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Abstract. In this paper, we develop a mathematical model to study and analyze malaria dynamics
involving ordinary differential equations for the human and mosquito populations. The model incorporates
a class of non-drug compliant humans in the infective class. An equivalent system is obtained, which
has two equilibria: a disease free-equilibrium and an endemic equilibrium. The existence and stability
analyses of the disease-free and endemic equilibria are obtained. We establish local stability of disease-free
equilibrium points by solving the linearized system and calculating a classical epidemiology threshold, R,
called the basic reproduction number, which is obtained from next generation matrix. Local stability of
endemic equilibrium points is also determined.
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1. Introduction

Malaria is one of the most important public health problems. It has been rated as one of the top three
killers among communicable diseases (Sachs and Malaney, 2002). The estimated annual mortality
rate attributed to malaria ranges from 700,000-2.7 million worldwide and more than 75 percent
of them are African children and expectant mothers who have less immunity (Kumar et al.,2007).
Sub-Sahara Africa (SSA) and Southeast Asia are the most malaria-affected regions.

Protozoan parasite of genus plasmodium is the main cause for malaria disease which is transmitted
between humans through the bite of female anopheles mosquitoes(Mandal et al.,2011). There are
five species of the plasmodium parasite which can infect humans; they are plasmodium falciparum,
plasmodium vivax, plasmodium ovale, plasmodium malariae and plasmodium knowlesi and the most
serious form of the disease is caused by plasmodium falciparum(Wei,2008). Malaria caused by plas-
modium vivax, plasmodium ovale and plasmodium malariae causes milder diseases in humans that
is not generally fatal(Pongsumpon et al.,2009). A fifth specie, plasmodium knowlesi causes malaria
in macaques but can also infect humans(Malaria,2010). Malaria symptoms include temperature with
headache, shivering, muscle pains, diarrhoea and vomiting with attacks appearing in two to three
days depending on the plasmodium species.

Mathematical modelling of spread of malaria has attracted constant interest of researchers. A
great deal of papers published during the last three decades are concerned with local and global
stability of equilibria of malaria dynamics. Among numerous results concerned with the existence and
stability of equilibria of malaria dynamics, we would like to mention especially Sir Ronald Ross who
introduced the first deterministic differential equation malaria model in which the human population
was structured as susceptible-Infected-Susceptible (SIS) compartment model and the mosquito. He
showed that bringing a mosquito population to certain threshold was sufficient to eliminate malaria.
Dietz et al. (1974) proposed a model that accounts for acquired immunity in a mass action model.
Macdonald (1957) used a model in which he assumed the amount of infective material to which a
population is exposed remains unchanged and also showed that reducing the number of mosquitoes
is an inefficient control strategy that would have little effect on the epidemiology of malaria in
areas of intense transmission. Bailey (1982) and Aron (1988) models take into account that acquired
immunity to malaria depends on the exposure.

During the last decades, various mathematical models have been used for infectious diseases es-
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pecially for malaria (Ngwa et al.,2000; Olumese, 2005; Sachs, 2002; Tumwiine et al., 2005). Gosh
et al.(1996), studied the environmental effect on a susceptible/infected /susceptible(SIS) model for
bacteria and the spread of carrier-dependent infectious diseases, like cholera, diarrhoea. Castilho
(2006) specifically applied optimal control methods in a simplified susceptible-infective-removed
(SIR) model, to study the best strategy for educational campaigns during the outbreak of an epi-
demic. Xiefel et al.(2007) applied optimal control methods to study the outbreak of severe respiratory
syndrome(SARS) using Pontryagin’s Maximum Principle and genetic algorithm. Jia(2008) formu-
lated and examined a compartmental mathematical model for malaria transmission that includes
incubation periods for both infected human host and mosquitoes. Elsady(2008) studied the mathe-
matical effect of improving the function of the thymus on the viral growth and T cell population of
an HIV-immune dynamic system. Rafikov et al.(2009) formulated a continuous model for malaria
vector with the aim of studying how genetically modified mosquitoes should be introduced in the
environment using optimal control problem strategies. Makinde and Okosun(2011) presented impact
of optimal control strategies on malaria spread with infective immigrants. With a view to preventing
the human-mosquito contacts, it is inevitable to incorporate a class of vigilant humans who adhere
to the malaria vector control measures of the World Health Organization(Obabiyi, Olaniyi, 2016).
All these work did not consider the non-drug compliance problem.

