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Abstract. Solution of a nonlinear parabolic interface problem with Finite Element-Backward Difference
Scheme (FE-BDS) is presented. The convergence of the scheme on a two-dimensional convex polygonal
domain is analyzed. Error estimates of optimal order in the L2(0, T ;L2(Ω))-norm and L2(0, T ;H1(Ω))-
norm are determined for spatially discrete scheme. A fully discrete scheme based on 2-step BDS is analyzed.
Numerical experiment is presented to support the theoretical result. It is assumed that the interface could
be fitted exactly.
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1. Introduction

Time evolution equations (which in some cases lead to parabolic PDEs) are considered to study
and understand the dynamics of nature. The most well-known linear parabolic PDE is the heat
equation. However, the heat equation has some limitations which could be addressed with the
nonlinear generalizations of the heat equation [5]. Nonlinear PDEs appear for example in non-
Newtonian fluids, glaceology, rheology, nonlinear elasticity, flow through a porous medium, and
image processing [5]. The problem becomes an interface problem when more than one material
medium with different properties such as the conductivities, diffusion constants, are involved.

Parabolic interface problems are frequently encountered in scientific computing and industrial
applications. However, the solutions of interface problems may have higher regularities in each
individual material region than in the entire physical domain because of the discontinuities across
the interface [2,4]. Thus, achieving higher order accuracy may be difficult using the classical method,
hence there is need to find the solution to the problem by variational formulation.

Babuska [2] studied finite element approximation to elliptic interface problems on smooth domains
with a smooth interface and formulated the problem as an equivalent minimization problem. For
more works on Linear elliptic interface problems, see [3,6,11,12,16].

Using backward Euler time discretization, Chen and Zou [4] studied the convergence of fully
discrete solution to the exact solution using fitted FEM. They proved suboptimal error estimates in
L2(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)) norms when global regularity of the solution is low. Sinha et al
[20] proposed and analyzed an unfitted finite element discretization for both elliptic and parabolic
problems with discontinuous coefficients. An optimal order error estimate in the H1-norm and almost
optimal order error estimate in the L2-norm were derived for elliptic interface problems. An extension
to parabolic interface problems was also discussed and estimates in L2(H1)-norm and L2(L2)-norm
were derived for the spatially discrete scheme. A fully discrete scheme based on the backward Euler
method was analyzed and an optimal order error estimates in L2(H1)-norm was derived.

Sinha and Deka [21] studied the FEMs for second order semilinear elliptic and parabolic interface
problems in two-dimensional convex polygonal domain. The approximation theory of Brezzi-Rappaz-
Raviart was used to obtain an optimal error estimate in the H1-norm for semilinear elliptic problems
and linear theory of interface problems was used to obtain a similar estimate for semilinear parabolic
problems. They assumed that the mesh can be fitted exactly to the arbitrary interface which might
not be so in practice.

Deka et al [7] improved on the works of [4,19] and also confirmed the optimal error estimates in
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L2(0, T ;L2(Ω))-norm. Optimal error estimates in the L2(L2) and L2(H1) norms were established
for linear semi discrete scheme and a similar error estimates was also extended semilinear interface
problems.

The finite element approximation of nonlinear elliptic interface problems were discussed by
[10,13,24] and recently [14]. Chaoxia Yang [23] studied the convergence of the finite element so-
lution of a nonlinear parabolic interface problem with a linear source term. She focused on the
fully discrete approximation and used a linearized 2-step backward difference scheme for the time
discretization while piecewise linear interpolation was used to approximate the interface. With the
assumption that the coefficient σ(u) is positive and smooth with respect to u ∈ R but not continuous
across the interface, the author proved a convergence rate of almost optimal order in the L2-norm.
Her mathematical analysis was carried out using body fitted triangulation, error splitting technique,
and some projection operators under certain regularity conditions that guaranteed a unique solution.

In this work, we consider a nonlinear parabolic interface problem with nonlinear source term
and obtain optimal order of convergence rates for spatially discrete scheme in L2(0, T ;L2(Ω)) and
L2(0, T ;H1(Ω)) norms. Time discretization is done using 2-step backward difference scheme and
optimal order of convergence is obtained when the interface could be fitted exactly with the spatial
descretization. In our study, the linear theories of interface and non-interface problems, Sobolev
imbedding inequality were used. Other tools used in this paper are approximation properties of
linear interpolation and projection operators.

We use the standard notations for Sobolev spaces and norms in this paper. For m ≥ 0 and real
p with 1 ≤ p ≤ ∞, we use Wm,p to denote Sobolev space of order m. For the case p = 2, we write
Wm,p = Hm. Hm

0 (Ω) is a closed subspace of Hm(Ω), which is also the closure of C∞0 (Ω) with respect
to the norm of Hm(Ω). We use the definition and notation in [1] when m is negative or fractional.

