)σ(Xt, t)dWt

= Vtdt+ Vx [µ(Xt)dt+ σ(Xt)dWt)] +
1

2
Vxxσ

2(Xt)dt (1.8)

With the singular control, we have

dYt = Vtdt+ Vx{(Xt)dt+ σ(xt)dWt − dΓt}+
1

2
Vxxσ

2(Xt)dt

=
[
Vt + µ(Xt)Vx + 1

2Vxxσ
2(Xt)

]
dt+ Vxσ(Xt)dWt − VxdΓt (1.9)

Equation (1.9) describes the dynamics of the process including the control.
To have a complete description of the control problem, the costs are added (through the J(t, x)

functional) to dYt process. The performance criterion is given in equation (1.3) J = J(t, x)

J(t, x) = Ex
[∫ η

0
g(t, xt)dt+m(η, xt)|{η<∞}

]
+

∫ η

0
n(t, xt)dΓt (1.10)

Let Zt denote J(t, x), since J(t, x) is a process. Then the Zt process is added to dYt. From (1.3/
1.10)

dZt = g(t, xt)dt+ n(t, xt)dΓt

Then

dZt + dYt =

[
Vt + µ(Xt)Vx +

1

2
Vxxσ

2(x, t) + g(t, xt)

]
dt+ Vxσ(Xt)dWt + (n(t, xt)− Vx)dΓt (1.11)
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To solve for U(x, t), g(t, x) is chosen to be of an exponential form g(t, x) = e−ρsf(x). Since U(s, x)
is the function that solves the PDE, by the principle of optimal control.

LxU(s, x) + g(s, x) = 0 (1.12)

U(s, x) = m(s, x)

LxU(s, x) =
1

2
σ2(x)

∂2u

∂x2
+ µ(x)

∂u

∂x
+
∂u

∂s
+

∫
R
U(s, x, γ)− γ(Z)

∂u

∂x
− U(s, x)}

]
πdZ (1.13)

(1.13) includes the jumps. From (1.12), and excluding the jumps in (1.13), we have

1

2
σ2(x)

∂2u

∂x2
+ µ(x)

∂u

∂x
+
∂u

∂s
+ g(s, x) = 0 (1.14)

3.6 Solution of PDE: identification of strategy

We desire U(s, x) that solves this time dependent PDE. We consider

g(s, x) = e−ρs

U(s, x) = m(s, x) = e−ρsxα α > 0

g(s, x) = e−ρs) means that a constant cost is paid for observing the system, which is discounted in
time. By the theory of PDE for optimal control we let

U(s, x) = e−ρsΨ(x)

We have

LxU(s, x) = e−ρsLΨ(x)

From (1.14). Since U(s, x) = e−ρsΨ(x), then

1

2
σ2(x)U ′′x + µ(x)U ′x + Us + e−ρs =

[
1

2
e−ρsσ2(x)Ψ′′(x) + µ(x)e−ρsΨ′(x)− ρe−ρsΨ(x) + e−ρs

]
= e−ρs

[
1
2σ

2(x)Ψ′′(x) + µ(x)Ψ′(x)− ρΨ(x) + 1
]

= 0

Dividing through by e−ρs we have

1

2
σ2(x)Ψ′′(x) + µ(x)Ψ′(x)− ρΨ(x) = −1 (1.15)

Ψ(x) = xα, α ≥ 0 is a fixed constant. In particular we consider case when ρ = 0. Then the
controller is paying a constant running cost which is not discounted, then we have

1

2
σ2(x)Ψ′′(x) + µ(x)Ψ′(x) = −1 (1.16)

Ψ(x) = xα. By change of variable argument, we let

Ψ′(x) = f(x) (1.17)

Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018) 232



Stochastic control model for investment ... Ogbogbo Trans. of NAMP

Then (1.16) reduces to a first order ODE which is solved explicitly for f(x), and Ψ(x) is recovered
by integration.

1

2
σ2(x)f ′(x) + µ(x)f(x) = −1 (1.18)

Hence

U(s, x) =


xα 0 < x ≤ x∗
Ψ(x) x∗ < x ≤ x0

x0 ≤ x < x∗

Ψ(x) + (x− x∗) x ≥ x∗

 (1.19)

Remark 2 The solution set is a piecewise continuous solution.

I Ψ(x) is solution of the PDE when x lies within the interval x∗ < x ≤ x0 (resp x0 ≤ x ≤ x∗,
depending on which threshold is above the other)

I we have xα ( which is the terminal cost), for 0 < x ≤ x∗. This happens, if the controller
decides to stop abruptly.

