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Abstract. The use of multiple auxiliary characters like auxiliary attributes and variables has been con-
firmed to improve the efficiency of estimators in two-phase sampling. The three ways of utilizing auxiliary
characters (full, partial and no information cases) have provided flexibility in its usage of these auxiliary
characters. In this article, we have proposed two additional partial information cases (PIC-II and PIC-III)
to the existing partial information case (PIC-I) of using multi-auxiliary attributes and variables in two-
phase sampling. The estimator schemas were introduced to the five estimators for the purpose of estimator
formation. It was ascertained that our two proposed estimators PIC-II and PIC-III were efficient over the
existing partial information case estimators (PIC-I) subject to the conditions of availability of the number
of auxiliary variables and auxiliary attributes in the PIC-I estimator. The condition under which PIC-II
is equally efficient as PIC-III was established. However, we subject the use of PIC-II or PIC-III to the
availability of auxiliary variables and auxiliary attributes. Finally, our proposed estimators proved efficient
over No Information Case (NIC) estimator in our review.

Keywords: partial information case, mixture ratio estimator, two-phase sampling, auxiliary attributes, auxiliary
variables.

1. Introduction

Amongst the survey statisticians, the use of auxiliary information has been established and been in
use towards improving the estimation on the study variable. The use of auxiliary information is highly
recommended when there is high correlation between the study and the auxiliary variables. Two-
phase sampling, among other sampling techniques, maximizes the advantages of auxiliary variable
(utilization of auxiliary information). Neyman (1934, 1938) initiated the use of auxiliary variable
at the pre-selection stage while Cochran (1940) first coined ratio estimator at the post-selection
stage. The use of ratio estimator in two-phase sampling towards estimating the study variable
uses the auxiliary information at the post-selection or estimation stage. Olkin (1958) pioneered the
application of highly correlated multi-auxiliary variables (more than one auxiliary variable) in ratio
estimation method with improved result over no auxiliary or one auxiliary variable.

Ahmad et al. (2013) summarized the works of Tripathi (1970) and Das (1988) into four ways which
auxiliary information may be available in two-phase sampling (availability of auxiliary information).
Among these four ways are when exact values of the parameters are not known but their estimated
values are known (called No Information Case) and the values of one or more parameters of auxiliary
variables may be known (called Full Information Case). Samiuddin and Hanif (2007) introduced the
third information case called Partial Information Case (PIC) which is the combination of both full
information and no information cases into ratio and regression estimation methods. These three
cases provide the flexibility in the usage of auxiliary information depending on the various forms of
availability of such auxiliary variables.

A new auxiliary character about the population could be dichotomous property (present or absent)
which also highly correlated with the study variable. The use of such dichotomous character, called
auxiliary attribute, in Sample Survey has revealed improvement on the estimation of the study
variable. Bahl and Tuteja (1991), Jhajj et al. (2006), Rajesh et al. (2007), Hanif et al. (2009) and
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Moeen et al. (2012) are among the literatures that have utilized auxiliary attributes to obtain
improved estimators over the singular use of auxiliary variable and over non-usage of auxiliary
variable. Mixture estimator uses the combination of auxiliary variables and attributes towards the
improvement of an estimator. Waweru et al. (2014) proposed generalized mixture Ratio estimators in
two-phase sampling with the combination of multiple auxiliary variables and attributes following the
prior three ways of the availability of the auxiliary variables (Full, No and Partial Information Cases)
as established by Samiuddin and Hanif (2007). Waweru et al. (2014) estimators gained efficiency
over the prior reviewed estimators of Hanif et al. (2009).

Considering the partial information case established by Waweru et al. (2014), this article considers
two additional cases of such partial information cases to make up three partial information cases
(PIC-I, PIC-II and PIC-III). Consequently, there are five information cases subject to the inclusion
of full and no information cases. The estimator schema for the five information cases were intro-
duced and the corresponding mean square errors were established following Arora and Bansi (1989)
approach of presenting mean square error.