For a given Banach space B, we define

Wm,p(0, T ;B) =


u(t) ∈ B for a.e t ∈ (0, T ) and

m∑
i=0

∫ T

0

∥∥∥∥∂iu∂ti (t)

∥∥∥∥p
B

dt < 0 1 ≤ p <∞

u(t) ∈ B for a.e t ∈ (0, T ) and

m∑
i=0

ess sup
0≤t≤T

∥∥∥∥∂iu∂ti (t)

∥∥∥∥
B

< 0 p =∞


equipped with the norms

‖u‖Wm,p(0,T ;B) =



[
m∑
i=0

∫ T

0

∥∥∥∥∂iu∂ti (t)

∥∥∥∥p
B

dt

]1/p

1 ≤ p <∞

m∑
i=0

ess sup
0≤t≤T

∥∥∥∥∂iu∂ti (t)

∥∥∥∥
B

p =∞


We write L2(0, T ;B) = W 0,2(0, T ;B) and Hm(0, T ;B) = Wm,2(0, T ;B).
We shall need the following spaces

X = H1(Ω) ∩H2(Ω1) ∩H2(Ω2)

equipped with the norms

‖v‖X = ‖v‖H1(Ω) + ‖v‖H2(Ω1) + ‖v‖H2(Ω2) ∀ v ∈ X

Throughout this paper, C is a generic constant which is independent of the mesh parameters h
and k.

The remaining part of the paper is organized as follows: we define the nonlinear interface problem
in section two, describe the FE discretization and state some existing results in section three. In
section four, we obtain optimal error estimates for the semi-discrete and fully discrete schemes. We
verify our error estimates with numerical examples in section five and conclude in section six.
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2. The nonlinear parabolic interface problem

Let Ω be a convex polygonal domain in R2 with boundary ∂Ω and Ω1 ∈ Ω be an open domain with
smooth boundary Γ = ∂Ω1. Let Ω2 = Ω\ Ω̄1 be another open domain contained in Ω with boundary
Γ ∪ ∂Ω. We consider the parabolic interface problem

ut −∇ · (a(x, u)∇u) = f(x, u) in Ω× (0, T ] (2.1)

with initial and boundary conditions{
u(x, 0) = u0(x) in Ω
u(x, t) = 0 on ∂Ω× [0, T ]

(2.2)

and interface conditions 
[u]Γ = 0[

a(x, u)
∂u

∂n

]
Γ

= g(x, t)
(2.3)

where 0 < T <∞, the symbol [u] is a jump of a quantity u across the interface Γ and n is the unit
outward normal to the boundary ∂Ωi, (i = 1, 2).

The interface conditions are defined as the difference of the limiting values from each side of the
interface ie

[u]m∈Γ := lim
x→m+

u2(x, t)− lim
x→m−

u1(x, t)

and [
a(x, u)

∂u

∂n

]
m∈Γ

:=

[
lim

x→m+
a2∇u2(x, t)− lim

x→m−
a1∇u1(x, t)

]
· n

The coefficient function a(x, u) is assumed piecewise across Γ ie a(x, u) = ai(x, u) for u ∈ R and
x ∈ Ω, i = 1, 2.

This kind of problems arises in various branches of material science, biochemistry, multiphase
flow etc., often when two or more different materials are involved with different conductivities or
densities.

Assumption 2.1

A1 Ω is a bounded convex polygonal domain in R2, the interface Γ ∈ Ω and the boundary ∂Ω are
piecewise smooth, Lipschitz continuous and 1-dimensional.

A2 The functions a : Ω × R → R, f : Ω × R → R are measurable and bounded with respect to
their first variable x ∈ Ω and continuously differentiable with respect to their second variable
η ∈ R. g(x, t) ∈ L2(0, T ;H2(Γ)) ∩ L2(0, T ;H1/2(Γ)).

A3 Functions a and f satisfy

0 < µ1 ≤ a(x, u) ≤ µ2,

∣∣∣∣∂a∂ξ (x, ξ)

∣∣∣∣+

∣∣∣∣∂f∂ξ (x, ξ)

∣∣∣∣ ≤ µ3 ,

for u ∈ R, x ∈ Ω with positive constants µ1 and µ2 independent of (x, ξ).

Due to the low regularity of the solution across the interface, sufficient conditions for classical
solvability of (3.1)-(3.3) are not required in this paper. However, a suitable weak form will turn to
be relevant in our context. The weak form is:
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Figure 1. A polygonal domain Ω = Ω1 ∪ Ω2 with interface Γ

Find u(t) ∈ H1
0 (Ω), t ∈ (0, T ] such that

(ut, v) +A(u : u, v) = (f, v) + 〈g, v〉Γ ∀ v(t) ∈ H1
0 (Ω), t ∈ (0, T ] (2.4)

where

(φ, ψ) =

∫
Ω
φψ dx A(ξ : φ, ψ) =

∫
Ω
a(x, ξ)∇φ · ∇ψ dx 〈φ, ψ〉Γ =

∫
Γ
φψ dΓ

We recall that for u ∈ H1(Ω), the boundary value of u (ie u|∂Ω) is defined on H1/2(∂Ω) the trace

space of H1(Ω). Similarly, the trace space on the interface Γ is H1/2(Γ). The trace operator from
H1(Ω) to H1/2(∂Ω) is continuous and satisfies the embedding

‖z‖H1/2(∂Ω) ≤ C‖z‖H1(Ω) ∀ z ∈ H1(Ω)

See Adams [1] and Evans [8] for more information on trace operator. It is known that ut ∈
L2(0, T ;H−1(Ω)) (cf Evans [8]) and g ∈ L2(0, T ;H1/2(Γ) ∩ H2(Γ)) (cf Ladyzhenskaya [15] and
Chen et al [4]). For (2.1)− (2.3), we have the following regularity estimates (cf [17]):

Lemma 2.2 Suppose that the conditions of Assumption 2.1 are satisfied for every a : Ω× R→ R,
f : Ω×R→ R and g ∈ L2(0, T ;H1/2(Γ)), there exists a constant C depending on µ1, µ2, µ3, T and
Ω such that

‖u‖L∞(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H1(Ω)) + ‖ut‖L2(0,T ;H−1(Ω)) ≤ C
(
‖g‖L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω)

)
(2.5)

and

‖u‖L2(0,T ;X) ≤ C
(
‖g‖L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω)

)
for u(t) ∈ X ∩H1

0 (Ω) (2.6)

3. Finite element discretization and some auxiliary results

Th denotes a partition of Ω into disjoint triangles K (called elements) such that no vertex of any
triangle lies on the interior or side of another triangle.

