# In honour of Prof. Ekhaguere at 70 <br> On the solvability of a second order boundary value problem at resonance with integral boundary condition 

S.A. Iyase $^{\text {a* }}$ and S.O. Edeki ${ }^{\text {b }}$<br>${ }^{a, b}$ Department of Mathematics, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria

Abstract. This paper investigates the existence of solutions for the following differential equation

$$
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)+e(t)
$$

subject to the boundary conditions

$$
x^{\prime}(0)=0, x(1)=\int_{0}^{1} x(s) d A(s)
$$

where $f:[0,1] \times \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is a continuous function, $A:[0,1] \longrightarrow[0, \infty)$ is a non decreasing function with $A(0)=0, A(1)=1$ and $e(t) \in L^{1}[0,1]$. Our method of proof is based on coincidence degree arguments.

Keywords: resonance, integral boundary condition, second order, coincidence degree.

## 1. Introduction

This paper deals with the following second order boundary value problem

$$
\begin{equation*}
x^{\prime \prime}(t)=f\left(t, x\left(t, x(t), x^{\prime}(t)\right)+e(t)\right. \tag{1.1}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{equation*}
x^{\prime}(0)=0, x(1)=\int_{0}^{1} x(s) d A(s) \tag{1.2}
\end{equation*}
$$

where $f:[0,1] \times R^{2} \longrightarrow \mathbb{R}$ is a continuous function $A:[0,1] \longrightarrow[0, \infty)$ is a non decreasing function with $A(0)=0$, and $A(1)=1$. The integral is the Riemann Stieltjes integral and $e(t) \in L^{1}[0,1]$. The boundary value problem (1.1) - (1.2) is said to be a problem at resonance if the linear equation

$$
\begin{equation*}
x^{\prime \prime}(t)=0, t \in(0,1) \tag{1.3}
\end{equation*}
$$

with the boundary conditions (1.2) has non trivial solutions. If (1.3) - (1.2) has only the trivial solution then the problem is said to be at non resonance. In [3] the authors studied the non resonance boundary value problem

$$
\begin{align*}
& x^{\prime \prime}(t)+q(t) f\left(t, x(t), x^{\prime}(t)\right)=0  \tag{1.4}\\
& x(0)=0, x^{\prime}(1)=\int_{0}^{1} x^{\prime}(s) d g(s) \tag{1.5}
\end{align*}
$$

[^0]under the conditions $g(0)=0,0 \leq g(1)<1$. They obtained existence results by using the Krasnoselskii's fixed point theorem.

Motivated by the above results, the aim of this paper is to establish existence results for (1.1) (1.2) by using the coincidence degree theory of Mawhin.

## 2. Preliminaries

Let $X$ and $Z$ be real Banach spaces and let $L: \operatorname{domL} \subset X \longrightarrow Z$ be a linear Fredholm operator of index zero. Let $P: X \longrightarrow X$ and $Q: Z \longrightarrow Z$ be continuous projections such that $\operatorname{Im} P=$ ker $L$, $\operatorname{ker} Q=I m L$ and $X=\operatorname{ker} L \oplus \operatorname{ker} P, Z=\operatorname{Im} L \oplus \operatorname{Im} Q$. It follows that $\left.L\right|_{d o m L \cap \operatorname{ker} P}: \operatorname{dom} L \cap \operatorname{ker} P \longrightarrow$ $I m L$ is invertible. We denote this inverse by $K_{p}$. If $\Omega$ is an open bounded subset of $X$ such that $\operatorname{domL} \cap \Omega \neq \phi$ then the mapping $N: X \longrightarrow Z$ is called $L$-compact on $\bar{\Omega}$ if $Q N(\bar{\Omega})$ is bounded and $K_{p}(I-Q) N: \bar{\Omega} \longrightarrow X$ is compact.

In what follows, we shall use the following abstract existence results of Mawhin [6].

