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Abstract. This paper investigates the existence of solutions for the following differential equation

x′′(t) = f(t, x(t), x′(t)) + e(t)

subject to the boundary conditions

x′(0) = 0, x(1) =

∫ 1

0

x(s)dA(s)

where f : [0, 1]× R2 −→ R is a continuous function, A : [0, 1] −→ [0,∞) is a non decreasing function with
A(0) = 0, A(1) = 1 and e(t) ∈ L1[0, 1]. Our method of proof is based on coincidence degree arguments.
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1. Introduction

This paper deals with the following second order boundary value problem

x′′(t) = f(t, x(t, x(t), x′(t)) + e(t) (1.1)

subject to the boundary conditions

x′(0) = 0, x(1) =

∫ 1

0
x(s)dA(s) (1.2)

where f : [0, 1]×R2 −→ R is a continuous function A : [0, 1] −→ [0,∞) is a non decreasing function
with A(0) = 0, and A(1) = 1. The integral is the Riemann Stieltjes integral and e(t) ∈ L1[0, 1]. The
boundary value problem (1.1) - (1.2) is said to be a problem at resonance if the linear equation

x′′(t) = 0, t ∈ (0, 1) (1.3)

with the boundary conditions (1.2) has non trivial solutions. If (1.3) - (1.2) has only the trivial
solution then the problem is said to be at non resonance. In [3] the authors studied the non resonance
boundary value problem

x′′(t) + q(t)f(t, x(t), x′(t)) = 0 (1.4)

x(0) = 0, x′(1) =

∫ 1

0
x′(s)dg(s) (1.5)
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under the conditions g(0) = 0, 0 ≤ g(1) < 1. They obtained existence results by using the Kras-
noselskii’s fixed point theorem.

Motivated by the above results, the aim of this paper is to establish existence results for (1.1) -
(1.2) by using the coincidence degree theory of Mawhin.

2. Preliminaries

Let X and Z be real Banach spaces and let L : domL ⊂ X −→ Z be a linear Fredholm operator of
index zero. Let P : X −→ X and Q : Z −→ Z be continuous projections such that ImP = kerL,
kerQ = ImL and X = kerL⊕kerP , Z = ImL⊕ImQ. It follows that L|domL∩kerP : domL∩kerP −→
ImL is invertible. We denote this inverse by Kp. If Ω is an open bounded subset of X such that
domL ∩ Ω 6= φ then the mapping N : X −→ Z is called L-compact on Ω̄ if QN(Ω̄) is bounded and
Kp(I −Q)N : Ω̄ −→ X is compact.

In what follows, we shall use the following abstract existence results of Mawhin [6].

Theorem 2.1 (6) Let L be a Fredholm operator of index zero and let N be L-compact on Ω̄. Assume
that the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ [(domL\kerL) ∩ ∂Ω]× (0, 1)
(ii) Nx /∈ ImL for every x ∈ kerL ∩ ∂Ω

(iii) deg(QN |kerL,Ω ∩ kerL, 0) 6= 0

Then the equation Lx = Nx has at least one solution in domL ∩ Ω̄.

For x ∈ C1[0, 1] we use the norms

‖x‖∞ = max
t∈[0,1]

|x(t)| and ‖x‖ = max{‖x‖∞, ‖x′‖∞}

and we denote the norm in L1[0, 1] by ‖ · ‖1. We will use the Sobolev space W 2,1(0, 1) defined by

W 2,1(0, 1) = {x : [0, 1] −→ R|x, x′ are absolutely continuous on [0, 1] with x′′ ∈ L1[0, 1] (2.1)

Let X = C1[0, 1], Z = L1[0, 1]. L is the linear operator from domL ⊂ X −→ Z with

domL =

{
x ∈W 2,1(0, 1);x′(0) = 0, x(1) =

∫ 1

0
x(s)dA(s)

}
(2.2)

We define L : domL ⊂ X −→ Z by

Lx = x′′(t), x ∈ domL (2.3)

and

N : X −→ Z

by

Nx = f(t, x(t), x′(t)) + e(t), t ∈ (0, 1) (2.4)