Let hK be the diameter of an element K ∈ Th and h = maxK∈Th hK . Let T ?h denote the set of all
elements whose edges lie on the interface Γ;

T ?h = {K ∈ Th : K̄ ∩ Γ 6= φ}

K ∈ T ?h is called an interface element and we write Ω?
h =

⋃
K∈T ?

h
K. The triangulation Th of the

domain Ω satisfies the following conditions
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(i) Ω̄ =
⋃
K∈Th

K̄

(ii) If K̄1, K̄2 ∈ Th and K̄1 6= K̄2, then either K̄1 ∩ K̄2 = ∅ or K̄1 ∩ K̄2 is a common vertex or a
common edge.

(iii) Each K ∈ Th is either in Ω1 or Ω2, and has at most one edge lying on Γ.
(iv) For each element K ∈ Th, let rK and r̄K be the diameters of its inscribed and circumscribed

circles respectively. It is assumed that, for some fixed h0 > 0, there exists two positive
constants C0 and C1, independent of h, such that

C0rK ≤ h ≤ C1r̄K ∀ h ∈ (0, h0)

Let Sh ⊂ H1
0 (Ω) denote the space of continuous piecewise linear functions on Th vanishing (in the

sense of trace) on ∂Ω.
The FE solution uh(x, t) ∈ Sh is represented as

uh(x, t) =

Nh∑
j=1

αj(t)φj(x) ,

where each basis function φj , (j = 1, 2, . . . , Nh) is a pyramid function with unit height. For the
approximation ĝ(t), let {zj}nh

j=1 be the set of all nodes of the triangulation Th that lie on the

interface Γ and {ψj}nh

j=1 be the hat functions corresponding to {zj}nh

j=1 in the space Sh. See [4,22]
for the construction of such finite element spaces.

We present the analysis and computation for the case where the spatial discretisation can be fitted
exactly to the interface. This could be achieved with the use of interface elements with curved edges
along the interface.

Let πh : C(Ω̄) → Sh be the Lagrange interpolation operator corresponding to the space Sh. The
standard interpolation theory can not be applied due to the low regularity of the solution across the
interface.

We recall some existing results which will be used in our analysis. See [4,7,17] for proofs

Lemma 3.1 Let Ω?
h be the union of all interface elements, πh : C(Ω) → Sh be the interpolation

operator, and g ∈ H2(Γ), we have

‖v − πhv‖Hm(Ω) ≤ Ch2−m‖v‖X ∀ v ∈ X, m = 0, 1 (3.1)

‖v‖H1(Ω?
h) ≤ Ch1/2‖v‖X ∀ v ∈ X (3.2)

|〈g, vh〉Γ − 〈gh, vh〉Γh
| ≤ Ch3/2‖g‖H2(Γ)‖vh‖H1(Ω?

h) ∀ vh ∈ Sh (3.3)

|A(ξ : νh, ωh)−Ah(ψ : νh, ωh)| ≤ µ3‖∇νh‖L∞(Ω)‖ξ − ψ‖L2(Ω)‖ωh‖H1(Ω)

+ Ch‖νh‖H1(Ω?
h)‖ωh‖H1(Ω?

h) (3.4)

4. Error estimates

This section is devoted to the analysis of the error estimates of the nonlinear parabolic interface
problem. Optimal order error estimates are analysed in L2(0, T ;H1(Ω))-norm for spatially discrete
scheme and L2(0, T ;L2(Ω))-norm for both spatially and fully discrete schemes. The finite element
analysis of nonlinear non-interface problems are contained in Thomee [22] and references therein.

4.1 Spatially discrete approximation

We may pose the semidiscrete problem as: find uh : [0, T ]→ Sh such that uh(0) = uh,0 and satisfies

(uh,t, vh) +Ah(uh : uh, vh) = (f(x, uh), vh)h + 〈gh, vh〉Γh
∀ vh ∈ Sh, a.e t ∈ [0, T ] (4.1)
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where Ah(ξ : φ, ψ) : H1(Ω)×H1(Ω)→ R and (f(x, uh), vh)h : R×H1(Ω)→ R are defined as

Ah(ξ : φ, ψ) =
∑
K∈Th

∫
K
a(x, ξ)∇φ · ∇ψ dx ,

(f(x, uh), φ)h =
∑
K∈Th

∫
K
f(x, uh)φ dx ∀ φ, ψ ∈ H1(Ω), t ∈ [0, T ]

Ah(ξ : φ, ψ) : H1(Ω)×H1(Ω)→ R and (f(x, uh), φ)h : R×H1(Ω)→ R are the discrete versions of
A(ξ : φ, ψ) : H1(Ω)×H1(Ω)→ R and (f(x, u), φ) : R×H1(Ω)→ R respectively. These are obtained
numerically by using well known quadrature schemes.