The model we consider in this paper differs from that of previous work because it incorporates a
new class of non-drug compliant human(who are given medication by their doctors and nearly half
do not take the drug or do not take it as prescribed, and most will stop the treatment as soon as they
are feeling better) into the population in order to investigate the role and effect of non-drug com-
pliant humans in malaria spread so as to make decisions in controlling the disease. Thus our model
is based on the susceptible-exposed-infectious-non-drug compliant-recovered(SyEglgIng Ry) in
human population and susceptible-infective(Sy Iy/) for the mosquito vector population. The paper
is organized as follows: In section 2, model formulation is obtained. Section 3 deals with the stability
analyses of the equilibrium solution. Section 4 deals with discussion of results and concludes the
modelling work.

1.1 Compartmental Model Formulation for the Transmission Dynamics of Malaria

The model sub-divides the total human population denoted by Ny, into sub-populations of suscepti-
ble human hosts (Sp ), exposed human hosts, i.e.,those exposed to malaria parasites(Ep ), infectious
human hosts ({f), non-drug compliant human hosts (Iy ) and recovered human hosts (Rp) so that
Ny=Sg+FEg+1Ig+Ing+ Ry.

The total mosquito vector population, denoted by NN, is sub-divided into susceptible mosquito
vectors (Sy), infected mosquito vectors (Iy) so that N, = S, + I,,.

Susceptible humans are recruited at a rate Ag; susceptible humans (Sp) acquire malaria through
contact with infectious mosquitoes (Iy), with which infectious mosquitoes injects sporozoites along
with saliva into small blood vessels(Nakul et al., 2006) and susceptible humans move to the exposed
human compartment (Ep) at a rate %. Exposed humans are those who have parasites in them
and the parasites are in asexual stages. They do not have gametocytes and they cannot transmit
malaria to the susceptible mosquitoes.

The parasites in the exposed human move down to the liver where they undergo nuclear divi-
sion and thousands of them are released into the blood stream as merozoites which develop to
form gametocytes(Nakul et al., 2006). At this stage, the exposed humans move to infectious human
compartment(Iy) at a rate o, Ef. A proportion of infectious humans(/z), who do not comply to
drug move to non-drug compliant human compartment (/) at a rate (1 —0)71y, where (1 —6), is
the proportion of infectious humans who do not comply to drug and 7 is the drug efficacy and the pro-
portion of infectious humans who comply to drug move to the recovered human compartment (R )
at a rate 071y, where 6 is the proportion of infectious humans who comply to drug. Recovered
humans(Ry), after some period of time, lose their immunity at a rate YRy and return to the sus-
ceptible class(Nakul et al., 2006) py is non-drug compliance induced death and p g is the natural
death rate.

Susceptible mosquitoes(Sy ) are recruited at a rate Ay and acquire malaria through contacts with
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Figure 1. Compartmental diagram for malaria model incorporating non-drug compliant human compartment

infected humans(/y) and non-drug compliant humans at a rate %HHNH) Mosquitoes never

recover from infection and suffer death due to natural causes and various control measures.
The model has the following variables and parameters and the unit of time is days:
Let 67 be the portion of infected humans with drug compliance and (1 — )7 be the portion of the
infected humans with non-drug compliance.
S (t) = the number of susceptible human hosts at time t
Eg(t) = the number of exposed human hosts at time t

I (t) = the number of infectious human hosts at time t
I N #(t) = the number of non-drug compliant human hosts at time t
Ry (t) = the number of recovered human hosts at time t