Then the bvp (1.1) - (1.2) becomes

Lx = Nx
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Lemma 2.2 If
∫ 1
0 s

2dA(s) 6= 1, A(1) = 1, A(0) = 0 then

(i) kerL = {x ∈ domL : x = c, c ∈ R}
(ii) ImL =

{
y ∈ z :

∫ 1
0

∫ s
0 y(τ)dτds−

∫ 1
0

∫ s
0

∫ t
0 y(τ)dτdt dA(s) = 0

}
(iii) L : domL ⊂ X −→ Z is a Fredholm operator of index zero and furthermore the linear

continuous projection Q : Z −→ Z can be written as

Qy =
2

1−
∫ 1
0 s

2dA(s)

[∫ 1

0

∫ s

0
(τ)dτds−

∫ 1

0

∫ s

0

∫ t

0
y(τ)dτdtdA(s)

]

(iv) The linear operator Kp : ImL −→ domL ∩ kerP can be defined as

Kpy =

∫ t

0

∫ s

0
y(τ)dτds

(v) ‖Kpy‖ ≤ ‖y‖1

Proof. (i) For x ∈ kerL, we have x′′(t) = 0 and hence

x(t) = a0 + a1t, ai ∈ R (2.5)

In view of x′(1) = 0, x(t) =
∫ 1
0 x(s)dA(s) we derive that

kerL = {x ∈ domL : x = c, c ∈ R}

(ii) We next show that

ImL =

{
y ∈ Z :

∫ 1

0

∫ s

0
y(τ)dτds−

∫ 1

0

∫ s

0

∫ t

0
y(τ)dτdtdA(s) = 0

}

We consider the problem

x′′(t) = y(t) (2.6)

We show that problem (2.6) has a solution x(t) satisfying

x′(0) = 0, x(1) =

∫ 1

0
x(s)dA(s) (2.7)

If and only if,

∫ 1

0

∫ s

0
y(τ)dτds−

∫ 1

0

∫ s

0

∫ t

0
y(τ)dτdtdA(s) = 0 (2.8)
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Suppose (2.6) has a solution x(t) satisfying (2.7) then from (2.6) we obtain

x(t) = x(0) + x′(0)t+

∫ t

0

∫ s

0
y(τ)dτds

= x(0) +

∫ t

0

∫ s

0
y(τ)dτds

x(1) = x(0) +

∫ 1

0

∫ s

0
y(τ)dτds =

∫ 1

0
x(s)dA(s)

=

∫ 1

0

[
x(0) +

∫ s

0

∫ t

0
y(τ)dτdt

]
dA(s)

= A(1)x(0) +

∫ 1

0

∫ s

0

∫ t

0
y(τ)dτdtdA(s)

Since A(1) = 1 we have∫ 1

0

∫ s

0
y(τ)dτds−

∫ 1

0

∫ s

0

∫ t

0
y(τ)dτdtdA(s) = 0

If however (2.8) holds; then setting

x(t) = c+

∫ t

0

∫ s

0
y(τ)dτds

where c is an arbitrary constant then x(t) is a solution of (2.6) satisfying (2.7).
(iii) For y ∈ Z, we define the projection Q by

Qy =
2

1−
∫ 1
0 s

2dA(s)

[∫ 1

0

∫ s

0
y(τ)dτds−

∫ 1

0

∫ s

0

∫ t

0
y(τ)dτdtdA(s)

]
Let y1 = y −Qy then∫ 1

0

∫ s
0 y1(τ)dτds−

∫ 1
0

∫ s
0

∫ t
0 y1(τ)dτdtdA(s)

=
∫ 1
0

∫ s
0 y(τ)dτds−

∫ 1
0

∫ s
0

∫ t
0 y(τ)dτdtdA(s)−Qy (1−

∫ 1

0
s2dA(s))
2

= 0.