The existence of a unique solution to (4.1) follows the standard theory of Ordinary Differential

Equations (see [22] for details). With uh expressed as uh(x, t) =
∑Nh

j=1 αj(t)φj(x) (αj(t) : [0, T ]→ R)

in (4.1), this results to a system of nonlinear ODEs. The assumptions on a(x, u), f(x, u) and g(x, t)
guarantee a unique bounded solution for t ∈ [0, T ].

It is easy to see that uh in (4.1) satisfies the a priori estimate (2.5)

‖uh‖L∞(0,T ;L2(Ω))+‖uh‖L2(0,T ;H1(Ω))+‖uh,t‖L2(0,T ;H−1(Ω)) ≤ C
(
‖g‖L2(0,T ;H1/2(Γ)) + ‖u0‖L2(Ω)

)
(4.2)

Below are the main results concerning the convergence of the semi-discrete solution to the exact
solution in the L2(0, T ;H1(Ω))-norm and L2(0, T ;L2(Ω))-norm respectively:

Theorem 4.1 Suppose that the conditions of Assumption 2.1 are satisfied for every a : Ω×R→ R,
f : Ω × R → R and g ∈ L2(0, T ;H2(Γ)) and let u and uh be the solutions of (2.4) and (4.1)
respectively, then for u0 ∈ H1

0 (Ω) and γ = γ(µ1, µ3), there exists a positive constant C, independent
of h, such that

‖u− uh‖L2(0,T ;H1(Ω)) ≤ Ch

{
‖u0‖X +

(∫ T

0
exp(−γt)

(
‖g‖2H2(Γ) + ‖u‖2X + ‖ut‖2X

)
dt

)1/2
}

Theorem 4.2 Suppose that the conditions of Assumption 2.1 are satisfied for every a : Ω×R→ R,
f : Ω × R → R and g ∈ L2(0, T ;H2(Γ)) and let u and uh be the solutions of (2.4) and (4.1)
respectively, then for u0 ∈ H1

0 (Ω) there exists a positive constant C, independent of h, such that

‖u− uh‖L2(0,T ;L2(Ω)) ≤ Ch2

{
‖u0‖X + ‖u‖L∞(0,T ;X) +

(∫ T

0
exp(−γt)

(
‖g‖2H2(Γ) + ‖u‖2X+

‖ut‖2X
)
dt1/2.

We shall prove the two theorems using the elliptic projection defined below

Let Ph : X ∩H1(Ω)→ Sh be the elliptic projection of the exact solution u in Sh defined by

Ah(u : Phν, φ) = A(u : ν, φ) ∀ φ ∈ Sh, t ∈ [0, T ] (4.3)

It is easy to see from (4.3) that there exist a constant C > 0 such that

‖Phν‖H1(Ω) ≤ C‖ν‖H1(Ω) ∀ ν ∈ H1(Ω) (4.4)

For this projection, we have

Lemma 4.3 Let u be a smooth function in Ω×T and a = a(x, u) satisfies Assumption 2.1. Assume
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that u ∈ X ∩H1
0 and let Phu be defined as in (4.3), then

‖Phu− u‖L2(Ω) + h‖Phu− u‖H1(Ω) ≤ Ch2‖u‖X (4.5)

Proof Following [17], we have

‖Phu− u‖H1(Ω) ≤ Ch‖u‖X (4.6)

Now consider the dual problem

A(u : ψ, φ) = (Phu− u, φ) ∀ φ ∈ H1
0 (Ω) (4.7)

It follows from a similar argument of [22,pg 233] that

‖ψ‖X ≤ C‖Phu− u‖L2(Ω) (4.8)

From (4.7)

‖Phu− u‖2L2(Ω) = A(u : Phu− u, ψ)

= A(u : Phu− u, ψ − φ) +A(u : Phu− u, φ) φ ∈ Sh
≤ C‖Phu− u‖H1(Ω)‖ψ − φ‖H1(Ω) + |A(u : Phu, φ)−Ah(u : Phu, φ)|

Using (3.1) and (4.6) with φ = πhψ we obtain

‖Phu− u‖2L2(Ω) ≤ Ch
2‖u‖X‖ψ‖X + |A(u : Phu, πhψ)−Ah(u : Phu, πhψ)|

It follows from (3.4), (3.2), (4.4) and the fact that ‖πhψ‖ ≤ C‖ψ‖, that

‖Phu− u‖2L2(Ω) ≤ Ch
2‖u‖X‖ψ‖X (4.9)

(4.5) follows from (4.6), (4.8) and (4.9). 2

Lemma 4.4 Let u be a smooth function in Ω×T and a = a(x, u) satisfies Assumption 2.1. Assume
that u ∈ X ∩H1

0 and let Phu be defined as in (4.3), then

‖(Phu− u)t‖L2(Ω) + h‖(Phu− u)t‖H1(Ω) ≤ Ch2(‖u‖X + ‖ut‖X) (4.10)

Proof Let ξ = Phu− u, and assume that at is uniformly bounded. Following the argument of [22],
we have

ρ‖ξt‖2H1(Ω) ≤ A(u : ξt, ξt)

= A(u : ξt, φ− ut) +A(u : ξt, (Phu)t − φ)