Sy (t) = the number of susceptible mosquito vectors at time t
Iy (t) = the number of infected mosquito vectors at time t
N (t) = total human population 5668123 [Central Intelligence Agency(CIA)] m = %—I‘; = the number
of female mosquitoes per human host
a = the average daily biting rate on man by a single mosquito(infection rate) 0.29/day [Ishikawa et
al.,(2003), Laxminarayan, R.(2004)]
b = the proportion of bites on man that produce an infection 0.75 [Laxminarayan, R.(2004)]
¢ = the probability that a mosquito becomes infectious 0.09 [Kbenesh et al. (2009)]
« = the per capita loss of immunity in human hosts 0.000017/day [Ishikawa et al.,(2003)]
r = the rate at which non-drug compliant human hosts are educated 0.00019/day [Coutinho et
al.,(2005)]
d = the per capita death rate of infected human hosts due to the disease 0.05day~1 [Okosun et
al.,(2011)]
7 = drug efficacy 0.01 — 0.07 [Okosun et al., 2011]
v = the rate of recovery of human hosts from the disease 0.038day ™1 [Aguas et al.(2008), Akbari et
al.(2012)]
Ap = recruitment rate of humans 100/day [Okosun et al.(2011)]
Ay = recruitment rate of mosquitoes 1000/day [Okosun et al.(2011)]
pup = natural death rate in humans 0.00004/day [Nakul et al., 2006]
uy = natural death rate in mosquitoes 0.1429/day Nakul et al.,(1996)]
un = non-drug compliance induced death rate 0.05 [Okosun et al., 2011]
ay = probability of human getting infected 0.8333/day [Okosun et al., 2011]
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1.2 Assumptions of the model (malaria model)

The following assumptions were made in order to formulate the equations of the model:
(a). Exposed humans progress to either become susceptible or infectious.
(b). All mosquitoes are born susceptible.
(c). All humans are born susceptible and there is no vertical transmission.
(d). Mosquitoes never recover from infection, that is, there is no recovered compartment for mosquito
population.
(e). Some infectious humans who take their drugs as prescribed by their doctors(i.e., they complete
treatment) get treated fully and move to the recovered compartment.
(f). Some infectious humans who take their drugs but stop the treatment as soon as they are feeling
better(i.e., they do not complete treatment) get treated partially and move to the non-drug compli-
ant human compartment and when a susceptible mosquito bites them, it becomes infectious.
(g). Some infectious humans who do not take their drugs move to the non-drug compliant human
compartment.
(h). Proportion of active parasites are still in the blood of partially treated humans, (i.e., those who
stop the treatment as soon as they are feeling better). They do not complete treatment.
(i). Infectious humans progress to either become recovered or non-drug compliant.
(j)- Infectious humans who do not comply to drug may either die or survive.
(k). A proportion of susceptible humans is infected by infectious mosquitoes and susceptible
mosquitoes become infected when in contact with a proportion of infectious humans
(1). Recovered humans have some immunity that can be lost and are again susceptible to reinfection.
(m). Infected susceptible mosquitoes are the exposed mosquitoes who are not yet infectious.
Note: Recovery rate corresponds to how quickly parasites are cleared from the human host due to
treatment.

Applying the assumptions, definitions of variables, parameters and descriptions of terms above,
the malaria model is formulated:

ds bSyI
J:AH_M'FVEH‘F’YRH_NHSH (1.1)
dt Ni
dEH abSHIV
= —vEn —awEy —ppE 1.2
at Nu vEhy —ayby — pa kg (1.2)
dl
Tf =By —7lg — 01y — puly (1.3)
dIng
g = A= O0ly —pnIng —r7Ivg — palng (1.4)
dR
TtH =07lg — YRy +r7INg — pg Ry (1.5)
dSy acSv(IH +INH)
— =Av - — S 1.6
dt v Ny v oV (1.6)
dly _ acSy(Ig + Inn)
= —uy T 1.7
dt Ny Hviv (1.7)

2. Stability analysis

2.1 Local stability of disease-free equilibrium

In this section, we state and prove conditions that guarantee local stability of the disease-free
equilibrium FEjy

Lemma 1: If the unique solution of the linearized system decays exponentially and approaches
the equilibrium point Ey and if R,, < 1, then the disease-free equilibrium point FEy is locally
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asymptotically stable.

