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Abstract. This paper investigates the existence of solutions for the following differential equation
(1) = f(t,2(t), 2" (1)) + e(t)
subject to the boundary conditions
1
2'(0) =0, z(1) :/ z(s)dA(s)
0

where f: [0,1] x R? — R is a continuous function, A : [0,1] — [0, 00) is a non decreasing function with
A(0) =0, A(1) =1 and e(t) € L'[0,1]. Our method of proof is based on coincidence degree arguments.
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1. Introduction
This paper deals with the following second order boundary value problem

a"(t) = f(t x(t, x(t),2'(t)) + e(t) (1.1)

subject to the boundary conditions

1
:):’(0):0,36(1):/0 2(5)dA(s) (1.2)

where f: [0,1] x R? — R is a continuous function A : [0,1] — [0, 00) is a non decreasing function
with A(0) = 0, and A(1) = 1. The integral is the Riemann Stieltjes integral and e(t) € L[0,1]. The
boundary value problem (1.1) - (1.2) is said to be a problem at resonance if the linear equation

2"(t) =0, t € (0,1) (1.3)
with the boundary conditions (1.2) has non trivial solutions. If (1.3) - (1.2) has only the trivial

solution then the problem is said to be at non resonance. In [3] the authors studied the non resonance
boundary value problem

2" (t) + q(t) f (¢, x(t),2'(t)) = 0 (1.4)

1
x(O):O,x’(l):/o 2/(s)dg(s) (1.5)
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under the conditions g(0) = 0, 0 < g(1) < 1. They obtained existence results by using the Kras-
noselskii’s fixed point theorem.

Motivated by the above results, the aim of this paper is to establish existence results for (1.1) -
(1.2) by using the coincidence degree theory of Mawhin.

2. Preliminaries

Let X and Z be real Banach spaces and let L : domL C X — Z be a linear Fredholm operator of
index zero. Let P : X — X and ) : Z — Z be continuous projections such that ImP = ker L,
ker @ = ImL and X = ker Ldker P, Z = ImL®ImQ. It follows that L|jomrnker p : domLNker P —
ImL is invertible. We denote this inverse by K. If €2 is an open bounded subset of X such that
domL N Q # ¢ then the mapping N : X — Z is called L-compact on € if QN () is bounded and
Ky(I — Q)N : Q — X is compact.

In what follows, we shall use the following abstract existence results of Mawhin [6].

THEOREM 2.1 (6) Let L be a Fredholm operator of index zero and let N be L-compact on €. Assume
that the following conditions are satisfied:

(i) Lz # ANz for every (z,\) € [(domL\ker,) N0 x (0,1)
(i) Nz ¢ ImL for every x € ker L N 02
(117) deg(QN |kerr, 2 Nker L,0) #0

Then the equation Lx = Nx has at least one solution in domL N Q.

For z € C1[0, 1] we use the norms

|zlloo = max |z(t)] and ||z|| = max{||z||s, [|2"[|cc }
te(0,1]

and we denote the norm in L'[0,1] by || - [|1. We will use the Sobolev space W21(0, 1) defined by
W240,1) = {z : [0,1] — R|z,2’ are absolutely continuous on [0, 1] with 2 € L'[0,1]  (2.1)

Let X = C'0,1], Z = L'[0,1]. L is the linear operator from domL C X — Z with

1
domL = {$ c W2H0,1);2/(0) =0, 2(1) = /0 :c(s)dA(s)} (2.2)

We define L : domL C X — Z by

Lz =2"(t), x € domL (2.3)
and
N: X —Z
by
Nz = f(t,z(t),2'(t)) + e(t), t € (0,1) (2.4)
Then the bvp (1.1) - (1.2) becomes
Lxr = Nz
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LEMMA 2.2 If [ s2dA(s) # 1, A(1) = 1, A(0) = 0 then
(i) ker L = {z € domL : x = ¢, c € R}

(i) ImL = {y € : 3 3 y(r)drds — [} [§ [s y(r)drdt dA(s) =

(iti)) L : domL C X — Z is a Fredholm operator of index zero and furthermore the linear
continuous projection Q) : Z — Z can be written as