= A(u : ξt, φ− ut) +

∫
Ω

[
∂

∂t
(a∇ξ)− ∂a

∂t
∇ξ
]
· ∇((Phu)t − φ) dx

≤ ‖ξt‖H1(Ω)‖φ− ut‖H1(Ω) + ‖ξ‖H1(Ω)‖(Phu)t − φ‖H1(Ω)

Take φ = πhut. Using (3.1), (4.5) and Young’s inequality, we obtain

‖(Phu− u)t‖H1(Ω) ≤ Ch(‖u‖X + ‖ut‖X) (4.11)
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Following the duality argument (4.7)− (4.9), it is easy to see that

‖(Phu− u)t‖L2(Ω) ≤ Ch2(‖u‖X + ‖ut‖X) (4.12)

(4.10) follows from (4.11) and (4.12). 2

Proof of Theorem 4.1 Subtract (4.1) from (2.4)

(ut − uh,t, vh) +A(u : u, vh) = Ah(uh : uh, vh) + (f(x, u), vh)− (f(x, uh), vh)h + 〈g, vh〉Γ − 〈gh, vh〉Γh

∀ vh ∈ Sh. Let e(t) = u− uh, vh = Phu− uh and use (4.3)

1

2

d

dt
‖e(t)‖2L2(Ω) +Ah(uh : e(t), e(t)) = (uh,t − ut, Phu− u) +Ah(uh : e(t), u− Phu) +Ah(uh : u,

Phu− uh)−Ah(u : Phu, Phu− uh) + (f(x, u), Phu− uh)

−(f(x, uh), Phu− uh)h + 〈g, Phu− uh〉Γ −

〈gh, Phu− uh〉Γh
≤ B1 +B2 +B3 +B4 +B5 (4.13)

where

B1 = |(ut − uh,t, Phu− u)| B2 = |Ah(uh : e(t), u− Phu)|

B3 = |Ah(uh : u, Phu− uh)−Ah(u : Phu, Phu− uh)|

B4 = |(f(x, u), Phu− uh)− (f(x, uh), Phu− uh)h|

B5 = |〈g, Phu− uh〉Γ − 〈gh, Phu− uh〉Γh
|

For B1, we have

B1 = | d
dt

(e(t), Phu− u)− (e(t), (Phu− u)t)|

≤ 1

4

d

dt
‖e(t)‖2L2(Ω) +

d

dt
‖Phu− u‖2L2(Ω) +

1

4ε
‖e(t)‖2L2(Ω) + ε‖(Phu− u)t‖2L2(Ω)

≤ 1

4

d

dt
‖e(t)‖2L2(Ω) +

1

4ε
‖e(t)‖2L2(Ω) +

1

2
‖Phu− u‖2L2(Ω) + C(ε)‖(Phu− u)t‖2L2(Ω) (4.14)

B2 ≤ ‖e(t)‖H1(Ω)‖u− Phu‖H1(Ω)

≤ 1

4ε
‖e(t)‖2H1(Ω) + ε‖Phu− u‖2H1(Ω) (4.15)

For B3, we obtain

B3 ≤
∑
K∈Th

∫
K

(µ2|∇(u− Phu) · ∇(Phu− uh)|+ µ3|e(t)||∇Phu · ∇(Phu− uh)|)

By Holder’s and Young’s inequalities with the fact that ∇Phu is constant on K ∈ Th, we obtain

B3 ≤ C(µ2, µ3, ε)‖Phu− u‖2H1(Ω) +
1

2ε
‖e(t)‖2H1(Ω) (4.16)
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B4 ≤ |(f(x, u), Phu− uh)− (f(x, u), Phu− uh)h|+ |(f(x, u)− f(x, uh), Phu− uh)h|

≤ Ch‖u‖H1(Ω?
h)‖Phu− uh‖H1(Ω?

h) + µ3‖e(t)‖L2(Ω)‖Phu− uh‖L2(Ω) (4.17)

≤ C(ε)h3‖u‖2X +
1

2
‖Phu− u‖2H1(Ω) +

1

2ε
‖e(t)‖2H1(Ω) + C(ε)µ2

3‖e(t)‖2L2(Ω) (4.18)

Using (3.3),

B5 ≤ Ch3/2‖g‖H2(Γ)‖Phu− uh‖H1(Ω)

≤ Ch3(ε+ 1)‖g‖2H2(Γ) +
1

4ε
‖e(t)‖2H1(Ω) + Ch2‖u‖2X (4.19)

In view of (4.5) and (4.10) we substitute (4.14) − (4.18) into (4.13) and simplify the resulting
expression taking ε = 3/µ1 we obtain, for h sufficiently small,

1

4

d

dt
‖e(t)‖2L2(Ω) +

µ1

2
‖e(t)‖2H1(Ω) ≤ γ‖e(t)‖

2
L2(Ω) + Ch2

(
‖g‖2H2(Γ) + ‖u‖2X + ‖ut‖2X

)
where γ > 0 depends on µ1 and µ3. It follows that

exp(−4γT )‖e(t)‖2L2(0,T ;H1(Ω)) ≤ exp(−4γT )‖e(T )‖2L2(Ω) +

∫ T

0
exp(−4γt)‖e(t)‖2H1(Ω) dt

≤ ‖e(0)‖2H1(Ω) + Ch2

∫ T

0
exp(−4γt)