2. Preliminaries

2.1 Notation and assumption

Considering N as the population size and n1 and n2 as the first and second phase sample sizes
(simple random without replacement) respectively for where n1 > n2. Hence, presenting

θ1 =

(
1

n1
− 1

N

)
; θ2 =

(
1

n2
− 1

N

)
; for

(
θ1 < θ2

)
(2.1)

Let x(1)i and x(2)i be the ith auxiliary variable at the first and second phase sample respectively. y2

be the study variable at the second phase sample. Then

y2 =

(
Y + ey2

)
;x(1)i =

(
Xi + ex(1)i

)
;x(2)i =

(
Xi + ex(2)i

)
; for i = 1, 2, · · · , p (2.2)

where ey2, ex(1)i and ex(2)i are the mean sampling errors and are very small, such that

E
(
ex(1)i

)
= E

(
ex(2)i

)
= 0; (2.3)

Similarly, considering τij as a complete dichotomous property about the population which is pre-
sented as

f(x) =

{
1 jth unit of population possessing ith auxiliary attributes

0 Otherwise
(2.4)

τj = value of jth auxiliary attribute with the assumption that the complete dichotomy is recorded for

each attribute. Let Aj =
∑N

j=1 τij and aj =
∑n

j=1 τij be the total number of units in the population

and sample respectively possessing attribute τj. Let Pj = Aj
N and pj = aj

n be the corresponding
population and sample proportion possessing attribute τj. Similarly,

p(1)i =

(
Pi + eτ(1)i

)
; p(2)i =

(
Pi + eτ(2)i

)
; (2.5)

for E
(
eτ(1)i

)
= E

(
eτ(2)i

)
= 0; (2.6)

and C2
y =

S2
y

Y
2 ; C2

τ1 = Sτ 2
1

P 2 ; ρyx = Syx
SySx
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2.2 Some other useful results

Similarly, the following results are also necessary in establishing the mean square errors of our
proposed estimators.

E
(
ey2

)2
= θ2Y

2
C2
y ; E

(
ex(2)i

)2
= θ2X

2
iC

2
xi ; E

(
ey2ex(2)i

)
= θ2Y XiCyCxiρyxi

E
(
ey2

(
ex(1)i − ex(2)i

))
=
(
θ1 − θ2

)
Y XiCyCxiρyxi

E
(
ex(2)i

(
ex(1)i − ex(2)i

))
=
(
θ1 − θ2

)
X

2
iC

2
xi

E
(
ex(1)i

(
ex(1)i − ex(2)i

))
= 0

E
(
ex(1)i − ex(2)i

)2
=
(
θ2 − θ1

)
X

2
iC

2
xi

E
((
ex(1)i − ex(2)i

)(
ex(1)j − ex(2)j

))
=
(
θ2 − θ1

)
XiXjCxiCxjρxixj for i 6= j

E
(
ex(1)iex(1)j

)
= θ1XiXjCxiCxjρxixj for i 6= j

E
(
ex(1)iex(2)i

)
= θ1XiXjCxiCxjρxixj for i 6= j

E
(
ey2ex(1)i

)
= θ1Y XiCyCxiρyxi

E
(
eτ(1)i − eτ(2)i

)2
=
(
θ2 − θ1

)
P 2
i C

2
τi

E
(
ey2eτ(2)i

)
= θ2Y PiCyCτiρyτi

E
(
eτ(2)i

(
eτ(1)i − eτ(2)i

))
=
(
θ1 − θ2

)
P 2
i C

2
τi

E
(
eτ(2)ieτ(2)j

)
= θ2PiPjCτiCτjρτiτj for i 6= j

E
((
eτ(1)i − eτ(2)i

)(
eτ(1)j − eτ(2)j

))
=
(
θ2 − θ1

)
PiPjCτiCτjρτiτj for i 6= j

E
(
eτ(2)i

(
eτ(1)j − eτ(2)j

))
=
(
θ1 − θ2

)
PiPjCτ iCτ jρτiτj for i 6= j

According to Arora and Bansi (1989)

(
1−

[∑q
i=1

(
− 1
)i+1

∣∣∣Ryxi∣∣∣
yxq
ρyxi∣∣∣R∣∣∣

xq

])
=

∣∣∣R∣∣∣
yxq∣∣∣R∣∣∣
xq

=

(
1− ρ2

y.xq

)