I Ψ(x)+(x−x∗) is solution of the PDE in the last interval x ≥ x∗. This describes points slightly
above the threshold. (What happens a little after the solution point is usually observed after
solving a PDE ).

From equation (1.18)

f ′(x) + 2
µ(x)

σ2(x)
f(x) =

−2

σ2(x)
σ(x) > 0.

For Integrating factor, I.F = e
2
∫ x
0

µ(s)

σ2(s)ds

d

dx

[
f(x)e

2
∫ x
0

µ(s)

σ2(s)ds
]

=
−2

σ2(x)
e

2
∫ x
0

µ(s)

σ2(s)
ds

f(x) =

∫ −2
σ2(x)e

2
∫ x
0

µ(s)

σ2(s)
ds
dx

e
2
∫ x
0

µ(s)

σ2(s)ds
(1.20)

From (1.17), Ψ′(x) = f(x)

Ψ(x) =

∫ x

0
f(s)ds+ c (1.21)

For x ∈ (0,∞). Hence

U(s, x) =


xα 0 < x ≤ x∗∫ x
0 f(s)ds+ c x∗ < x ≤ x0∫ x
0 f(s)ds+ c+ (x− x∗) x ≥ x∗

 (1.22)

x 6= ∞, x ∈ (0,∞). Equation (1.22) presents the general solution or general case, subsequently
we examine particular cases for Brownian motion and Geometric Brownian motion. f(s) can be
given explicitly when the system is a Brownian motion and Geometric Brownian motion. Ψ(x) must
converge. We have equation (1.19) because we have a singular control problem, the function is not
absolutely continuous over the interval.
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Two thresholds x∗ and xo are involved in this model. Which threshold is above or below is
determined by conditions on Ψ(x). If the thresholds coincide i.e. x∗ = x0, then we have strictly
an optimal control problem or strictly an optimal stopping time problem. The Control is flat (not
applied) while in the D domain (See fig. 1). It is applied at the threshold to ensure the system
does not fall out of order e.g. A financial institution does not go bankrupt by paying dividend, fish
population does not become extinct by over harvesting, an investor investing in an oil field project
does not invest at a loss.

Figures 2 and 3 below illustrate position of the thresholds

Fig 2: Threshold(price) that determines stopping time, attained before threshold (price) that
determines when to apply control

Fig 3: Threshold(price) that determines when to apply control, attained before threshold (price) that
determines stopping time

3.7 Continuity and differentiability of Ψ(x) at x0 and x∗

Continuity at x = x∗ and differentiability at x = x∗ are established but not given here.
From equation (1.19)

Ψ(x) = Ψ(x∗). (1.23)

Ψ(x∗) = x∗α. (1.24)
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Then equation (1.24)

Ψ′(x∗) = αx∗α−1. (1.25)

Dividing Equation (1.24) by Equation (1.25), we obtain

x∗ = α
Ψ(x∗)

Ψ′(x∗)
. (1.26)

Similarly,

x0 = α
Ψ(xo)

Ψ′(xo)
. (1.27)

The expressions Ψ(x∗) and Ψ(x0) are obtained from differentiability and continuity at x = x∗ and
x = x0 respectively. From (1.26) and (1.27) x∗ and x0 can be obtained explicitly for particular cases
of Brownian motion, BM and Geometric Brownian motion, GBM. The emerging thresholds must
be unique.

Since Ψ(x) is given as an integral, Continuity and differentiability of Ψ(x) has been established
using Riemann integration, fundamental theorems of Calculus, Order Preserving property of inte-
grals, Leibnitz Integral Rule (for differentiation under the integral sign). Proof is lengthy and not
given here

3.8 Uniqueness and position of the thresholds

Uniqueness of x∗ and xo have been established but not given here.

Position of the thresholds
The position of the threshold is determined by the following inequalities, Ψ(x∗) < Ψ(x0) or
Ψ(x∗) > Ψ(x0). This determines which threshold is above or below the other. If Ψ(x∗)−Ψ(x0) < 0,
then Ψ(x∗) < Ψ(x0). Conversely, if Ψ(x∗)−Ψ(x0) > 0 then Ψ(x∗) > Ψ(x0).