Qu = 1_f01282dA(5) [ /0 1 /D (r)drds /0 1 /0 s /0 ty(T)detdA(s)}

(iv) The linear operator K, : ImL — domL Nker P can be defined as

py—// T)dTds

(v) [ Epyll < llylh

Proof. (i) For x € ker L, we have z”(t) = 0 and hence
x(t) = ap + ait, a; € R (2.5)
In view of 2/(1) =0, z(t) = fol x(s)dA(s) we derive that
ker L = {z € domL :x =¢, c€ R}

(ii) We next show that

me:{yez;/o/ des/// r)drdtdA(s) = }

We consider the problem

2" (t) = y(t) (2.6)

We show that problem (2.6) has a solution z(t) satisfying

If and only if,

// des—/ // T)dTdtdA(s) = (2.8)
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Suppose (2.6) has a solution x(t) satisfying (2.7) then from (2.6) we obtain

2(t) = 2(0) + 2/ (0)t + / / r)drds
o f Lo
// r)drds = /01$<8>dA<3>
/{ + [ erara] aaco
o [ [ [ s

Since A(1) =1 we have

/ / T)drds — / / / 7)drdtdA(s) = 0

If however (2.8) holds; then setting
=c+ / / T)drds

where c is an arbitrary constant then x(¢) is a solution of (2.6) satisfying (2.7).
(iii) For y € Z, we define the projection @ by

Qy = M [ /0 1 /0 Cy(r)drds — /0 1 /0 S /O ty(T)detdA(s)]

Let y1 = y — Qy then

I S yi(r)drds — [} [ 2 yi(r)drdtdA(s) g
= L y(rydrds — [ fS Ly(r)drdtdA(s) — Qy Ul S94G)

=0.

Thus y; € ImL and Z = ImL+R and since ImLNR = {0} we conclude that Z = ImL®R.
Therefore,

dimker L = dim R = codimImL =1

Hence L is a Fredholm operator of index zero.
(iv) Let P: X — X be defined as

Pr=c cecR (2.9)

We define the generalized inverse
K, : ImL — domL Nker P as

py—// T)drds (2.10)
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For y € I'mL, we have

(LEp)y(t) = [Kpyl” = y(t)

and for z € domL Nker P we obtain

(KpL)x(t) = ; /0 ' (T)drds = x(t) — z(0)
0

since x € domL Nker P, Px = x2(0) =
Therefore,

(KpL)x(t) = x(t)
We thus conclude that

Kp - (L’domLﬂker P)_l

(v) From the definition of K),, we derive that

1Ky lloo < / / r)drds = [yl (2.11)
t 1
() (t) = /O y(r)dr < /0 ly(r)\dr

1Y) llse < llylh (2.12)

Therefore from (2.11) and (2.12) we conclude that

Kyl < llyll (2.13)

3. Existence results

THEOREM 3.1 Let f:[0,1] x R? — R be a continuous function. Assume that

(A1) There exist functions a(t),b(t),r(t) € L'[0,1] such that for all (z1,22) € R?t € [0,1]

[f (&, 21, 22)] < alt)]e| + (1) |lw2] + (1) (3.1)

(A2) There exist a constant My > 0 such that for x € domL, if x(t) > My for allt € [0, 1], then

// des—/ // T)drdtdA(s) # 0 (3.2)

(A3) There ezists a constant My > 0 such that for ¢ € R, |c| > My then either

c-QN(c) >0 or c-QN(c) <0 (3.3)
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Then for e(t) € L'[0,1] the bup (1.1) - (1.2) with A(0) =0, A(1) =1, [ s>°dA(s) # 1 has

at least one solution in C[0,1] provided

1
b1 < =
lafly +lIbll < 5

To prove Theorem 3.1 we require the following Lemmas.

LEMMA 3.2 Let Q = {x € domL\ker, : Lr = ANz X € (0,1]}
Then Q4 is bounded in X.

