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Abstract. Large sample provides adequate information for estimation but the cost and time involved
are relatively high. In this paper, information on the large sample yet to be drawn has been used to
improve Khan et al (2012) estimators for estimating population mean in two phase sampling. The MSE
and PRE of proposed estimators were obtained. The efficiency of the proposed estimators was compare to
some existing estimators of population mean theoretically and empirically and the results show that the
proposed estimators are more efficient.
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1. Introduction

The role of auxiliary information is of prime importance in sampling theory. In survey sampling
auxiliary variables are commonly used in order to obtain improved designs and to achieve higher
precision in the estimates of some population parameters such as population total, population mean,
population proportion, population ratio. In case when the relationship between auxiliary and study
variable is positive then ratio estimation is suggested. However, product method of estimation is
usually considered, when the correlation coefficient between study and auxiliary variable is negative.
In most of the survey situations the auxiliary information is always available. It may either be
promptly available or may be collected without much difficulty by averting a part of survey resources.
In sample surveys it is also a usual practice to look for information on auxiliary variables which are
either available from official records or can be collected inexpensively in the course of investigation.
In the case of single auxiliary variable the ratio estimator and the regression estimator are two
classical estimators making use of the auxiliary information to improve the efficiency of the finite
population parameters such as population mean, total, variance, etc.

The work of Neyman (1938) may be referred to as the initial work where the use of auxiliary
information has been established. The development is continue by using the ratio form of the ratio
and product type estimators such as Bahl and Tuteja (1991), Noor ul amin and Hanif (2012) and
many other researchers in sample survey.

Consider the finite population U = U1, U,2 ...Un of size N. Let y and (x,z) be the variate of
interest and auxiliary characteristics respectively related to y assume real non-negative ith value
(yi, xi, zi) i = 1, 2, 3..., N with population mean Ȳ , X̄ and Z̄ respectively. Let a simple random
sample without replacement (SRSWOR) is drawn in each phase, the two phases (or double) sampling
scheme is as follows:
CASE-1: The first phase sample S1(S1 ⊂ U) of size n1 is drawn to measure x and z say (x1, z1).
CASE-2 : The second phase sample S2(S2 ⊂ S1) of size n2 is drawn from the first phase sample S1
to measure y say y2.

Let x̄1 = 1/n1Σi∈s1xi, x̄2 = 1/n2Σ(i ∈ s2)xi, z̄1 = 1/n1Σ(i ∈ s1)zi, z̄2 = 1/n2Σ(i ∈ s2)zi, ȳ2 =
1/n2Σ(i ∈ s2)yi. Singh and Espejo (2007) suggested a class of ratio-product estimators in two-phase
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sampling for population mean in the presence of two-auxiliary variables and also discussed their
properties. The proposed estimator.
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Samiuddin and Hanif (2007) proposed estimator:

ȲSH = ȳ2
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Singh et al.(2004) generalised estimator:
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Khan et al (2012) proposed estimators in two phase (double) sampling are as follows:
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where θ3 = θ2 − θ1
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2. Proposed estimators

Having studied some of the above existing estimators of population mean, we define the following
transformations:
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The following estimators based on the sample yet to be drawn SN−n of size N − n are suggested.
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where λ1, λ2 and ω are the unknown constants whose values are to be estimated. a(6= 0),and b
are assumed to be known as either real numbers or functions of some known parameters of auxilliary
variable x.

3. Properties of proposed estimators (bias and mean square error)

In order to study the properties of the proposed estimator, we define the following error terms
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Under case II
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Expressing equations (13) and (14) in terms of es to second order approximation as
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[
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. After applying expectation to equations (15) and (16) above and using the

definitions above, the biases of the proposed estimators are obtain:
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Taking square and applying expectation, given in (15) and (16), and ignoring terms of degree
greater than two the mean square error (MSE) of the proposed estimators are obtained as:
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Also differentiating (25) with respect to ω and making λ2 the subject, then equating the result with
the value of λ2, we have:
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Mse(Ȳ(A2)) = Ȳ 2
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4. Empirical analysis

This section particularly deals with numerical analysis based on the data use in this research work
in order to see the performances for the proposed estimators in comparisons to some other existing
estimators.