Proof: The local stability of equilibrium solution of model (1.1)-(1.7) in the absence of infection,
called the disease-free equilibrium is analyzed. In the absence of infection, the model reduces to:

dsS
Tzf = Ay +vRy — puSu (2.1)
dR
TtH =—(v+pu)Ru (2.2)
dsS
Ttv = Av — pv Sy (2.3)

We first solve for the disease-free equilibrium solution by setting the right-hand sides of (2.1)-(2.3)
to zero and the system takes the form

A +~Rpg — pgSg =0 (2.4)
—(y+pu)Ry =0 (2.5)
Ay —uySy =0 (2.6)

Solving for the equilibrium points yields

H Ay
E,= (2 0,2 2.7

We next solve the system to know if the unique solution of the system (2.1)-(2.3) is approaching the
equilibrium solution in the future(i.e. as ¢ grows large).

From (2.2),
dRy
T —(v+ pu)Ru
Solving this, we have
Ry = Rye~Ortun)t (2.8)

where Ry (0) = RY,.
This shows that the recovered human is approaching the equilibrium solution as t approaches
infinity. From (2.1) and (2.8), we have

ds
df = Ay +yRge” )t — g Sy
which implies
A A
Sy =2 _ Ry Ortmt 4 (go 4 poye—pt (2.9)
HH HH

where S (0) = 5. This shows that the susceptible human decays exponentially. Now, for mosquito
population, we have from (2.3)

Ay Ay
Sy = — + (Sf, - —
Ho Ky
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We have established that the disease-free equilibrium point Ey is locally asymptotically stable.
Next we find R,,. But before then, it is easier to analyze our model in terms of proportions of
quantities instead of actual population. This can be done by scaling the population of each class
by the total species populations. To do this, we first determine the total population sizes by Ny =
Sg+ Eg+1Ig+ Iyg+ Ry and Ny = Sy + Iy or from the differential equations

dNg

T Ag — pgNyg —0lg — pnIng (2.11)
dN
Tltv = Av — Nyuy (2.12)

which are derived by adding Egs. (1.1)-(1.5) for the human population and (1.6) and (1.7) for
mosquito vector population. Now we do the scaling by making the transformation

SH . By . _Im . _Ing__ Ru Sy . Iy Ny

Sp = Ep = —/— _
Ny

=Sy = = ——; M= ——
NH7U NV7U NV’ NH

in the classes Sy, Er, I, Inmg, R, Sy and Iy in the population respectively. This is done by dif-
ferentiating the fractions with respect to time ¢ and simplifying as follows:

= — | — —§5,——

dt ~ Ny | dt dt

= A\, — abmspiy +vep +yrh — PHSK — ApSh + BHSKH + 0Spin + N Shinh

dsp, 1 [dsH dNH}

= M1 — sp) — abmspiy + vep + yrp + 0spin + UNShinh
dey, 1 [dEg Ny
Ut M_ﬁ_%ﬁ}

= abmspiy, — (V + ay + A\p — dip, — UNinn)en
dip, 1 [dIg . dNH]

—_— = — | — —

dt ~ Ng | dt dt
= apep — (T 4+ 6 + My + uninn)in + 0i2
dippn _ L (dIng i dNg
dt ~ Np | dt nh

= (7' — HT)ih — (T’T + )\h)inh + (%hinh
% 1 —dRH dNH:|

= |~ —Th———

dt ~ Ny | dt dt
= 07ip — (Y + Ap)Th + rTipn + 0TRin + UNTHInR
dsy 1 [dSy dNy
o |- s
= \(1 — 8y) — acsv(ip + inp)
di, 1 [dly dNV}

it Ny | dat U dt

= acsy(in + inn) — Aoly

subject to the restrictions sy + e, + ip + inp + 7, = 1 and s, + i, = 1. Using the relations r, =
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1—sy —ep—ip —iny and s, = 1 — 1, lead to system

d
% = A (1 — sp) — abmspiy + vep + Y1y + ISpin + UNShink
(2.13)

dep, . . .