(
‖g‖2H2(Γ) + ‖u‖2X + ‖ut‖2X

)
dt

The result follows by taking u0,h = πhu0. 2

Proof of Theorem 4.2 We have

‖u− uh‖2L2(Ω) ≤ 2(‖u− Phu‖2L2(Ω) + ‖Phu− uh‖2L2(Ω))

≤ Ch4‖u‖2X + 2‖Phu− uh‖2L2(Ω) (4.20)

Using (4.3), it is easy to observe that
((uh − Phu)t, vh) +Ah(uh : uh − Phu, vh) = ((u− Phu)t, vh) + (f(x, uh), vh)h − (f(x, u), vh)

+〈gh, vh〉Γh
− 〈g, vh〉Γ +Ah(u : Phu, vh)−Ah(uh : Phu, vh)

We take vh = uh − Phu and make use of the fact that ∇Phu is constant on K ∈ Th, and obtain

1

2

d

dt
‖uh − Phu‖2L2(Ω) + µ1‖uh − Phu‖2H1(Ω) ≤ C(µ1, ε)‖uh − Phu‖2L2(Ω) + C(ε)‖u− Phu‖2L2(Ω)

+‖(u− Phu)t‖2L2(Ω) +
1

4ε
‖uh − Phu‖2H1(Ω)

+B4 +B5 (4.21)

From (3.2) and (4.17)

B4 ≤ C(µ3, ε)h
4‖u‖2X +

1

4ε
‖Phu− uh‖2H1(Ω) +

5

4
‖Phu− uu‖2L2(Ω) (4.22)

From (3.2) and (3.3),

B5 ≤ εCh4‖g‖2H2(Γ) +
1

4ε
‖Phu− uh‖2H1(Ω) [because Dα(Phu− uh) = 0 for |α| = 2] (4.23)
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Substitute (4.22) and (4.23) into (4.21), using (4.5) and (4.10) with ε = 3
4µ1

1

2

d

dt
‖Phu− uh‖2L2(Ω) ≤ γ‖Phu− uh‖2L2(Ω) + Ch4

(
‖u‖2X + ‖ut‖2X + ‖g‖2H2(Γ)

)
With uh,0 = πhu0, it follows that

‖(Phu− uh)(t)‖2L2(Ω) ≤ Ch4

[
exp(2γt)‖u0‖2X +

∫ t

0
exp(2γ(t− s))(‖u‖2X + ‖ut‖2X + ‖g‖2H2(Γ)) ds

]
(4.24)

The result follows by substituting (4.24) into (4.20) and taking the supremum with respect to t over
[0, T ]. 2

4.2 Fully discrete method

Now we discuss a fully discrete scheme based on 2-step backward difference approximation. Optimal
order error estimate in the L2(0, T ;L2(Ω))-norm is derived.
The interval [0,T] is divided into M equally spaced (for simplicity) subintervals:

0 = t0 < t1 < . . . < tM = T

with tn = nk, k = T/M being the time step. For a given sequence {wn}Mn=0 ⊂ L2(Ω), we have the
backward difference quotient defined by

∂kw
n =

3wn − 4wn−1 + wn−2

2k

The fully discrete finite element approximation to (2.4) is defined as follows:
Let U0

h = πhu0, find Unh ∈ Sh, for n = 2, 3, . . . ,M , such that

U1
h = u0 + k [∇ · (a(x, u0)∇u0) + f(x, u0)] (4.25)

(∂kU
n
h , vh) +Ah(2Un−1

h − Un−2
h : Unh , vh) = (f(x, 2Un−1

h − Un−2
h ), vh)h + 〈gnh , vh〉Γh

(4.26)

∀ vh ∈ Sh. If utt is defined for t ∈ (0, T ], it can be shown using Taylor expansion that

‖Unh − 2Un−1
h + Un−2

h ‖ ≤ λk2

For λ ≥ 0 and k sufficiently small. We have the following stability result:

Lemma 4.5 Suppose the conditions of Assumption 2.1 are satisfied, there exists a constant C
independent of h and k such that for the solution of (4.25)− (4.26)

‖Unh ‖2L2(Ω) ≤ C(1 + k2)‖u0‖2L2(Ω) + Ck

n∑
i=1

‖gih‖2H1/2(Γ) + Ck3 , n = 1, 2, . . . ,M (4.27)
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Proof Taking vh = Unh in (4.26), we obtain by simple calculation

1

k
‖Unh ‖2L2(Ω) + µ1‖∇Unh ‖2L2(Ω) ≤

1

2k
‖Un−1

h ‖L2(Ω)‖Unh ‖L2(Ω) +
1

2k
‖Unh − 2Un−1

h + Un−2
h ‖L2(Ω)‖Unh ‖L2(Ω)

+ µ3‖2Un−1
h − Un−2

h ‖L2(Ω)‖Unh ‖L2(Ω) + ‖gnh‖H1/2(Γ)‖Unh ‖L2(Ω)

≤ 1

2k
‖Un−1

h ‖2L2(Ω) +

(
1

2k
+

3µ3

2
+

3

4

)
‖Unh ‖2L2(Ω) +

1

2
‖gnh‖2H1/2(Γ)

+
1

4
(1 + 2µ3)λ2k2

It follows that

(1− 3(0.5 + µ3)k) ‖Unh ‖2L2(Ω) + 2µ1k‖∇Unh ‖2L2(Ω) ≤ ‖U
n−1
h ‖2L2(Ω) + k‖gnh‖2H1/2(Γ) +