Population 1: Data used by Anderson (1958)

Y: Head length of second son, X: Head length of first son, Z: Head breadth of first son
N = 25, Ȳ = 183.84, X̄ = 185.72, Z̄ = 151.12,Cy = 0.0546,Cx = 0.0526,
Cz = 0.0488, ρxy = 0.7108, ρyz = 0.6932, ρzx = 0.7346, n1 = 10, n2 = 7

Population 2: ( Population census of Okara district(1998),Pakistan)

Y: population matric and above, X: primary but below matric, Z : Population both sexes
N = 300, Ȳ = 41.5233, X̄ = 141.58, Z̄ = 1518.767,Cy = 1.2185,Cx = 1.088,
Cz = 0.9757, ρxy = 0.894, ρyz = 0.94, ρzx = 0.7346,n1 = 60,n2 = 12

Population 3: (Population census report of Gujrat district(1998),Pakistan)

Y: Population Matric and above, X: Primary but below Matric, Z: Population both sexes

N = 300, Ȳ = 131.5133, X̄ = 356.8433, Z̄ = 1407.407,Cy = 1.2532,Cx = 0.991,
Cz = 0.9545, ρxy = 0.927, ρyz = 0.893, ρzx = 0.972,n1 = 60, n2 = 12
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Table 1. Efficiency comparisons of some estimators CASE 1

Estimators Populations
1 2 3

Sample mean ȳ 29.55 844.79 8963.84
Khan et al (2012) ȳ(Kel1) 21.89 804.65 7809.98
Khan et al (2012) ȳ(Kel2) 20.44 743.78 7632.45

Proposed ȳA1 19.70 718.40 6725.48
Proposed ȳA2 11.60 635.22 6001.16

Table 2. Efficiency comparisons of some estimators CASE 2

Estimators Populations
1 2 3

Sample mean ȳ 29.55 844.79 8963.84
Khan et al (2012) ȳ(Kel1) 21.89 804.65 7809.98
Khan et al (2012) ȳ(Kel2) 20.44 743.78 7932.45

Proposed ȳA1 19.29 204.55 2170.43
Proposed ȳA2 10.47 204.80 2173.08

Table 3. PRE comparisons of some estimators under CASE 1

Estimators Populations
1 2 3

Sample mean ȳ 100.00 100.00 100.00
Khan et al (2012) ȳ(Kel1) 135.00 105.00 114.77
Khan et al (2012) ȳ(Kel2) 144.57 113.58 117.44

Proposed ȳA1 150.00 117.60 133.28
Proposed ȳA2 254.74 132.99 149.39

Table 4. PRE comparisons of some estimators under CASE 2

Estimators Populations
1 2 3

Sample mean ȳ 100.00 100.00 100.00
Khan et al (2012) ȳ(Kel1) 135.00 105.00 114.77
Khan et al (2012) ȳ(Kel2) 144.57 113.58 117.44

Proposed ȳA1 153.19 413.01 413.00
Proposed ȳA2 282.23 412.50 412.48

Tables 1 and 2 above show the relative efficiency of the transformed ratio-type ȳ(Kel1) and
ȳ([Kel]2) estimators and estimators ȳ , [ȳA]1 and [ȳA]2 for finite population mean in two-phase
sampling under cases 1 and 2 respectively. This numerical comparison shows that the proposed
ratio-type estimators have minimum MSEs.

Tables 3 and 4 above show the percentage relative efficiency of the transformed ratio-type ȳ(Kel1)
and ȳ([Kel]2) estimators and estimators ȳ , ȳA1 and ȳA2 for finite population mean in two-phase
sampling under cases 1 and 2 respectively. This numerical comparison shows that the proposed
ratio-type estimators are more precise and accurate

5. Recommendation

Since the proposed estimators has the largest gain in efficiency, over unbiased sample mean , ratio
estimator by khan et al (2012). Hence the proposed estimators is recommended for practical survey.
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