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Abstract. Dynamic time series models were developed with the regular white noise assumption of the error
terms. This has often time led to unreliable estimates of parameters and unrealistic forecast performance
when the underlying data are not normally distributed. This paper therefore developed an Autoregressive
model of order 2 [AR(2)] with Power-Exponential and Lognormal error innovations. The parameters of
AR(2) with asymmetric error innovations were derived using Maximum Likelihood Estimation technique
and its performance over the normal error innovations compared using the Akaike information Criterion
(AIC) and forecasts performance criteria (the RMSE and MAE). Simulated data of various sample sizes
and real data sets were used to validate the models. The results show that AR(2) with lognormal and
exponential power error innovations are more appropriate and more efficient in modeling non normal time
series data.
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1. Introduction

Most of the robustness theories have concentrated on the development of robust statistical proce-
dures for the case where the observations are independent [20]. He said the theory on robustness in
time series setting has received less concentration, which is probably due to the increased technical
problems imposed by serial dependence in the data.

Martin [15] gave an overview of robust methods for time series. Some of the important develop-
ments of robust statistical procedures in the time series setting may be found in [11, 15, 16]. Sanjoy
[20] in his paper developed some robust methods for analyzing real time series data, where ordinary
classical methods fail to give satisfactory results in the presence of influential observations.

Kuersteiner [12, 13] developed efficient instrument variable estimators for autoregressive and mov-
ing average (ARMA) models and autoregressive model of finite order AR(p). Goncalves and Kilian
[4] used bootstrapping method to make robust inference in AR(p) and AR(1) model with unknown
conditional heteroscedasticity. These methods and results rely on the assumption that conditional
variance of error is constant over time. Unconditional homoscedasticity seems unrealistic in practice,
especially in view of the recent emphasis in the empirical literature on structural change modelling
for economic time series. To accommodate model when there are a finite number of step changes,
[22] investigated the AR (1) model when there are a number of step changes at unknown time point
in the error variance. These authors used iterative maximum likelihood method to locate the change
points and then estimated the error variance in each block by averaging the squared least squares
residuals. The resulting feasible weighted least square was shown to be efficient for the specific model
considered. Alternative methods to detect step changes in the variances of time series model have
been studied by [1, 21, 18, 14, 2, 3].

In practice, the pattern of variance changes over time, which may be discrete or continuous, is
known to the econometrician and it seems desirable to use methods which can adapt for a wide
range of possibilities. Accordingly, this research work attempts to develop a robust procedure to
estimate parameters of autoregressive model AR(2) in the presence of assumption violation.
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2. Theory and methods

Robust statistics is concerned with the fact that many assumptions commonly made in statistics are
not exactly true; they are mathematically convenient rationalizations of an often fuzzy knowledge
or belief ([9] cited in [20]). The important pioneering work of [7] on the robust estimation of a
location parameter is considered to be the basis for a theory of robust estimation. Some of the
robust techniques are discussed in [9, 6]. Huber [10, 8] extended his results on robust estimation of
a location parameter to the case of linear regression. Some of the recent research works in robust
techniques are discussed as follows.

[22] investigated AR(1) model when there are a finite number of step changes at unknown time
points in the error variance. He used iterative Maximum likelihood methods to locate the change
point and then estimated the error variance in each block by averaging the squared least squared
residual. His result showed to be efficient for the specific model considered.

Gudio [5] developed a new class of instrumental variables (IV) estimators for linear processes and
in particular ARMA models. Previously, he used IV estimators based on lagged observations as
instruments to account for un-modelled MA (q) errors in the estimation of the AR parameters. In
his findings it was showed that these IV methods can be used to improve efficiency of linear time
series estimators in the presence of un-modelled conditional heteroskedasticity. He said estimators
based on a Gaussian likelihood are inefficient members of the class of IV estimators analysed when
the innovations are conditionally heteroskedastic.

[4] used Standard residual-based bootstrap procedures for dynamic regression models and treat the
regression error as independent and identically distributed. The procedures are invalid in the presence
of conditional heteroskedasticity. Also they proposed three easy-to implement alternative bootstrap
for stationary autoregressive processes with Martingale Difference Sequence (M.D.S.) errors subject
to possible conditional heteroskedasticity of unknown form. The proposals are; the fixed-design wild
bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study,
it was found out that all the three procedures tend to be more accurate in small samples than
the conventional large-sample approximation based on robust standard errors. In contrast, standard
residual-based bootstrap methods for models with independent and identically distributed errors
may be very inaccurate if the assumption is violated. They concluded that in many empirical appli-
cations the proposed robust bootstrap procedures should routinely replace conventional bootstrap
procedures based on the independent and identically distributed error assumptions.