Theorem 2.1 (6) Let $L$ be a Fredholm operator of index zero and let $N$ be L-compact on $\bar{\Omega}$. Assume that the following conditions are satisfied:
(i) $L x \neq \lambda N x$ for every $(x, \lambda) \in\left[\left(d o m L \backslash_{\operatorname{ker} L}\right) \cap \partial \Omega\right] \times(0,1)$
(ii) $N x \notin I m L$ for every $x \in \operatorname{ker} L \cap \partial \Omega$
(iii) $\operatorname{deg}\left(\left.Q N\right|_{\operatorname{ker} L}, \Omega \cap \operatorname{ker} L, 0\right) \neq 0$

Then the equation $L x=N x$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$.
For $x \in C^{1}[0,1]$ we use the norms

$$
\|x\|_{\infty}=\max _{t \in[0,1]}|x(t)| \text { and }\|x\|=\max \left\{\|x\|_{\infty},\left\|x^{\prime}\right\|_{\infty}\right\}
$$

and we denote the norm in $L^{1}[0,1]$ by $\|\cdot\|_{1}$. We will use the Sobolev space $W^{2,1}(0,1)$ defined by

$$
\begin{equation*}
W^{2,1}(0,1)=\left\{x:[0,1] \longrightarrow \mathbb{R} \mid x, x^{\prime} \text { are absolutely continuous on }[0,1] \text { with } x^{\prime \prime} \in L^{1}[0,1]\right. \tag{2.1}
\end{equation*}
$$

Let $X=C^{1}[0,1], Z=L^{1}[0,1] . L$ is the linear operator from $\operatorname{dom} L \subset X \longrightarrow Z$ with

$$
\begin{equation*}
\operatorname{domL}=\left\{x \in W^{2,1}(0,1) ; x^{\prime}(0)=0, x(1)=\int_{0}^{1} x(s) d A(s)\right\} \tag{2.2}
\end{equation*}
$$

We define $L: \operatorname{dom} L \subset X \longrightarrow Z$ by

$$
\begin{equation*}
L x=x^{\prime \prime}(t), x \in \operatorname{dom} L \tag{2.3}
\end{equation*}
$$

and

$$
N: X \longrightarrow Z
$$

by

$$
\begin{equation*}
N x=f\left(t, x(t), x^{\prime}(t)\right)+e(t), t \in(0,1) \tag{2.4}
\end{equation*}
$$

Then the bvp (1.1) - (1.2) becomes

$$
L x=N x
$$

Lemma 2.2 If $\int_{0}^{1} s^{2} d A(s) \neq 1, A(1)=1, A(0)=0$ then
(i) $\operatorname{ker} L=\{x \in \operatorname{dom} L: x=c, c \in \mathbb{R}\}$
(ii) $\operatorname{Im} L=\left\{y \in z: \int_{0}^{1} \int_{0}^{s} y(\tau) d \tau d s-\int_{0}^{1} \int_{0}^{s} \int_{0}^{t} y(\tau) d \tau d t d A(s)=0\right\}$
(iii) $L: \operatorname{domL} \subset X \longrightarrow Z$ is a Fredholm operator of index zero and furthermore the linear continuous projection $Q: Z \longrightarrow Z$ can be written as

$$
Q y=\frac{2}{1-\int_{0}^{1} s^{2} d A(s)}\left[\int_{0}^{1} \int_{0}^{s}(\tau) d \tau d s-\int_{0}^{1} \int_{0}^{s} \int_{0}^{t} y(\tau) d \tau d t d A(s)\right]
$$

(iv) The linear operator $K_{p}: I m L \longrightarrow d o m L \cap \operatorname{ker} P$ can be defined as

$$
K_{p} y=\int_{0}^{t} \int_{0}^{s} y(\tau) d \tau d s
$$

(v) $\left\|K_{p} y\right\| \leq\|y\|_{1}$

Proof. (i) For $x \in \operatorname{ker} L$, we have $x^{\prime \prime}(t)=0$ and hence

$$
\begin{equation*}
x(t)=a_{0}+a_{1} t, a_{i} \in \mathbb{R} \tag{2.5}
\end{equation*}
$$

In view of $x^{\prime}(1)=0, x(t)=\int_{0}^{1} x(s) d A(s)$ we derive that

$$
\operatorname{ker} L=\{x \in \operatorname{dom} L: x=c, \quad c \in \mathbb{R}\}
$$

