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Abstract. The need to understand and forecast inflationary movement will continue to be of interest to
the monetary policy authorities. Substantial progress has been made in the development of both theoretical
and econometric models but forecasting inflation still remains a herculean task. Recent empirical works on
inflation have settled for the use of Bayesian Model Averaging (BMA) approach which makes forecast from
variety of existing models by averaging them over rather than using a single model. BMA is increasingly
becoming very popular but with little or no application to Nigerian inflation. The focus of this paper is
to demonstrate how BMA can be used to determine the good predictors of inflation in Nigeria and make
forecasts. Based on the posterior inclusion probability (PIP) of 0.95567 (or 96%), the real interest rate
top the list of predictors of inflation and negatively signed. The top 10 models account for 27.6% of the
total posterior probability. The posterior model probability is widely scattered across models and no single
model dominates. Expectedly, credible intervals predictive values appear more reliable than point forecasts
in BMA.

Keywords: Posterior Inclusion Probability (PIP), Posterior Model Probability (PMP), Bayesian Model Selection
(BMS) package.

1. Introduction

Inflation will for a long time remain a subject of interest and concern not only to monetary authorities
but also econometricians, statisticians and economists. The reasons are quite many including: the
macroeconomic effect on savings and investments; the uncertainty effect on fiscal budgeting; and
the impact on international competitiveness and trade performance. According to Adewumi and
Awosika (1982), inflation is one of the greatest problems plaguing the world economic scene. Thus,
households, governments and investors are usually keenly interested in the movement and behaviour
of inflation.

The need to ensure an effective conduct of monetary policy by the central bank has made in-
flation forecasting very essential. The current economic conundrum arising from the fall in the
international oil price has threatened the maintenance of price stability, a key function of the cen-
tral bank. Forecasting inflation generally provides the critical inputs to the conduct of monetary
policy. The inflation forecast is not only an important decision-making tool, but also an important
communication device.

As a result of the traditional argument of lags in the monetary policy transmission mechanism,
inflation forecast plays a crucial role in the conduct of monetary policy. There are long lags between
monetary policy actions and their impact on the economy. Since interest rate, the instrument used
by monetary policymaker has its strongest impact on inflation several months ahead, then policy
should be directed towards targeting the forecast in an appropriate horizon. Policies responding only
to the current state of the economy may not prove to be stabilising policies. Therefore, it is generally
recognized that central bank policies must be far-sighted.

There is no gainsaying the fact that a lot of progress and development has been made in terms
of both theoretical and econometric models in the recent times, forecasting inflation still remains a
difficult task requiring more attention and efforts. With the rapid changing in the national economy
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often caused by different shocks, the task of forecasting inflation has become even more difficult. The
ambiguous and changing structure of the Nigerian economy further complicates this task. However,
producing a real-time macroeconomic forecasting particularly in a developing economy like Nigeria is
such a complex and challenging problem. In advanced economies, forecasting process often employs a
variety of formal models, both structural and purely statistical. The forecasts of inflation are usually
developed through an eclectic process that combines model-based projections, anecdotal and other
”extra model” information and professional judgement.

The most common tool for inflation forecasting is probably the Phillips curve which uses a single
measure of economic slack such as unemployment to predict future inflation. The Phillips curve
equation relates the unemployment rate or some other measure of aggregate economic activity to a
measure of inflation rate. Some recent specifications of Phillips curve equations relate the current
rate of unemployment to future changes in inflation rate. The main idea behind this specification
is that there is a baseline rate of unemployment at which inflation tends to remain constant. The
thought is that inflation tends to rise over time when unemployment is below this baseline rate, and
inflation falls when unemployment is above this baseline rate. The term non-accelerating inflation
rate of unemployment (NAIRU) is used to describe this baseline unemployment rate. Hence, modern
specifications based on it are referred to as NAIRU Phillips curves.

The NAIRU Phillips curves have become so popular in academic literature on inflation forecast-
ing and among policy making institutions because of the view that inflation forecasts from these
models are more accurate than forecasts from other models. Indeed, Blinder (1997) argues that ”the
empirical Phillips curve has worked amazingly well for a decade” and then concludes on the basis
of this empirical success that a Phillips curve should have ”a prominent place in the core model”
used for macroeconomic policy making purposes. The literature on studies based on the extension
of Phillips curve is rather too voluminous but a few representative and prominent ones include Ang
et al (2007), Groen et al (2009), Stock and Watson (1999) and Stock and Watson (2008).