Phillips and Xu [19] considered stable autoregressive models of known finite order with martingale
differences errors scaled by an unknown nonparametric time-varying function generating heterogene-
ity. He developed kernel-based estimators of the residual variances and associated Adaptive Least
Squares (ALS) estimators of the autoregressive coefficients. These are shown to be asymptotically
efficient, having the same limit distribution as the infeasible Generalized Least Squares (GLS). Com-
parisons of the efficient procedure and Ordinary Least Squares (OLS) reveal that least squares can be
extremely inefficient in some cases while nearly optimal in others. Simulations show that, when least
squares work well, the adaptive estimators perform comparably well, whereas when least squares
work poorly, major efficiency gains are achieved by the new estimators.

Wang et. al. described an approach for a robust inference in parametric models that is attractive for
time series models. Data from the postulated models were assumed to be measured with sporadic
gross errors. It was shown that the tails of the error-contamination model kernel controlled the
influence function properties (unbounded, bounded, re-descending), with heavier tails resulting in
greater robustness. The method was studied first in location-scale models with independent and
identically distributed data, allowing for greater theoretical development. In the application to time
series data, they proposed a Bayesian approach and use Markov chain Monte Carlo methods to
implement estimation and obtained outlier diagnostics. Simulation results showed that the new
robust estimators are competitive with established robust location-scale estimators, and perform
well for ARMA (p, q) models.

This research work attempts to use Maximum Likelihood Method in estimating the parameters of
autoregressive model in the presence of assumption violation. Also estimate of parameters of AR(2)
model with normal, exponential power, and lognormal error innovations will be derived. Simulated
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and real data were used to validate the models and comparative analysis based on their AIC and
forecast performance was carried out.

3. Estimation of parameters

3.1 Estimation of parameters of AR2 with Exponential power error innovations

This is also known as generalized normal distribution. It allows β and σ to be any positive real num-
bers and µ to be any real number. If G is a random variable from a power exponential distribution,
its probability density function is given by the following

f(g, µ, σ, β) =
1

σΓ
(

1 + 1
2β

)
2

(
1+ 1

2β

) exp

{
−1

2

∣∣∣∣g − µσ
∣∣∣∣ 2β} (3.1)

−∞ < µ <∞ and σ > 0

Where σ2 scale parameter, β is the shape parameter and µ is the location parameter. If Xt follows
autoregressive model of order two AR (2), we have

Xt = φ1Xt−1 + φ2Xt−2 + εt

εt = Xt − φ1Xt−1 − φ2Xt−2

When error is no longer white noise, using AR (2) with power exponential error innovations, we
have

f(εt) =
1
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Taking the likelihood of equation (3.2), we have
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The log likelihood is as follows
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Differentiate (3.3) with respect to φ1, φ2, σ and β we have

∂ log
∏n
i=1 f(εt)

∂φ1
=
β

σ
Xt−1

n∑
t=3
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Equation (3.4) and (3.5) has no close form but if β = 1 the solution can be obtained. From equation
(3.3)

∂ log
∏n
i=1 f(εt)

∂φ1
= −

n

σ
+
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(
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Multiply both sides by σ
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When β = 1, equation(3.7) becomes
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From equ.(3.8), let us consider
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If log is introduced to both sides of equ (3.9) we have
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By putting (3.10) into (3.8) we have:
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Equation (3.3), (3.4) and (3.11) are solved iteratively using numerical method to obtain maximum
likelihood estimates of β, φ1 and φ2 because there is no close form solution for the parameters.

Equation (3.7) has been solved analytically to obtain σ2. When β = 1, it becomes σ2 =
n∑
t=3

|Xt−φ1Xt−1−φ2Xt−2|2

n i.e. the variance of AR(2) with normal error term.
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3.2 Estimation of parameters of AR2 with lognormal error innovations

In probability theory, a lognormal distribution is a continuous probability distribution of a random
variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally
distributed, then Y = ln(X) has a normal distribution.

If x is a random variable from a generalized normal distribution, its probability density function
is given by the following

f(x;µ, σ) =
1

x
√

2πσ2
exp

{∣∣∣∣ lnXt − µ
σ

∣∣∣∣} −∞ < µ <∞ and σ > 0 (3.12)

Where σ2 is the scale parameter and is the location parameter, x is a random variable. If Xt follows
autoregressive model of order 2 AR(2), we have

Xt = φ1Xt−1 + φ2Xt−2 + εt,

lnXt = φ1lnXt1 + φ2lnXt−2 + ln lnεt (3.13)

Let lnXt = X∗t

X∗t = φ1X
∗
t−1 + φ2X

∗
t−2 + εt,

∗

ε∗t = X∗t − φ1X
∗
t−1 − φ2X

∗
t−2 (3.14)

f(ε∗t ) =
1

Xt

√
2πσ2

exp

{
−1

2

∣∣∣∣ε∗tσ
∣∣∣∣2
}

(3.15)

Put (3.14) into (3.15), we have
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By taking the likelihood function of equation (3.16), we have
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By taking the Log likelihood function of (3.17), we have
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By differentiating (3.18) with respect to σ2, φ1 and φ2 we have
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Multiply through by 2σ4
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Substituting equation (3.24) into (3.23) to obtain estimate of φ1 we have
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(3.25)

The above derivation has a closed form solution therefore the estimates can be obtained using the
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equations (3.20), (3.24) and (3.25).