(ii) We next show that

$$
\operatorname{ImL}=\left\{y \in Z: \int_{0}^{1} \int_{0}^{s} y(\tau) d \tau d s-\int_{0}^{1} \int_{0}^{s} \int_{0}^{t} y(\tau) d \tau d t d A(s)=0\right\}
$$

We consider the problem

$$
\begin{equation*}
x^{\prime \prime}(t)=y(t) \tag{2.6}
\end{equation*}
$$

We show that problem (2.6) has a solution $x(t)$ satisfying

$$
\begin{equation*}
x^{\prime}(0)=0, x(1)=\int_{0}^{1} x(s) d A(s) \tag{2.7}
\end{equation*}
$$

If and only if,

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{s} y(\tau) d \tau d s-\int_{0}^{1} \int_{0}^{s} \int_{0}^{t} y(\tau) d \tau d t d A(s)=0 \tag{2.8}
\end{equation*}
$$

Suppose (2.6) has a solution $x(t)$ satisfying (2.7) then from (2.6) we obtain

$$
\begin{aligned}
x(t) & =x(0)+x^{\prime}(0) t+\int_{0}^{t} \int_{0}^{s} y(\tau) d \tau d s \\
& =x(0)+\int_{0}^{t} \int_{0}^{s} y(\tau) d \tau d s \\
x(1) & =x(0)+\int_{0}^{1} \int_{0}^{s} y(\tau) d \tau d s=\int_{0}^{1} x(s) d A(s) \\
& =\int_{0}^{1}\left[x(0)+\int_{0}^{s} \int_{0}^{t} y(\tau) d \tau d t\right] d A(s) \\
& =A(1) x(0)+\int_{0}^{1} \int_{0}^{s} \int_{0}^{t} y(\tau) d \tau d t d A(s)
\end{aligned}
$$

Since $A(1)=1$ we have

$$
\int_{0}^{1} \int_{0}^{s} y(\tau) d \tau d s-\int_{0}^{1} \int_{0}^{s} \int_{0}^{t} y(\tau) d \tau d t d A(s)=0
$$

If however (2.8) holds; then setting

$$
x(t)=c+\int_{0}^{t} \int_{0}^{s} y(\tau) d \tau d s
$$

where $c$ is an arbitrary constant then $x(t)$ is a solution of (2.6) satisfying (2.7).
(iii) For $y \in Z$, we define the projection $Q$ by

$$
Q y=\frac{2}{1-\int_{0}^{1} s^{2} d A(s)}\left[\int_{0}^{1} \int_{0}^{s} y(\tau) d \tau d s-\int_{0}^{1} \int_{0}^{s} \int_{0}^{t} y(\tau) d \tau d t d A(s)\right]
$$

Let $y_{1}=y-Q y$ then

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{s} y_{1}(\tau) d \tau d s-\int_{0}^{1} \int_{0}^{s} \int_{0}^{t} y_{1}(\tau) d \tau d t d A(s) \\
& =\int_{0}^{1} \int_{0}^{s} y(\tau) d \tau d s-\int_{0}^{1} \int_{0}^{s} \int_{0}^{t} y(\tau) d \tau d t d A(s)-Q y \frac{\left(1-\int_{0}^{1} s^{2} d A(s)\right)}{2} \\
& =0
\end{aligned}
$$

Thus $y_{1} \in \operatorname{Im} L$ and $Z=\operatorname{Im} L+\mathbb{R}$ and since $\operatorname{Im} L \cap \mathbb{R}=\{0\}$ we conclude that $Z=\operatorname{Im} L \oplus \mathbb{R}$. Therefore,

$$
\operatorname{dim} \operatorname{ker} L=\operatorname{dim} \mathbb{R}=\operatorname{codimIm} L=1
$$

Hence $L$ is a Fredholm operator of index zero.
(iv) Let $P: X \longrightarrow X$ be defined as

$$
\begin{equation*}
P x=c, c \in \mathbb{R} \tag{2.9}
\end{equation*}
$$

We define the generalized inverse
$K_{p}: I m L \longrightarrow d o m L \cap \operatorname{ker} P$ as

$$
\begin{equation*}
K_{p} y=\int_{0}^{t} \int_{0}^{s} y(\tau) d \tau d s \tag{2.10}
\end{equation*}
$$

Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018) 156

For $y \in \operatorname{Im} L$, we have

$$
\left(L K_{p}\right) y(t)=\left[K_{p} y\right]^{\prime \prime}=y(t)
$$

and for $x \in \operatorname{dom} L \cap \operatorname{ker} P$ we obtain

$$
\left(K_{p} L\right) x(t)=\int_{0}^{t} \int_{0}^{s} x^{\prime \prime}(\tau) d \tau d s=x(t)-x(0)
$$

since $x \in d o m L \cap \operatorname{ker} P, P x=x(0)=0$.
Therefore,

$$
\left(K_{p} L\right) x(t)=x(t)
$$

We thus conclude that

$$
K_{p}=\left(\left.L\right|_{\text {dom } L \cap \mathrm{ker} P}\right)^{-1}
$$

(v) From the definition of $K_{p}$, we derive that

$$
\begin{gather*}
\left\|K_{p}\right\|_{\infty} \leq \int_{0}^{1} \int_{0}^{1}\left[y(\tau) d \tau d s=\|y\|_{1}\right.  \tag{2.11}\\
\left(K_{p} y\right)^{\prime}(t)=\int_{0}^{t} y(\tau) d \tau \leq \int_{0}^{1}|y(\tau)| d \tau \\
\left\|\left(K_{p} y\right)^{\prime}\right\|_{\infty} \leq\|y\|_{1} \tag{2.12}
\end{gather*}
$$

Therefore from (2.11) and (2.12) we conclude that

$$
\begin{equation*}
\left\|K_{p} y\right\| \leq\|y\|_{1} \tag{2.13}
\end{equation*}
$$

## 3. Existence results

Theorem 3.1 Let $f:[0,1] \times \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be a continuous function. Assume that
(A1) There exist functions $a(t), b(t), r(t) \in L^{1}[0,1]$ such that for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} t \in[0,1]$

$$
\begin{equation*}
\left|f\left(t, x_{1}, x_{2}\right)\right| \leq a(t)\left|x_{1}\right|+b(t)\left|x_{2}\right|+r(t) \tag{3.1}
\end{equation*}
$$

(A2) There exist a constant $M_{1}>0$ such that for $x \in \operatorname{domL}$, if $x(t)>M_{1}$ for all $t \in[0,1]$, then

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{s} y(\tau) d \tau d s-\int_{0}^{1} \int_{0}^{s} \int_{0}^{t} y(\tau) d \tau d t d A(s) \neq 0 \tag{3.2}
\end{equation*}
$$

(A3) There exists a constant $M_{2}>0$ such that for $c \in \mathbb{R},|c|>M_{2}$ then either

$$
\begin{equation*}
c \cdot Q N(c) \geq 0 \quad \text { or } c \cdot Q N(c) \leq 0 \tag{3.3}
\end{equation*}
$$

Then for $e(t) \in L^{1}[0,1]$ the bvp (1.1) - (1.2) with $A(0)=0, A(1)=1, \int_{0}^{1} s^{2} d A(s) \neq 1$ has at least one solution in $C^{1}[0,1]$ provided

$$
\begin{equation*}
\|a\|_{1}+\|b\|_{1}<\frac{1}{2} \tag{3.4}
\end{equation*}
$$

To prove Theorem 3.1 we require the following Lemmas.
Lemma 3.2 Let $\Omega_{1}=\left\{x \in \operatorname{dom} L \backslash_{\operatorname{ker} L}: L x=\lambda N x \lambda \in(0,1]\right\}$
Then $\Omega_{1}$ is bounded in $X$.
Proof. Let $x \in \Omega_{1}$. We assume that $L x=\lambda N x$ for $0<\lambda \leq 1$. Then $N x \in \operatorname{Im} L=\operatorname{ker} Q$ and hence from (A2) there exist $t_{0} \in[0,1]$ such that $\left|x\left(t_{0}\right)\right| \leq M_{1}$. Therefore

$$
\begin{gather*}
x(0)=x\left(t_{0}\right)-\int_{0}^{t_{0}} x^{\prime}(s) d s \\
|x(0)| \leq M_{1}+\left\|x^{\prime}\right\|_{1} \leq M_{1}+\left\|x^{\prime}\right\|_{\infty} \tag{3.5}
\end{gather*}
$$