= abmspiy — (V + oy + Ap, — 0 — UNTnp)eR (2.14)
dih . . )

’ = apep — (T 4+ 0+ A\ + puNinn)ip + 0i, (2.15)
dip, , . .

g = (7= 0m)in — (r7 & AnYinn + Sininn (2.16)
diy , . . ‘ .

i acip(1 —iy) + acipp (1 — iy) — Ay (2.17)

in the feasible region (i.e. where the model makes biological sense) T' = {(sp, €p, in, inh, iv) € R :
0<sp,0<s,,0<en0<ip0<iy<1sp+e,+ip+in <1,0<i, <1} that can be shown to be
positively invariant with respect to the system(2.13)-(2.17) where R% denotes the nonnegative cone
of R’ including its lower dimensional faces. We denote the boundary and the interior of T by OT
and T respectively. Equilibrium points are obtained by setting the right hand-sides of (2.13)-(2.17)
to zero and the system takes the form

M (1 = sp) — abmspiy + vep + yrp + dSpin + N Spiny = 0 ( )

abmspiy, — (Vv + ay + A\p — 0ip, — pNinn)en =0 ( )

awen — (T 46 4 A\ + puninn)in + 6iz =0 (2.20)

(1 —071)ip, — (r7 + Ap)inn + Oipiny =0 ( )

acip(l —iy) + acipn(l —iy) — Ayiy =0 ( )

The model has a steady state, Fy, called the disease-free equilibrium where Ey = (1,0,0,0,0). We
obtain the reproductive number R,, by expressing (2.13)-(2.17) as the difference between the rate

of new infection in each infected compartment F and the rate of transfer between each infected
compartment G.

Note: R,, is defined as the number of secondary infectious cases produced by one primary
case introduced into an entirely susceptible population at the disease-free equilibrium.

- deh -
t . . .
c?%h abmsyi, (v + ay + Ap — 0ty — UNinn)eR
E —F_C=— 0 B —av.eh + (T +6+ A, + ,UJN.Z'nh)Z'h —I— (5%%
dinp, 0 —Tip + 0711y + (tau + /\h)znh + Oipinh
dt acSy (Zh + Znh) Aviy
Ly
e

The Jacobian matrices Jr and Jg of F and G are found about Ej.

0 0 0 0 ]
0 0 0 %
S=Jplg' = 0 0 0 ig
abm abmay, B abmaou, (0 — 1) !

v+ ay+ Ay Hr(v+ay+ ) (r7+ M) Hr(v + ap + Ap) i
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Ry, is the maximum eigenvalue of S given as

Ka? —0
:M,WhereHT:T—l—é—l—)\handK: O (r7 =07+ 7+ An)

R .
m Hr ), (vrT + r7ag + 17T AL + VAL + QA + )\,QL)

Since the unique solution of system (3.1)-(3.3) decays exponentially and R, < 1, the disease-free
equilibrium is locally asymptotically stable.

2.2 Local Stability of Endemic Equilibrium FE;

For the existence and uniqueness of endemic equilibrium Ey = (s}, ey, i}, ,1;), its coordinates
should satisfy the conditions sy > 0,e; > 0,45 > 0,4%, > 0,45 > 0. Adding Eqgs. (2.18)-(2.22), we
have

ML 85— ¢, — i, — i2y) 71— 85, — €], — i}, — %) — Dif(L— s — e — i}, — i) + il (s — i —
iy —ir,) +aciy (1 —iy) + aciy, (1 —iy) — O1iy — r7il, — Ayiy =0

From Eq.(2.22), acij (1 — i) + aci}), (1 —iy) — Apisy, = 0 and puyi*nh(s; — e —i;) = 0. This
gives

(I—sy —ep —ip —ir) A+ —dip) —01iy —r7ir, =0
(I—sy —ep —ip —ir,) (A +y —6i)) = 01iy —r7i,

since sj > 0,e; > 0,73 > 0,7y > 0 and 7} = 1 —e; —i; — iy, > 0. Also since § > 0,7 > 0 and
iry, >0, then A\ +v — 3%, >0, =dif > —(A\p +7), 6if < (A +7).