2.3 Mixture ratio estimator in two-phase sampling

2.3.1 Full Information Case (FIC)

Waweru et al. (2014) established the estimated population mean of a generalized mixture Ratio
estimator in two-phase sampling using multi-auxiliary variables and attributes when information
on all the auxiliary variables and attributes are available from the population. This is called Full
Information Case (FIC) and presented as

t1 = y2

k∏
i=1

(
X̄i

x̄(2)i

)αi q∏
j=k+1

(
Pj
p(2)j

)βj
(2.7)

The corresponding Mean Square Error (MSE) is presented as

MSE
(
t1
)

= θ2Ȳ
2C2

y

(
1− ρ2

y.xk
− ρ2

y.τq

)

MSE
(
t1
)

= θ2Ȳ
2C2

y

(
1− ρ2

y(x,τ)q

)
(2.8)

2.3.2 No Information Case (NIC)

When the population information of all the auxiliary variables and attributes are not available,
hence, the estimated population mean of the mixture ratio estimator using multi-auxiliary variables
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and attributes in two-phase sampling is presented by Waweru et al. (2014) as

t2 = y2

k∏
i=1

(
x̄(1)i

x̄(2)i

)αi q∏
j=k+1

(
p(1)j

p(2)j

)βj
(2.9)

The corresponding Mean Square Error (MSE) is given as

MSE
(
t2
)

= Ȳ 2C2
y

(
θ2 + (θ1 − θ2)ρ2

y.xk
+ (θ1 − θ2)ρ2

y.τq

)

MSE
(
t2
)

= Ȳ 2C2
y

(
θ2

(
1− ρ2

y(x,τ)q

)
+ θ2ρ

2
y(x,τ)q

)
(2.10)

2.3.3 Partial Information Case (PIC)

Waweru et al. (2014) presented the estimated population mean of mixture ratio estimator in two-
phase sampling when there are multi-auxiliary variables and attributes such that we do not have
information on k auxiliary variables and q auxiliary attributes from the population. Waweru et al.
(2014) used the second method of configuring partial information case out of the two ways expressed
by Ahmed et al. (2013) of presenting partial Information case. The estimator is presented as:

t3 = y2

[ r∏
i=1

(
x̄(1)i

x̄(2)i

)αi( X̄i

x̄(1)i

)βi][ k∏
j=r+1

(
x̄(1)j

x̄(2)j

)αj][ h∏
f=k+1

(
p(1)f

p(2)f

)γf( Pf
p(1)f

)λf][ q∏
g=h+1

(
p(1)g

p(2)g

)γg]
(2.11)

The corresponding Mean Square Error (MSE) is given as:

MSE
(
t3
)

= Ȳ 2C2
y

[
θ2 − θ2ρ

2
y.xr
− θ2ρ

2
y.xk
− θ2ρ

2
y.τh
− θ2ρ

2
y.τq

+ θ1ρ
2
y.xk

+ θ2ρ
2
y.τq

]
(2.12)

This is further simplified as thus:

MSE
(
t3
)

= Ȳ 2C2
y

[
θ2

(
1− ρ2

y.(x,τ)q

)
+ θ1

(
ρ2
y.xk

+ ρ2
y.τq

)]
(2.13)

3. Methodology

3.1 Introducing the estimator scheme

Estimator schema, just like database schema in the Software Industry, is a blue-print which serves
as guide about the concerned estimator. It is a diagrammatic representation of such estimator. The
importance of estimator schema are to ease understanding, abridge any lengthy estimator and to
make further modification of concerned estimator easy for samplers. Example of a ratio estimator
in two-phase sampling is:

t = ȳ2

[ r∏
i=1

(
x̄(1)i

x̄(2)i

)αi( X̄

x̄(1)i

)βi][ q∏
j=r+1

(
Pj
x(2)j

)λj]
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The Schema for the estimator t is presented as

t∗ =

[ Ratio(PIC)−→LINE1︷ ︸︸ ︷
ȳ2 ∗ α+r

i ∗ β
+r
1.i︸ ︷︷ ︸

AV (PIC)

∗ λ+q
2.j︸︷︷︸

AA(FIC)→LINE3

−→ LINE2

]

LINE 1: This explains that the estimator t∗ is a partial information case and the type of estimation
method involved is ratio estimation method.
LINE 2: ∗ α, β and λ are parameters to be estimated in the estimator. ∗ i and j are counters
associated with the corresponding parameter. i = 1, 2, · · · , r, j = r + 1, r + 2, · · · , q
∗ 1.i: FIC with the first phase sample data available
∗ 2.j: FIC with the second phase sample data available
LINE 3: This is the type of auxiliary information used. AV means Auxiliary Variable an AA means
Auxiliary Attribute. It further explains the type of information case based on the type of auxiliary
information being used. PIC means Partial Information Case, FIC means Full Information Case
and NIC means No information Case.