1

2
(1 + 2µ3)λ2k3

For 0 < k ≤ k0 <
1

3(0.5 + µ3)
, there is a c0 =

3(0.5 + µ3)

(1− 3(0.5 + µ3)k0)
such that

‖Unh ‖2L2(Ω) + 2µ1k‖∇Unh ‖2L2(Ω) ≤ (1 + c0k)

[
‖Un−1

h ‖2L2(Ω) + k‖gnh‖2H1/2(Γ) +
1

2
(1 + 2µ3)λ2k3

]
By iteration on n we have

‖Unh ‖2L2(Ω) + 2µ1k‖∇Unh ‖2L2(Ω) ≤ ‖U
1
h‖2L2(Ω)

n∑
i=2

(1 + c0k)i−1

+

n∑
i=2

(1 + c0k)n−i+1
[
k‖gih‖2H1/2(Γ) + (1 + 2µ3)λ2k4

]

≤ (1 + c0k0)n−1(n− 1)

[
‖U1

h‖2L2(Ω) + k

n∑
i=2

‖gih‖2H1/2(Γ) + (1 + 2µ3)λ2k3

]
(4.28)

(4.27) follows from the last inequality, (4.25) and Assumption 2.1. The result below establishes the
convergence of the fully discrete solution to the exact solution in the L2(0, T ;L2(Ω))-norm.

Theorem 4.6 Let un and Unh be the solutions of (2.4) and (4.25)− (4.26) respectively. Suppose that
the conditions of Assumption 2.1 are satisfied for every a : Ω× R→ R, f : Ω× R→ R, g(x, t) and
uttt is defined for Ω× [0, T ]. There exists a positive constant C in dependent of h and k such that

‖un − Unh ‖L2(Ω) ≤
[
h2 + k2

]
C(u, g) (4.29)

Proof Let zn = Unh − Phun then

(∂kz
n, vh) +Ah(2Un−1

h − Un−2
h : zn, vh)

= (∂k(u
n − Phun), vh)− (∂ku

n − unt , vh) +Ah(un : Phu
n, vh)−Ah(2Un−1

h − Un−2
h : Phu

n, vh)

+(f(x, 2Un−1
h − Un−2

h ), vh)h − (f(x, un), vh) + 〈gnh , vh〉Γh
− 〈gn, vh〉Γ

≤ (∂k(u
n − Phun), vh)− (∂ku

n − unt , vh) + C‖un − 2Un−1
h + Un−2

h ‖L2(Ω)‖vh‖H1(Ω)

+Ch2‖un‖X‖vh‖H1(Ω) + µ3‖un − 2Un−1
h + Un−2

h ‖L2(Ω)‖vh‖L2(Ω) + Ch2‖gn‖H2(Γ)‖vn‖H1(Ω)

where we have made use of Holder’s inequality, Young’s inequality (3.2), (3.3) and the fact that
∇Phun is constant on K ∈ Th, in the last inequality.
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(∂kz
n, zn) +Ah(2Un−1

h − Un−2
h : zn, zn)

≤ ‖∂k(un − Phun)‖L2(Ω)‖zn‖L2(Ω) + ‖∂kun − unt ‖L2(Ω)‖zn‖L2(Ω) + Ch2‖un‖X‖zn‖H1(Ω)

+ (C + µ3)
(
‖un − Phun‖L2(Ω) + ‖zn‖L2(Ω) + ‖Unh − 2Un−1

h + Un−2
h ‖L2(Ω)

)
‖zn‖H1(Ω)

+Ch2‖gn‖H2(Γ)‖zn‖H1(Ω)

By Young’s inequality,

1

2k
‖zn‖2L2(Ω) ≤

1

2k
‖zn−1‖2L2(Ω) +

(
3

4
+ µ1

)
‖zn‖2L2(Ω) + ‖∂k(un − Phun)‖2L2(Ω) + ‖∂kun − unt ‖2L2(Ω)

5

4µ1
C2h4

(
‖un‖2X + ‖gn‖2H2(Γ)

)
+
λ2k3

4

+
5

4µ1
(C + µ3)2

(
‖un − Phun‖2L2(Ω) + ‖zn‖2L2(Ω) + ‖Unh − 2Un−1

h + Un−2
h ‖2L2(Ω)

)
It follows that

(1− Ck)‖zn‖2L2(Ω) ≤ ‖z
n−1‖2L2(Ω) + 2k‖∂k(un − Phun)‖2L2(Ω) + 2k‖∂kun − unt ‖2L2(Ω)

Ch4k
(
‖un‖2X + ‖gn‖2H2(Γ)

)
+ Cλ2k4

Following the argument that led to (4.28),

‖zn‖2L2(Ω) ≤ C‖z
1‖2L2(Ω) + Ck

n∑
j=2

‖∂k(uj − Phuj)‖2L2(Ω) + Ck

n∑
j=2

‖∂kuj − ujt‖2L2(Ω)

+ Ch4k

n∑
j=2

(‖uj‖2X + ‖gj‖2H2(Γ)) + Cλ2k4

≤ C‖z1‖2L2(Ω) + C

∫ tn

0
‖(u− Phu)t‖2L2(Ω) dt+ Ck4

∫ tn

0
‖uttt‖2L2(Ω) dt

+ Ch4

∫ tn

0

[
‖u‖2X + ‖g‖2H2(Γ)