Dividing through by 4 gives i; < @. Thus, an endemic equilibrium point exists, where 7} lies in
the interval (0, min {1, %}) & < Ap + 7y is of significant importance and plays a great role when

malaria persists. It shows that mortality rate due to malaria should be less than that at which the
susceptible human population is refilled due to birth and loss of immunity to malaria.

In order to analyze the stability of the endemic equilibrium, the additive compound matrices
approach as in [Mouldowney,(1990); Li et. al.,(1995)] is used. We first compute the Jacobian matrix
Jg of (2.18)-(2.22). At the steady state, the Jacobian matrix is given by

Uy, v—v —y+dsy —y+ unsp,  —abmsy
abmi, Vs dep, LNER abmsy,
JE = 0 Oy \113 —,U,Nih 0 (2.23)
0 0 T—QT+(5inh —()\h—f—T’T—(Sih) 0
0 0 ac(l —iy) ac(l —i,) Wy

where

Uy = —(Ap + 7 + abmiy, — ip — pNing)
Uy = —(V+ A\ + ay — UNInp — Oip)

W3 = —Hrp 4 20ip — piNinh

Uy = —\, — aciy, — aciyy,
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From the Jacobian matrix, the first additive compound matrix is given by

—(K—46i%) 0 0 0 0
0 —(M-—éi) 0 0 0
Ji = 0 0 —(N+26i5) 0 0 (2.24)
0 0 0 —(F=46i%) 0
0 0 0 0  -E

where K = A\, + v + abmi, + pniy,, M = Ay +v + oy + puniy,, N = Hp 4+ pniy,, F = A\ —r7,
E = aciy + aciy, — Ay.

The following lemma stated and proved in McCluskey and Van den Driessche [McCluskey et.
al.(2004)] is used to demonstrate the local stability of endemic equilibrium point Fj.

Lemma 2: Let M be a 5 x 5 matrix. If tr(M), det(M), and det(M!1) are all negative, then
all eigenvalues of M have negative have negative real part.

Proof. From the Jacobian matrix Jg in Eq.(4.0.19), we have
tr(Jg,) = —An — vy — abmiy, + §iy + uning, — v — Ay —  + uning, + 0iy, — Hp + 257,
—UNTrny, — A — T+ 0ip — aciy — aciy, — Ay

=461y — 3\, —y —abmi,, — Hp — Ay — v — ayy + pni*nh

—rT — aciy, — aciy,, < 0 (2.25)

In order to determine det(Jg, ), the following simplified form of equations of system (2.18)-(2.22) is
used:

CAntvep (1 =€) — iy —iny)

= = —(An + + abmiy, — 8if, — pnipy,)
h
b i
ST (0 — 8 — i)
e
h
(2.26)
Kx
—Hr + 200, — pNinp = =~ + 0l — N, (2.27)
h
U* ~ 3k
T — i) = — 2 h (2.28)
2
S*
— A — aciy, — aciyy, = ——— (2.29)
’L'U
N*
ac(l —1iy) = - (2.30)
h
Z*
h

where K* = ayep — pnty,, U* = 1—0, 8" = acij + aciy,, N* = A\, + aciy iy — aciy,, Z* =
(r7 4 An)ik, [ ]

aciy (1 —43) + aci, (1 — i)

*
Z’U

Note: )\, = is used to get (2.30)
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So from the Jacobian matrix Jg, and the simplified expressions (2.26)-(2.32), we have