3.9 Existence of the integral; existence of solution

From solution of the PDE, equation (1.21)

Ψ(x) =

∫ x

0
f(s)ds x 6=∞ (1.28)

Existence of (1.28) above implies existence of the solution. Then we can obtain Ψ(xo) and Ψ(x∗) and
by implication xo and x∗ for this general case. (with appropriate boundary and initial conditions.).
Other conditions that guarantee existence of solution are given as follows. (i) f(x) must be continuous
on the bounds of the integral. (ii) Solution must converge. (iii) It is given that there are no jumps
at the initial process, we expect jumps at some point in time X(0−) = x. Then we may give the
optimal strategy for investment for the general case as follows:

I Stop immediately if 0 ≤ x ≤ x∗;x = x∗ or x = 0. (This includes stopping abruptly).
I Do nothing if x ≥ x∗ (ought to have stopped investment already )
I Start investing at x0, if x0 ≤ x < x∗
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4. Particular cases

4.1 Optimal strategy for Brownian motion

For the Brownian motion, σ, µ are constants

1

2
σ2Ψ′′(x) + µΨ′(x) = −1 (1.29)

σ, µ are constants. x ∈ (0,∞). Let Ψ′(x) = P (x). Then (1.29) becomes

P ′(x) +
2

σ2
µP (x) =

−2

σ2
(1.30)

with I.F = e2
∫

µ

σ2
dx = e

2µ

σ2
x. Then we obtain the solution for Ψ(x) as

Ψ(x) =
−x
µ

+ c.
σ2

−2µ
e

−2µx

σ2 + k2.

Since C, σ and µ are constants, let c
σ2

−2µ
be k1. Then

Ψ(x) =
−x
µ

+ k1e
−2µx

σ2 + k2 (1.31)

This explicit solution, (1.31) is the same result obtained, when σ, µ are substituted as constants in
equation (1.20). Hence for the Brownian Motion case

U(s, x) =


xα 0 < x ≤ x∗
−x
µ

+ k1e
−2µx

σ2 + k2 x∗ < x ≤ x0, x0 ≤ x < x∗

−x
µ

+ k1e
−2µx

σ2 + k2 + (x− x∗) x ≥ x∗
(1.32)

Optimal strategy is specified as follows:

I Stop immediately if 0 < x ≤ x∗ i.e. x = x∗ or x = 0
I Do nothing if x > x∗

I Start producing and selling copiously at x = x0, if x0 ≤ x < x∗

Recall equation (1.26) x∗ = α
Ψ(x∗)

Ψ′(x∗)
and equation (1.27) x0 = α

Ψ(x0)

Ψ′(x0)
.

For a Brownian motion x∗ and x0 are obtained explicitly from equations (1.26) and (1.27), since
α is a fixed constant and α > 0 given, k2 is to be obtained by extra initial conditions.

4.2 Optimal strategy for geometric Brownian motion

For the Geometric Brownian motion, µ = x, σ = x2

1

2
x2Ψ′′(x) + xΨ′(x) = −1

Let m = Ψ′ = dΨ
dxThen. Ψ′′ = dm

dx = d2Ψ
dx2 ⇒ dm

dx + 2
xm = −2x−2. With IF = e

∫
2

x
dx = e2lnx = x2

we obtain the solution for Ψ(x) as

Ψ = −2lnx− C

x
+D.

Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018) 236



Stochastic control model for investment ... Ogbogbo Trans. of NAMP

C and D are constants to be determined using initial conditions. For given initial conditions, the
constants C and D can be obtained leading to explicit solution for Ψ(x), x∗ and x0. These initial
conditions could be project-specific information, in addition to crude oil price data for particular oil
fields during a given period. We now have the optimal strategy for investment for the GBM case.

U(s, x) =



xα 0 < x ≤ x∗

−2lnx− C

x
+D x∗ < x ≤ x0, x0 ≤ x < x∗

−2lnx− C

x
+D + (x− x∗) x ≥ x∗

(1.33)

To obtain optimal strategy for the Jump-diffusion case, equation (1.13) will be used, jumps will
be included in equation (1.14). Thus the analysis and method of solution will include jumps in
obtaining Ψ(x), x∗ and x0. Work continues to obtain precise optimal strategy in this case.

5. Conclusion

In this work, an optimal strategy for investment in oil field project was obtained. The model used
in the work considers oil price as a jump-diffusion process. The strategy involves two important
thresholds, one that determines the stopping time and the other which determines when to apply
the control. Running cost is given as a constant cost which is not discounted in time. The results
obtained so far and some particular cases have been presented. Conditions for existence of solution
were given. The Brownian motion process and Geometric Brownian Motion process were used as
particular cases, for which the work obtained explicit solutions, and distinct optimal strategy. BM
and GBM cases provide strategy for investment which is good enough, however, it is expected that
the best strategy to invest will be attained when jumps are included in the result. Work therefore
continues to obtain possibly explicit optimal strategy for the Jump-diffusion case, and to validate
the optimal strategy using empirical data and project information from fields in the Niger-Delta.
Also running cost may be considered as a constant cost which is discounted in time
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