We also note that since $x^{\prime}(0)=0$,

$$
\begin{equation*}
\left\|x^{\prime}\right\|_{\infty} \leq\left\|x^{\prime \prime}\right\|_{1} \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6) we get

$$
\begin{equation*}
\|P x\|=|x(0)| \leq M_{1}+\|N x\|_{1} \tag{3.7}
\end{equation*}
$$

For $x \in \Omega_{1}, x \in \operatorname{dom} L \backslash_{\text {ker } L}$, then $(I-P) x \in d o m L \cap \operatorname{ker} P$

$$
\begin{equation*}
\|(1-P) x\|=\left\|K_{p} L(1-P) x\right\| \leq\|L(1-P) x\|_{1}=\|L x\|_{1} \leq\|N x\|_{1} \tag{3.8}
\end{equation*}
$$

where $I$ is the identity operator on $X$.
Using (3.7) and (3.8) we obtain

$$
\begin{equation*}
\|x\|=\|P x+(I-P) x\| \leq\|P x\|+\|(I-P) x\| \leq M_{1}+2\|N x\|_{1} \tag{3.9}
\end{equation*}
$$

By (A1) and the definition of $N$ we derive that

$$
\begin{gather*}
\|N x\|_{1} \leq \int_{0}^{1}\left|f\left(s, x(s), x^{\prime}(s)\right)+e(s)\right| d s \leq\|a\|_{1}\|x\|_{\infty}+\|b\|_{1}\left\|x^{\prime}\right\|_{\infty}+\|r\|_{1}+\|e\|_{1} \\
\leq\|a\|_{1}\|x\|+\|b\|_{1}\|x\|+\|r\|_{1}+\|e\|_{1} \tag{3.10}
\end{gather*}
$$

Combining (3.9) and (3.10) we obtain

$$
\begin{equation*}
\|x\| \leq \frac{2\|r\|_{1}+2\|e\|_{1}+M_{1}}{1-2\left(\|a\|_{1}+\|b\|_{1}\right)} \tag{3.11}
\end{equation*}
$$

From (A1) and (3.11) we derive

$$
\begin{aligned}
\left\|x^{\prime \prime}\right\|_{1}=\|L x\|_{1} & \leq\|N x\|_{1} \leq\|a\|_{1}\|x\|+\|b\|_{1}\|x\|+\|r\|_{1}+\|e\|_{1} \\
& \leq \frac{\left(2\|r\|_{1}+2\|e\|_{1}+M_{1}\right)}{1-2\left(\|a\|_{1}+\|b\|_{1}\right)}\left[\|a\|_{1}+\|b\|_{1}\right]+\|r\|_{1}+\|e\|_{1}
\end{aligned}
$$

Since $\|a\|_{1}+\|b\|_{1}<\frac{1}{2}$ we conclude that $\Omega_{1}$ is bounded in $X$.

Lemma 3.3 The set $\Omega_{2}=\{x \in \operatorname{ker} L: N x \in \operatorname{ImL}\}$ is a bounded set in $X$.
Proof. Let $x \in \Omega_{2}, x=c, c \in \mathbb{R}$, and $Q N x=0$. Therefore,

$$
\int_{0}^{1} \int_{0}^{s}[f(\tau, c, 0)+e(\tau)] d \tau d s-\int_{0}^{1} \int_{0}^{s} \int_{0}^{t}[f(\tau, c, 0)+e(\tau)] d \tau d t d A(s)=0
$$

From (A2) there exist $t_{0} \in[0,1]$ such that $\| x\left(t_{0} \mid \leq M_{1}\right.$. That is $|c| \leq M_{1}$ hence

$$
\|x\|=\max \left\{\|x\|_{\infty},\left\|x^{\prime}\right\|_{\infty}\right\}=|c| \leq M_{1} .
$$

Therefore $\Omega_{2}$ is bounded in $X$.
Lemma 3.4 Let

$$
\begin{equation*}
\Omega_{3}^{+}=\{x \in \operatorname{ker} L: \lambda x+(1-\lambda) Q N x=0, \lambda \in[0,1]\} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega_{3}^{-}=\{x \in \operatorname{ker} L:-\lambda x+(1-\lambda) Q N x=0, \lambda \in[0,1]\} \tag{3.13}
\end{equation*}
$$