(3.4)

Proof. Let z € Q1. We assume that Lx = ANx for 0 < A < 1. Then Nx € ImL = ker @ and hence

from (A2) there exist tg € [0, 1] such that |x(t9)| < M;. Therefore

:c(O):a:(to)—/Oox'(s)ds

|2(0)] < My + |2y < My + [l2']|o
We also note that since 2/(0) = 0,
12l < 12”11
From (3.5) and (3.6) we get
[Pz| = |z(0)] < My + [Nz,
For z € Oy, 2 € domL\jerr, then (I — P)x € domL Nker P
11 = P)z|| = [ K, L(1 = Pz| < [[L(1 = Pz|y = || Ll < || Nl

where [ is the identity operator on X.
Using (3.7) and (3.8) we obtain

[zl = [Pz + (I = P)z|| < |Pe|| + |[(I = P)z| < My + 2[[Nz|)y

By (A1) and the definition of N we derive that

INz[ly < [5 1f (s, 2(5), 2 (5)) + e(s)|ds < [lallilloc + [B1ll"lloc + lIrll + [lell
< llallall ]l + lolllll + Il + fleflx

Combining (3.9) and (3.10) we obtain

2||rflx + 2[leflr + M
1=2([allx + [16l[1)

]| <

From (A1) and (3.11) we derive

l2"lly = L]l < [Nzl < llallullzll + [l 2] + Il + el

@2lrlls + 2[lefls + M)
= 1 =2(flafly + {62

alle + 1oll] + Il + flell

Since |lal|1 + [[b]l1 < 3 we conclude that € is bounded in X.
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LEMMA 3.3 The set Qy = {x € ker L : Nz € ImL} is a bounded set in X.

Proof. Let x € Qo,z =¢, ¢ € R, and QNz = 0. Therefore,

/01 /Os[f(T,c,O)-f—e(T)]deS—/ol /0 /Ot[f(r, ¢,0) + e(r)|drdtdA(s) = 0.

From (A2) there exist ¢y € [0, 1] such that ||z(to] < M;. That is |c¢| < M; hence
2]l = max{||z(lcc, [|2[loc} = le| < M.

Therefore )5 is bounded in X. [ |

LEMMA 3.4 Let

QF ={z €kerL: Xz + (1-AN)QNz =0, X € [0,1]} (3.12)
and

Qy ={zekerL: -Ax+(1-XNQNz=0, A€ [0,1]} (3.13)

Then Q3 and Q3 are bounded in X provided (3.12) and (3.13) are satisfied respectively.
Proof. Let x € Q3. Then, there exist ¢ € R such that z(t) = c. From the first part of (3.3) we have
for |e| > My, ¢- QN (c) > 0. From (3.12) we have

(1-=MNQNz=—-\x (3.14)

If A =0, it follows that Q Nx = 0 and therefore Nx € ker Q = I'mL, that is Nz € {25 and by Lemma
3.2 we can deduce that ||z|| < M;. However, if A € (0,1] and |c| > My then by the first part of (3.3)
we derive

0<(1—Mec-QN(e)=—-\c]®<0.
which is a contradition. Thus ||z = |¢| < Ma. Therefore Q7 is bounded. By a similar argument we
can prove that {23 is bounded in X. [ |

THEOREM 3.5 Let the assumption (A1)-(AS3) hold. Then problem (1.1)-(1.2) has at least one so-
lution in X.

Proof. We will show that all the condition of theorem 2.1 are satisfied. Let {2 be a bounded subset
of X such that U?_;Q; C Q. It is easily seen that conditions (i) and (ii) of Theorem 2.1 are satisfied
by using Lemma 3.1 and Lemma 3.2. To verify the third condition we apply the invariance under a
homotopy property of the degree. That is we set

H(z,\) =t A+ (1 - \)QNuz.

Let I : Im@ — ker L be the identity operator. By Lemma 3.3 we know that H(z,\) # 0 for
(x,\) € ker LN O x [0,1]. Therefore,

deg(QN |xer, 2Nker L,0) = deg(H(-,1), Q2NkerL,0)
=deg(+I,QNker L,0) =+1 #0

This proves Theorem 3.1. [ |
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