3.1.1 Introducing estimator schema for full information, no information and partial information
cases

We hereby introduce estimator schema of the aforementioned estimators as proposed by Waweru et
al. (2014) as thus:

(1) Estimator Schema for Full Information Case (FIC). The schema of estimator t1 is presented
as

t∗1 =

[ Ratio(FIC)︷ ︸︸ ︷
ȳ2 ∗ α+k

2.i︸︷︷︸
AV (FIC)

∗ β+q
2.j︸︷︷︸

AA(FIC)

]
(3.1)

(2) Estimator Schema for No Information Case (NIC). The schema of estimator t2 is presented
as

t∗2 =

[ Ratio(NIC)︷ ︸︸ ︷
ȳ2 ∗ α+k

i︸︷︷︸
AV (NIC)

∗ β+q
j︸︷︷︸

AA(NIC)

]
(3.2)

(3) Estimator Schema for Partial Information Case (PIC). The schema of estimator t3 is pre-
sented as

t∗3 =

[ Ratio(PIC−I)︷ ︸︸ ︷
ȳ2 ∗ α+r

i ∗ β
+r
1.i ∗ α

+k
j︸ ︷︷ ︸

AV (PIC)

∗ γ+h
f ∗ λ

+h
1.f ∗ γ

+q
g︸ ︷︷ ︸

AA(PIC)

]
(3.3)

(4) Estimator Schema Description. ȳ2= Sample mean of the study variable at the second phase
sampling.

α+r
i =

[
ȳ2 ∗

∏r
i=1

(
x̄(1)i

x̄(2)i

)αi]
: This is a full information case estimator with first phase

sample data available. i = 1, 2, · · · , r. The + symbol before r means that the estimator
uses ratio estimation method. However, the presence of − symbol means it is a product
estimation method.
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β−k2.j =

[
ȳ2 ∗

∏k
j=r+1

(
x̄(2)j

X̄j

)βj]
: This is a full information case estimator with second

phase sample data available. j = (r+ 1), (r+ 2), · · · , k. The counter j initializes its counting
from where the last counter (i) stopped its counting. The − symbol before superscript k
means the estimator uses product estimation method.

γ+g
f =

[
ȳ2 ∗

∏g
f=1

(
x̄(1)f

x̄(2)f

)γf]
: This is a no information case ratio estimator with f =

1, 2, · · · , g.

3.2 Proposed mixture ratio estimator in two-phase sampling for Partial Information
Case II (PIC-II)

If our interest is to estimate the population mean for a mixture ratio estimator using multi-auxiliary
variables and attributes in two-phase sampling when the population information on the k auxiliary
variables are known, population information on the (k+ 1) to h auxiliary attributes are not known,
but the population information on (h+1) to q auxiliary attributes are not known. Then, the mixture
ratio estimator is presented as:

t4 = ȳ2

[ k∏
i=1

(
x̄(1)i

x̄(2)i

)αi( X̄i

x̄(1)i

)βi][ h∏
f=k+1

(
p(1)f

p(2)f

)γf( Pf
p(1)f

)λf][ q∏
g=h+1

(
p(1)g

p(2)g

)γg]
(3.4)

The schema for estimator t4 is presented as:

t∗4 =

( Ratio(PIC−II)︷ ︸︸ ︷
ȳ2 ∗ α+k

i ∗ β
+k
1.i︸ ︷︷ ︸

AV (FIC)

∗ γ+h
f ∗ λ

+h
1.f ∗ γ

+q
g︸ ︷︷ ︸

AA(PIC)

)
(3.5)