Then $\Omega_{3}^{+}$and $\Omega_{3}^{-}$are bounded in $X$ provided (3.12) and (3.13) are satisfied respectively.
Proof. Let $x \in \Omega_{3}^{+}$. Then, there exist $c \in \mathbb{R}$ such that $x(t)=c$. From the first part of (3.3) we have for $|c|>M_{2}, c \cdot Q N(c) \geq 0$. From (3.12) we have

$$
\begin{equation*}
(1-\lambda) Q N x=-\lambda x \tag{3.14}
\end{equation*}
$$

If $\lambda=0$, it follows that $Q N x=0$ and therefore $N x \in \operatorname{ker} Q=\operatorname{Im} L$, that is $N x \in \Omega_{2}$ and by Lemma 3.2 we can deduce that $\|x\| \leq M_{1}$. However, if $\lambda \in(0,1]$ and $|c|>M_{2}$ then by the first part of (3.3) we derive

$$
0 \leq(1-\lambda) c \cdot Q N(c)=-\lambda|c|^{2}<0
$$

which is a contradition. Thus $\|x\|=|c| \leq M_{2}$. Therefore $\Omega_{3}^{+}$is bounded. By a similar argument we can prove that $\Omega_{3}^{-}$is bounded in $X$.
Theorem 3.5 Let the assumption (A1)-(A3) hold. Then problem (1.1)-(1.2) has at least one solution in $X$.

Proof. We will show that all the condition of theorem 2.1 are satisfied. Let $\Omega$ be a bounded subset of $X$ such that $\cup_{i=1}^{3} \bar{\Omega}_{i} \subset \Omega$. It is easily seen that conditions (i) and (ii) of Theorem 2.1 are satisfied by using Lemma 3.1 and Lemma 3.2. To verify the third condition we apply the invariance under a homotopy property of the degree. That is we set

$$
H(x, \lambda)= \pm \lambda x+(1-\lambda) Q N x .
$$

Let $I: \operatorname{Im} Q \longrightarrow \operatorname{ker} L$ be the identity operator. By Lemma 3.3 we know that $H(x, \lambda) \neq 0$ for $(x, \lambda) \in \operatorname{ker} L \cap \partial \Omega \times[0,1]$. Therefore,

$$
\begin{aligned}
\operatorname{deg}\left(\left.Q N\right|_{\operatorname{ker} L}, \Omega \cap \operatorname{ker} L, 0\right) & =\operatorname{deg}(H(\cdot, 1), \Omega \cap \operatorname{ker} L, 0) \\
& =\operatorname{deg}( \pm I, \Omega \cap \operatorname{ker} L, 0)= \pm 1 \neq 0
\end{aligned}
$$

This proves Theorem 3.1.

## References

[1] Z. Du, X. Lin and W. Ge. On a third-order multipoint boundary value problem at resonance. Journal of mathematical Analysis and Application, Vol. 302, No. 1 (2005), 217-229.
[2] C.P. Gupta. A second order m-point boundary value problem at resonance. Nonlinear Analysis., Vol. 24, no. 10 (1995), 1483-1489.
[3] G.L. Karakostas, P. Tsamatos. Sufficient conditions for the existence of nonnegative solutins of a nonlocal boundary value problem. Applied Mathematics Letters Vol.15, no. 4, (2002), 401-407.
[4] B. Liu. Solvability of multipoint boundary value at resonance II. Applied Mathematics and Computation. Vol. 136, no. 2 (2005), 353-377.
[5] X. Lin. Existence of solutions to a nonlocal boundary value problem with nonlinear growth. Boundary value problems, vol. 2011. article ID416416. doi: 10.1155/2011/416416.
[6] J. Mawhin. Topological degree methods in nonlinear boundary value problems. NS-FCBMS Regional Conference Series in Mathematics. American Mathematical Society Providence RI, 1979.


[^0]:    *Corresponding author. Email: samuel.iyase@covenantuniversity.edu.ng