Thus y1 ∈ ImL and Z = ImL+R and since ImL∩R = {0} we conclude that Z = ImL⊕R.
Therefore,

dim kerL = dimR = codimImL = 1

Hence L is a Fredholm operator of index zero.
(iv) Let P : X −→ X be defined as

Px = c, c ∈ R (2.9)

We define the generalized inverse
Kp : ImL −→ domL ∩ kerP as

Kpy =

∫ t

0

∫ s

0
y(τ)dτds (2.10)
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For y ∈ ImL, we have

(LKp)y(t) = [Kpy]′′ = y(t)

and for x ∈ domL ∩ kerP we obtain

(KpL)x(t) =

∫ t

0

∫ s

0
x′′(τ)dτds = x(t)− x(0)

since x ∈ domL ∩ kerP, Px = x(0) = 0.
Therefore,

(KpL)x(t) = x(t)

We thus conclude that

Kp = (L|domL∩kerP )−1

(v) From the definition of Kp, we derive that

‖Kp‖∞ ≤
∫ 1

0

∫ 1

0
[y(τ)dτds = ‖y‖1 (2.11)

(Kpy)′(t) =

∫ t

0
y(τ)dτ ≤

∫ 1

0
|y(τ)|dτ

‖(Kpy)′‖∞ ≤ ‖y‖1 (2.12)

Therefore from (2.11) and (2.12) we conclude that

‖Kpy‖ ≤ ‖y‖1 (2.13)

�

3. Existence results

Theorem 3.1 Let f : [0, 1]× R2 −→ R be a continuous function. Assume that

(A1) There exist functions a(t), b(t), r(t) ∈ L1[0, 1] such that for all (x1, x2) ∈ R2 t ∈ [0, 1]

|f(t, x1, x2)| ≤ a(t)|x1|+ b(t)|x2|+ r(t) (3.1)

(A2) There exist a constant M1 > 0 such that for x ∈ domL, if x(t) > M1 for all t ∈ [0, 1], then∫ 1

0

∫ s

0
y(τ)dτds−

∫ 1

0

∫ s

0

∫ t

0
y(τ)dτdtdA(s) 6= 0 (3.2)

(A3) There exists a constant M2 > 0 such that for c ∈ R, |c| > M2 then either

c ·QN(c) ≥ 0 or c ·QN(c) ≤ 0 (3.3)
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Then for e(t) ∈ L1[0, 1] the bvp (1.1) - (1.2) with A(0) = 0, A(1) = 1,
∫ 1
0 s

2dA(s) 6= 1 has

at least one solution in C1[0, 1] provided

‖a‖1 + ‖b‖1 <
1

2
(3.4)

To prove Theorem 3.1 we require the following Lemmas.

Lemma 3.2 Let Ω1 = {x ∈ domL\kerL : Lx = λNx λ ∈ (0, 1]}
Then Ω1 is bounded in X.

Proof. Let x ∈ Ω1. We assume that Lx = λNx for 0 < λ ≤ 1. Then Nx ∈ ImL = kerQ and hence
from (A2) there exist t0 ∈ [0, 1] such that |x(t0)| ≤M1. Therefore

x(0) = x(t0)−
∫ t0

0
x′(s)ds

|x(0)| ≤M1 + ‖x′‖1 ≤M1 + ‖x′‖∞ (3.5)

We also note that since x′(0) = 0,

‖x′‖∞ ≤ ‖x′′‖1 (3.6)

From (3.5) and (3.6) we get

‖Px‖ = |x(0)| ≤M1 + ‖Nx‖1 (3.7)

For x ∈ Ω1, x ∈ domL\kerL, then (I − P )x ∈ domL ∩ kerP

‖(1− P )x‖ = ‖KpL(1− P )x‖ ≤ ‖L(1− P )x‖1 = ‖Lx‖1 ≤ ‖Nx‖1 (3.8)

where I is the identity operator on X.
Using (3.7) and (3.8) we obtain

‖x‖ = ‖Px+ (I − P )x‖ ≤ ‖Px‖+ ‖(I − P )x‖ ≤M1 + 2‖Nx‖1 (3.9)