Applying the equations 2 and 5 to equation 17 yields

MSE(t4) = E1E2/1

[
ēy2 + Ȳ

k∑
i=1

αi
(ēx(1)i − ēx(2)i)

X̄i
− Ȳ

k∑
i=1

βi
ēx(1)i

X̄i

+ Ȳ

h∑
f=k+1

γf
(ēτ(1)f − ēτ(2)f )

Pf
− Ȳ

h∑
f=k+1

λf
ēτ(1)f

Pf
+ Ȳ

q∑
g=h+1

γg
(ēτ(1)g − ēτ(2)g)

Pg

]2

(3.6)

To obtain the optimum values for αi, βi, γf , λf and γg , we obtain the partial derivative with
respect to αi, βi, γf , λf and γg and equating it to zero, hence, solve for the parameters.

αi =

Cy(−1)i+1

∣∣∣∣Ryxi∣∣∣∣
yxk

Cxi

∣∣∣∣R∣∣∣∣
xk

for i = 1, 2, · · · , k (3.7)

γf =

Cy(−1)f+1

∣∣∣∣Ryτf ∣∣∣∣
yτh

Cτf

∣∣∣∣R∣∣∣∣
τh

for f = k + 1, k + 2, · · · , h (3.8)
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γg =

Cy(−1)g+1

∣∣∣∣Ryτg ∣∣∣∣
yτg

Cτg

∣∣∣∣R∣∣∣∣
τg

for g = f + 1, f + 2, · · · , q (3.9)

βi =

Cy(−1)i+1

∣∣∣∣Ryxi∣∣∣∣
yxk

Cxi

∣∣∣∣R∣∣∣∣
xk

for i = 1, 2, · · · , k (3.10)

λf =

Cy(−1)f+1

∣∣∣∣Ryτf ∣∣∣∣
yτh

Cτf

∣∣∣∣R∣∣∣∣
τh

for f = k + 1, k + 2, · · · , h (3.11)

Simplifying equation 19 gives

MSE(t4) = E1E2/1

[
ēy2

(
ēy2 + Ȳ

k∑
i=1

αi
(ēx(1)i − ēx(2)i)

X̄i
− Ȳ

k∑
i=1

βi
ēx(1)i

X̄i

+ Ȳ

h∑
f=k+1

γf
(ēτ(1)f − ēτ(2)f )

Pf
− Ȳ

h∑
f=k+1

λf
ēτ(1)f

Pf
+ Ȳ

q∑
g=h+1

γg
(ēτ(1)g − ēτ(2)g)

Pg

)]
(3.12)

Applying expectation to equation 25

MSE(t4) = Ȳ 2Cy

[
θ2Cy + (θ1 − θ2)

k∑
i=1

αiCxiρyxi − θ1

k∑
i=1

βiCxiρyxi

+ (θ1 − θ2)

h∑
f=k+1

γfCτfρyτf − θ1

h∑
f=k+1

λfCτfρyτf + (θ1 − θ2)

q∑
g=h+1

γgCτgρτg

]
(3.13)

Substitute the optimum equations obtained for αi, βi, γf , λf and γg hence, simplify:

MSE(t4) = Ȳ 2C2
y

[
θ2 − θ2ρ

2
y.xk
− θ2ρ

2
y.τh
− θ2ρ

2
y.τq

+ θ1ρ
2
y.τq

]
(3.14)

MSE(t4) = Ȳ 2C2
y

[
θ2

(
1− ρ2

y.(x,τ)q

)
+ θ1ρ

2
y.τq

]
(3.15)

3.3 Proposed mixture ratio estimator in two-phase sampling for Partial Information
Case III (PIC − III)

If our interest is to estimate the population mean for a mixture ratio estimator using multi-auxiliary
variables and attributes in two-phase sampling when the population information on the auxiliary
variables from (1− r) are known but for (r + 1) to k are unknown and the population information
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of the auxiliary attributes from (k + 1) to q are known, then we suggest the estimator:

t5 = ȳ2

[ r∏
i=1

(
x̄(1)i

x̄(2)i

)αi( X̄i

x̄(1)i

)βi][ k∏
j=r+1

(
x̄(1)j

x̄(2)j

)αj][ q∏
f=K+1

(
p(1)f

p(2)f

)γf( Pf
p(1)f

)γf]
(3.16)