]
dt+ Cλ2k4

≤ C‖z1‖2L2(Ω) + Ch4

∫ tn

0

[
‖u‖2X + ‖ut‖2X + ‖g‖2H2(Γ)

]
dt

+ Ck4

∫ tn

0
‖uttt‖2L2(Ω) dt+ Cλ2k4 (4.30)

where use is made of (4.12) to obtain (4.30). We have, from (3.1), (4.5) and (4.30) with U0
h = πhu0,

‖un − Unh ‖2L2(Ω) ≤ C‖z
1‖2L2(Ω) + Ch4

[
‖un‖2X +

∫ tn

0

(
‖u‖2X + ‖ut‖2X + ‖g‖2H2(Γ)

)
dt

]
+ Ck4

∫ tn

0
‖uttt‖2L2(Ω) dt+ Cλ2k4

≤ Ch4

[
‖u0‖2X +

∫ tn

0

(
‖u‖2X + ‖ut‖2X + ‖g‖2H2(Γ)

)
dt

]
+ Ck4

[∫ tn

0
‖uttt‖2L2(Ω) dt+ λ2 + ζ2

]
(4.31)
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We use the fact that ‖u1 − u0 − kut‖ ≤ ζk2 for ζ ≥ 0 to obtain (4.31). (4.29) follows immediately.

5. Numerical results

For our numerical experiment, globally continuous piecewise linear finite element functions based
on a uniform triangulation described in section 3 are used. The numerical experiments of this
section are based on fully discrete scheme.

Example 5.1 We present the results of computation of a two-dimensional non-linear parabolic
interface problem in the domain Ω = (−1, 1) × (−1, 1) with Ω1 = (−0.5, 0.5) × (−0.5, 0.5),
Ω2 = Ω \ Ω1 and Γ = Ω̄1 ∩ Ω̄2. Γ is made of straight lines (see Figure 2).

Consider the problem (2.1)− (2.3) in Ω× (0, 10]. We choose a problem with a known solution as
follows:

u =


3

8
(28x2y2 − 8x2 − 8y2 + 3)

t

1 + t
in Ω1 × (0, 10]

1

2
(x2y2 − x2 − y2 + 1)

t

1 + t
in Ω2 × (0, 10]

a =

 u2

1 + u2
in Ω1 × (0, 10]

expu in Ω2 × (0, 10]

The source function f , the interface function g and the initial data u0 are determined from the
choice of u and a: The L2-norm errors at t = 5 are presented in Table 1

          
 

                                         
 
 

                           
 
 

        
 

                  
 
 
 

Figure 2. Computational domain

Table 1. Numerical results for Example 5.1

h Error (k = 0.1)
0.064629 2.65905× 10−4

0.0315913 8.70106× 10−5

0.0168371 4.83378× 10−5

k Error (h = 0.0315913)
0.25 2.98596× 10−4

0.125 1.06249× 10−4

0.0625 8.70106× 10−5

The data presented in Table 1 indicate that

‖u− uh‖H1(Ω) = O
(
h2.056 + k2.342

)
Example 5.2 We consider a parabolic problem of the form (2.1)−(2.3) in the domain Ω = (−1, 1)×
(−1, 1) with Ω1 = (−1, 0)× (−1, 1), Ω2 = (0, 1)× (−1, 1) and Γ is the line x = 0.
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Figure 3. FE solution of Example 5.1 with t = 5, k = 0.125 and mesh sizes 0.0315913 & 0.235702 respectively

For the exact solution, we choose

u =

{
(1− y2)x(1 + x) sin t in Ω1 × (0, 10]

(1− y2) sin(4πx)t cos t in Ω2 × (0, 10]

We choose

a =


1

1 + u2
in Ω1 × (0, 10]

3 in Ω2 × (0, 10]

The source function f , the interface function g and the initial data u0 are determined from the
choice of u and a. The L2-norm errors at t = 5 are presented in Table 2

Table 2. Numerical results for Example 5.2

h Error (k = 0.1)
0.127515 7.32726× 10−2

0.0653869 1.82268× 10−2

0.0329586 4.59465× 10−3

0.0170309 1.15467× 10−3

k Error (h = 0.0329586)
0.125 4.61233× 10−3

0.1 4.59465× 10−3

0.0625 4.57646× 10−3

The data presented in Table 2 indicate that

‖u− uh‖L2(Ω) = O
(
h2.088 + k2.163

)
6. Conclusion

Solution of a second order nonlinear parabolic interface problem by FE-BDS is presented. The con-
vergence of the finite element solution to the exact solution on a two-dimensional convex polygonal
domain is analyzed. The spatial discretisation was done using quasi-uniform triangular elements
with the unknown function approximated using piecewise linear functions. Discretization in time is
based on linearized 2-step implicit scheme. It was assumed that the mesh fits interface.

We showed that convergence rate of optimal order in L2(0, T ;L2(Ω))-norm and L2(0, T ;H1(Ω))-
norm could be obtained for semi-discrete scheme. Convergence rate of optimal order in L2(Ω)-norm
is obtained for the fully discrete scheme. Examples were given to confirm the theoretical result.

In this work, we analyzed the stability and convergence of the fully discrete scheme, however, the
maximum principle of the scheme is a good area of interest which the authors might look into for
future research. This is possible in view of I. Farago et.al [9].
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