By (A1) and the definition of N we derive that

‖Nx‖1 ≤
∫ 1
0 |f(s, x(s), x′(s)) + e(s)|ds ≤ ‖a‖1‖x‖∞ + ‖b‖1‖x′‖∞ + ‖r‖1 + ‖e‖1

≤ ‖a‖1‖x‖+ ‖b‖1‖x‖+ ‖r‖1 + ‖e‖1 (3.10)

Combining (3.9) and (3.10) we obtain

‖x‖ ≤ 2‖r‖1 + 2‖e‖1 +M1

1− 2(‖a‖1 + ‖b‖1)
(3.11)

From (A1) and (3.11) we derive

‖x′′‖1 = ‖Lx‖1 ≤ ‖Nx‖1 ≤ ‖a‖1‖x‖+ ‖b‖1‖x‖+ ‖r‖1 + ‖e‖1

≤ (2‖r‖1 + 2‖e‖1 +M1)

1− 2(‖a‖1 + ‖b‖1)
[‖a‖1 + ‖b‖1] + ‖r‖1 + ‖e‖1

Since ‖a‖1 + ‖b‖1 < 1
2 we conclude that Ω1 is bounded in X. �
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Lemma 3.3 The set Ω2 = {x ∈ kerL : Nx ∈ ImL} is a bounded set in X.

Proof. Let x ∈ Ω2, x = c, c ∈ R, and QNx = 0. Therefore,∫ 1

0

∫ s

0
[f(τ, c, 0) + e(τ)]dτds−

∫ 1

0

∫ s

0

∫ t

0
[f(τ, c, 0) + e(τ)]dτdtdA(s) = 0.

From (A2) there exist t0 ∈ [0, 1] such that ‖x(t0| ≤M1. That is |c| ≤M1 hence

‖x‖ = max{‖x‖∞, ‖x′‖∞} = |c| ≤M1.

Therefore Ω2 is bounded in X. �

Lemma 3.4 Let

Ω+
3 = {x ∈ kerL : λx+ (1− λ)QNx = 0, λ ∈ [0, 1]} (3.12)

and

Ω−3 = {x ∈ kerL : −λx+ (1− λ)QNx = 0, λ ∈ [0, 1]} (3.13)

Then Ω+
3 and Ω−3 are bounded in X provided (3.12) and (3.13) are satisfied respectively.

Proof. Let x ∈ Ω+
3 . Then, there exist c ∈ R such that x(t) = c. From the first part of (3.3) we have

for |c| > M2, c ·QN(c) ≥ 0. From (3.12) we have

(1− λ)QNx = −λx (3.14)

If λ = 0, it follows that QNx = 0 and therefore Nx ∈ kerQ = ImL, that is Nx ∈ Ω2 and by Lemma
3.2 we can deduce that ‖x‖ ≤M1. However, if λ ∈ (0, 1] and |c| > M2 then by the first part of (3.3)
we derive

0 ≤ (1− λ)c ·QN(c) = −λ|c|2 < 0.

which is a contradition. Thus ‖x‖ = |c| ≤M2. Therefore Ω+
3 is bounded. By a similar argument we

can prove that Ω−3 is bounded in X. �

Theorem 3.5 Let the assumption (A1)-(A3) hold. Then problem (1.1)-(1.2) has at least one so-
lution in X.

Proof. We will show that all the condition of theorem 2.1 are satisfied. Let Ω be a bounded subset
of X such that ∪3i=1Ω̄i ⊂ Ω. It is easily seen that conditions (i) and (ii) of Theorem 2.1 are satisfied
by using Lemma 3.1 and Lemma 3.2. To verify the third condition we apply the invariance under a
homotopy property of the degree. That is we set

H(x, λ) = ±λx+ (1− λ)QNx.

Let I : ImQ −→ kerL be the identity operator. By Lemma 3.3 we know that H(x, λ) 6= 0 for
(x, λ) ∈ kerL ∩ ∂Ω× [0, 1]. Therefore,

deg(QN |kerL, Ω ∩ kerL, 0) = deg(H(·, 1), Ω ∩ kerL, 0)

= deg(±I,Ω ∩ kerL, 0) = ±1 6= 0

This proves Theorem 3.1. �
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