The schema for estimator t5 is presented as:

t∗5 =

[ Ratio(PIC−II)︷ ︸︸ ︷
ȳ2 ∗ α+r

i ∗ β
+r
1.i ∗ α

+k
j︸ ︷︷ ︸

AV (PIC)

∗ γ+q
f ∗ λ

+q
1.f︸ ︷︷ ︸

AA(FIC)

]
(3.17)

Applying equation 2 and 5 to equation 29 gives

MSE(t5) = E1E2/1

[
ēy2 + Ȳ

r∑
i=1

αi
(ēx(1)i − ēx(2)i)

X̄i
− Ȳ

r∑
i=1

βi
ēx(1)i

X̄i

+ Ȳ

k∑
j=r+1

αj
(ēx(1)j − ēx(2)j )

X̄j
+ Ȳ

q∑
f=k+1

γf
(ēτ(1)f − ēτ(2)f )

Pf
− Ȳ

q∑
f=k+1

λf
ēτ(1)f

Pf

]2

(3.18)

To obtain the optimum values for αi, βi, αj , γf and λf , we perform the partial derivative with
respect to αi, βi, αj , γf and λf and equate it to zero, hence, solve for the parameters.

αi =

Cy(−1)i+1

∣∣∣∣Ryxi∣∣∣∣
yxr

Cxi

∣∣∣∣R∣∣∣∣
xr

for i = 1, 2, · · · , r (3.19)

αj =

Cy(−1)j+1

∣∣∣∣Ryxj ∣∣∣∣
yxk

Cxj

∣∣∣∣R∣∣∣∣
xk

for j = r + 1, r + 2, · · · , k (3.20)

γf =

Cy(−1)f+1

∣∣∣∣Ryτf ∣∣∣∣
yτq

Cτf

∣∣∣∣R∣∣∣∣
τq

for f = k + 1, k + 2, · · · , q (3.21)

βi =

Cy(−1)i+1

∣∣∣∣Ryxi∣∣∣∣
yxr

Cxi

∣∣∣∣R∣∣∣∣
xr

for i = 1, 2, · · · , r (3.22)
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λf =

Cy(−1)f+1

∣∣∣∣Ryτf ∣∣∣∣
yτq

Cτf

∣∣∣∣R∣∣∣∣
τq

for f = k + 1, k + 2, · · · , h (3.23)

Simplify equation 31 gives

MSE(t5) = E1E2/1

[
ēy2

(
ēy2 + Ȳ

r∑
i=1

αi
(ēx(1)i − ēx(2)i)

X̄i
− Ȳ

r∑
i=1

βi
ēx(1)i

X̄i

+ Ȳ

k∑
j=r+1

αj
(ēx(1)j − ēx(2)j )

X̄j
+ Ȳ

q∑
f=k+1

γf
(ēτ(1)f − ēτ(2)f )

Pf
− Ȳ

q∑
f=k+1

λf
ēτ(1)f

Pf

)]
(3.24)

Applying expectation to equation 37 and substitute the optimum equations obtained for αi, βi, αj ,
γf and λf , hence, simplify:

MSE(t5) = Ȳ 2C2
y

[
θ2 − θ2ρ

2
y.xr

+ θ1ρ
2
y.xk
− θ2ρ

2
y.xk
− θ2ρ

2
y.τq

]
(3.25)

MSE(t5) = Ȳ 2C2
y

[
θ2

(
1− ρ2

y.(x,τ)q

)
+ θ1ρ

2
y.xk

]
(3.26)

4. Results and discussion

4.1 Comparison of the estimators in PIC: Case − I, Case − II and Case − III

4.1.1 Comparison of PIC − I and PIC − II

MSE(t3) > MSE(t4) (4.1)

θ1ρ
2
y.xk
− θ2ρ

2
y.xr

> 0 (4.2)

Recall that (θ2 > θ1).

Case I

From equation 11 (PIC − I), if the number of auxiliary variables within i = 1, 2, · · · , r is more
than the number of auxiliary variables within j = (r + 1), (r + 1), · · · , k , then it is expected that(
θ1ρ

2
y.xr

> θ2ρ
2
y.xk

)
. Hence, equation 41 is false. This implies that estimator in PIC − I is efficient

over estimator in PIC − II.