Vi v—v —vy+ds; —y+uns; —abms;

abmiy, U3 dey, uNes abmsj,
det(Jg,) = 0 Qy w3 —UNiy, 0 (2.32)
0 0 r—0r+dir, U 0
0 0 ac(l —d%) ac(l—1d) W
where
1 =—(An+ v+ abmiy, — iy — pning)
U5 = —(vV+An + ap — Ny, — 0ip)
U3 = —Hrp + 255 — uning,
Uy = —(A\p +r7 — 01j)
Vs = —\, — acij — aciy,
% Vb—’y ' — + s}, —y + punsy, —abms}"l-
abmaiy, —% dey uNey, abmsj,
€h
0 Qy 5 *,uNZ'Z 0
o0 2 TA o
i i
h
N N* 5"
0 0 n Tl o
L th p 2
where
T — ~ An e + (1 —ep — i — i)
1 ST
Uy = ——— + 0ij, — (N,
th
1
det(Jg,) = — E(Ah + v — 6i}) | (Apabms}it + Babmsjel, + Coanel? + Da*b*m?*si?eritay,)
(2.34)
where

A = sifPdru+ sitzunity, + siiikTu — apelzitnit — aypelzitn — apelnuTil?

B = itsifPdvru — itsifPitvzun — ihsitikoru — insiioydru + it sitiyit, zun + iksitiykTu
— S} in Qi) SsTud + Zvavwh STU — S} im0 Ziy iy SIN + 1,00 200 Y1}, S

C = —6uri}®s — zi’uNsif,

D = zi¥,n + nuti}?

G = sierizit i

A +vep +y(1 —ep —iy — i)

*
Sh

o=
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Since § < Ap+7, the det(Jg, ) is negative. From the first additive compound matrix J J[Ell], det(J 1[911]) <0
is demonstrated as follows:
For the endemic equilibrium point Ey = (s}, ejiy, i, ,0y), let P = diag(s}, ey, i},4",,1%) be the

diagonal matrix. Then the matrix J 1[911] is similar to the matrix given by

—(K—6if) 0 0 0 0
0 —(M—éi) 0 0 0
PglP1= 0 0  —(N+285) 0 0
0 0 0 —(F—6i}) 0
0 0 0 0 -E

Since similarity preserves the eigenvalues, then matrix J g] is stable if the matrix P.J 1[51} p~ 1 is stable.

1 1
This can be done by examining if the matrix PJ E}IP_l is diagonally dominant in rows, since its

diagonal elements are negative

hi = —(Ap + v — 3835, + abmi, + uniny,) ( )
ha = —(An + v — ay + iy, — 0i) (2.36)
hs = —(Hr + uni,; — 20iy,) (2.37)
hy = —( (2.38)
hs = —( (2.39)

Ap — T — diy)

aciy + aciy, — Ay)

Clearly, all values hi, ho, hs, ha, hs < 0 and so all the diagonals are negative. Thus from Lemma 2,
the system has a local stability at the endemic equilibrium point.

3. Discussion

We propose a model with incidence of dynamics of malaria within human hosts and mosquito vectors
in which the class of the non-drug compliant human hosts is incorporated into the system, which is
the portion of the infective who do not take their drug or stop taking it as soon as they are feeling
better. The class of the recovered human is refilled by the individuals who are educated to take their
drug with proper follow-up and the infected individuals who comply to drug. The model was then
reformulated in terms of the proportions of the classes of the respective populations. Model analyses
were carried out. Disease-free and endemic equilibrium solution were obtained and their stability
was analysed respectively.

It was established that for the unique solution of the system to approach the disease-free equi-
librium solution exponentially and basic reproduction number, Ry < 1, the disease-free equilibrium
is locally asymptotically stable so that the disease always dies out, and if Ry > 1, the disease-free
equilibrium is unstable. We observe that in order to reduce the basic reproduction number below
1, intervention strategies need to be focused on treatment and reduction on the contact between
mosquito vector and human host.

Since non-drug compliant human compartment increases the rate of spread of malaria in the
society, there is need to increase the parameter r which reduces the number of non-drug compliant
human compartment. There is also need for treated bed nets and insecticides that would reduce the
mosquito population.
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