4. Results and discussions

The summary statistics of the 180 data points were calculated and plotted in charts and diagrams
as a form of data cleaning exercise given in table (3.1) below. The data used in validating these

Table 1. Descriptive Statistic

MIN 1st QU MEDIAN MEAN 3rd QU MAX
96.96 107.8 118.5 128 142.6 216.6

models is import commodity price index obtained from Central Bank of Nigeria Statistical Bulletin.
AIC/BIC criterion was used to determine the suitable order for the model as seen in Table (2) below.
Table (3) with p-value 2.365e− 12,

Table 2. Order Determination Criterion

AR AIC BIC
1 985.5 991.9
2 947.6 957.2
3 949.6 962.4
4 950.4 966.4
5 952.1 971.2
6 952.7 975
7 952.9 978.5

Source:Source: R statistics software

Table 3. Shapiro-Wilk Normality Test

Name of the test: Shapiro-Wilk Normality Test
Data: 180
Test statistic: 0.84935
P-value: 2.37E-12

Figure 1 and Figure 2 show that some values stand out in the data set which indicates that there
are outliers in the data set.

Table 4. Estimation of parameter of AR (2) with normal error innovations

Coefficient Estimate Standard error t-value Pr(> t)
φ1 0.4662 0.0666 7.0004 2.552e-12 ***
φ2 0.4606 0.0671 6.7175 1.849e-11 ***

log likelihood = -726.19 : AIC = 1460.38

Signif. codes: 0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘’1

Source: R Statistics software

Table 5. Estimation of parameter of AR(2) with power exponential error innovations

Coefficient Estimate Standard error t-value Pr(> t)
φ1 0.4994 0.2288 2.182 0.0291
φ2 0.5006 0.2288 2.188 0.0289

log likelihood = -145.8869 : AIC = 301.7738

Signif. codes: 0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘’1

Source: R Statistics software

Tables (4) to (6) presented the estimate of parameters of Auto-Regressive model of order two and
AIC of each model. It was shown that Log normal with AIC = −674.384 appear to be the best
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Figure 1. Box plot of price index of import commodity in Nigeria between 2000 and

Table 6. Estimation of parameter of AR(2) with log normal error innovations

Coefficient Estimate Standard error t-value Pr(> t)
φ1 0.4687469 0.0082090 57.10 < 2e− 16
φ2 -0.4310135 0.0082090 -52.51 < 2e− 16

log likelihood = 890.6804: AIC = -674.384

Signif. codes: 0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘’1

Source: R Statistics software

model with minimum AIC, this is followed by AR2 with power exponential error innovation with
AIC = 1446.328, normal error innovation has the least AIC = 1460.38. It could be deduced that Log
normal and power exponential distribution is superior to normal distributions in terms of dynamic
model fitting.

Table 7. Summary of Results

Distribution AIC Log lik
Normal 1460.38 -726.19
Power exponential 1446.33 -719.16
Log normal -674.38 340.192

From Table (7), it was observed that Log normal error innovation performed best followed by
power exponential error innovations and normal error innovation perform least with non-normal
data judging from their AIC.

5. Forecast performance

From Table (8), the error measures of each indicated that power exponential error innovations is the
most efficient model for forecasting with the least RMSE and MAE followed by Log-normal error
innovation while normal error innovation is the least efficient judging from the error measures.
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Figure 2. QQ plot of price index of import commodity in Nigeria between 2000 and

Table 8. Error Measures

INNOVATIONS RMSE MAE
NORMAL 7.6795 5.1828
POWER EXPONENTIAL 7.0418 4.7574
LOG NORMAL 7.2688 4.767

RMSE → Root Mean Square Error
MAE→ Mean Absolute Error

6. Conclusion

The focus of this paper was to develop an Autoregressive model of order 2 [AR(2)] with Power-
Exponential and lognormal error innovations. The parameters of AR(2) model with asymmetric
error innovations were derived using Maximum Likelihood Estimation technique, and the perfor-
mance of the model over the normal error innovations was compared using the Akaike Information
Criterion (AIC) and forecasts performance criteria (the RMSE and MAE). Based on these criteria,
the results showed that AR(2) models with lognormal and exponential power error innovations are
more appropriate and efficient in modelling non normal time series processes.
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