Case II

From equation 11 (PIC − I), if the number of auxiliary variables within i = 1, 2, · · · , r is less
than the number of auxiliary variables within j = (r + 1), (r + 1), · · · , k, then it is expected that(
θ1ρ

2
y.xr

< θ2ρ
2
y.xk

)
. Hence, equation 41 is true. This implies that estimator in PIC − II is efficient

over estimator in PIC − I.
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4.1.2 Comparison of PIC − I and PIC − III

MSE(t3) > MSE(t5) (4.3)

θ1ρ
2
y.τq
− θ2ρ

2
y.τh

> 0 (4.4)

Recall that (θ2 > θ1)

Case I

From equation 11 (PIC−I), if the number of auxiliary attributes within f = (k+1), (k+1), · · · , h is
more than the number of auxiliary attributes within g = (h+ 1), (h+ 1), · · · , q , then it is expected
that

(
θ1ρ

2
y.τh

> θ2ρ
2
y.τq

)
. Hence, equation 43 is false. This implies that estimator in PIC − I is

efficient over estimator in PIC − III.

Case II

From equation 11 (PIC− I), if the number of auxiliary attributes within f = (k+ 1), (k+ 1), · · · , h
is less than the number of auxiliary attributes within g = (h+ 1), (h+ 1), · · · , q , then it is expected
that

(
θ1ρ

2
y.τh

< θ2ρ
2
y.τq

)
. Hence, equation 43 is false. This implies that estimator in PIC − III is

efficient over estimator in PIC − I.

4.1.3 Comparison of PIC-II and PIC-III

MSE(t4) > MSE(t5) (4.5)

(
θ1ρ

2
y.τq
− θ2ρ

2
y.τh

)
>

(
θ1ρ

2
y.xk
− θ2ρ

2
y.xr

)
(4.6)

Recall that (θ2 > θ1)

Case I

If
(
ρ2
y.τq

= ρ2
y.xk

)
and

(
ρ2
y.τh

= ρ2
y.xr

)
, this implies that MSE(t4) = MSE(t5). Hence, PIC − II

estimator is equally efficient as PIC − III estimator. However, we subject the use of PIC − II and
PIC − III to the available of auxiliary variables and auxiliary attributes.

4.1.4 Comparison of PIC − II and NIC

MSE(t4) < MSE(t2) (4.7)

−θ1ρ
2
y.xk
− θ2ρ

2
y.τh

< 0 (4.8)

Recall that (θ1 > 0) and (θ2 > 0). Similarly, it is expected that
(
ρ2
y.xk

> 0
)

and
(
ρ2
y.τh

> 0
)
. Hence,

equation 47 is true. This implies that MSE(t4) < MSE(t2). Therefore, PIC − II estimator is
efficient over NIC estimator.
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4.1.5 Comparison of PIC-III and NIC

MSE(t5) < MSE(t2) (4.9)

−θ1ρ
2
y.τq
− θ2ρ

2
y.xr

< 0 (4.10)

Recall that (θ1 > 0) and (θ2 > 0). Similarly, it is expected that (ρ2
y.τq

> 0) and (ρ2
y.xr

> 0). Hence,

equation 49 is true. This implies that MSE(t5) < MSE(t2). Therefore, PIC − III estimator is
efficient over NIC estimator.

5. Conclusion

We have proposed two partial information cases (PIC − I and PIC − II) in addition to the three
estimators established by Waweru et al. (2014). The efficiency of our estimators is subjected to
some conditions. The efficiency of PIC − II over PIC − I depends on the availability of higher
number of auxiliary variables in the FIC over NIC in PIC−I estimator. Similarly, the efficiency of
PIC−III estimator over PIC−I estimator depends on the availability of higher number of auxiliary
attributes in the FIC over NIC in PIC − I estimator. The condition under which PIC − II is
equally efficient as PIC−III was established. However, we subject the use of PIC−II or PIC−III
to the availability of auxiliary variables and auxiliary attributes. Finally, our proposed estimators
gained efficiency over the NIC estimator that was established by Waweru et al. (2014).
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