However, the usefulness of Phillips curve equation for predicting inflation has been challenged
and questioned by several authors. For instance, Atkeson and Ohanian (2001) obtained a short-
run version of the Phillips curve by regressing the four-quarter change in the inflation rate on the
unemployment rate and a constant. The study was able to show that the short-run Phillips curve does
not represent a stable empirical relationship that can be exploited for the purpose of constructing
a reliable inflation forecasts. The regression coefficient on the unemployment rate (which measures
the slope of the short-run Phillips curve) varies significantly across different sample periods.

Koop and Korobilis (2010) clearly identify four issues that often arise when forecasting inflation
based on Phillips curve. First, the coefficient on the predictors can change over time. Second, the
model relevant for forecasting can potentially change over time. For example, a set of predictors for
inflation in 1990s may have been different from now. Some variables might predict well in expansions
but not in recessions. In fact Stock and Watson (2008) find that Phillips curve forecasts are better in
some periods but the simpler univariate forecasting models work better at other periods. Third, the
number of potential predictors can be large. The existence of several predictors can lead to a large
number of models. This definitely raises a serious statistical problem for model selection strategy.

Substantial progress has been made by researchers in the aspect of using large number of predic-
tors in forecasting inflation. Information in this huge number of variables is combined in a sensible
manner to prevent the estimation of a large number of unrestricted parameters. Stock and Watson
(2001, 2002) submits that the best predictive performance is obtained by averaging forecasts con-
structed from a large number of models. This popular approach is referred to in literature as the
Bayesian Model Averaging (BMA) and the idea was initiated by Leamer (1978). BMA efficiently and
systematically evaluates a wide range of predictor variables for inflation and (almost) all possible
models that these predictors in combination can give rise to. Using the posterior probabilities of the
models, weights are assigned to the different models to obtain a weighted model averaging.

The BMA methodology is increasingly witnessing wide spread applications across an array of
disciplines including political science, social research, econometrics, etc. Notable contributions in
the area of inflation are indeed numerous. For instance, Jacobson and Karlsson (2002) consider
BMA for the purpose of forecasting Swedish consumer price index using a large set of potential
indicators, comprising some 80 quarterly time series covering a wide spectrum of Swedish economic
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activity. The result in terms of out-of-sample-performance suggests that BMA is a useful alternative
to other forecasting procedures, in particular recognising the flexibility by which new information
can be incorporated.

Similarly, Wright (2003) employs BMA for the prediction of U.S inflation using quarterly series
from 1960q1 – 2003q2 for a total number of 93 predictor variables considered as alternative measures
of economic slack and several asset prices. The study confirms the superiority in performance and
the consistency of BMA forecasts across subsamples of four different measures of inflation CPI
inflation, CPI core inflation, GDP deflator inflation and PCE deflator inflation.

Lastly, a more recent study is Gonzalez (2010) which applies BMA to forecast inflation in Colom-
bia. An application of BMA is implemented to construct combined forecasts for the Colombian
inflation for the short and medium run. The dataset used for the empirical application consists of
73 monthly macroeconomic Colombian time series from 1999:11 to 2009:12. The series are grouped
into three categories: Real Activity (26 series), Prices (23 series), Credit Money and Exchange Rate
(24 series). The study finds BMA as a ”useful and consistent way to select variables and models
with high predictive power.

Given the above background and the dearth of similar study implementing this approach in the
case of Nigeria, this study is designed to fill this vacuum. The burning research questions are:
what are the factors (monetary and fiscal) determining the path of inflation in Nigeria? How does
single model perform relative to averaging of several potential models? Therefore, the overarching
objective of this paper is to analyze a wide spectrum of inflation predictors and all possible models
that can arise from combining the models using Bayesian Model Averaging. Specifically, the study
objectives to be pursued are: (1) Determine the good predictors of inflation in Nigeria; (2) Analyze
forecasts from all the models combining these predictors; and, (3) Examine the forecast performance
of inflation in Nigeria when simple equal weighted model averaging is used and when Bayesian Model
Averaging is also used.

The rest of the paper is structured as follows. In the section following this introduction, we discuss
the theory underpinning BMA borrowing largely from Koop (2005). In section 3 we discuss BMA
computation and the three packages available in R software for implementing the analysis. Section
4 is devoted to the application of BMA to the analysis of the Nigerian inflation. Finally, Section 5
gives the summary and conclusion.

2. The Bayesian model averaging approach

In situations where many potential explanatory variables exist, alternative models can be defined
based on the set of explanatory variables they include. In general, if there are k potential explanatory
variables in a study, then 2k models are possible. It is obvious that as k gets larger, the number
of possible models is astronomical. Two major problems are usually confronted. First is how to
handle this large number of models. The second relates to prior information about the models.
These problems have largely been surmounted in Bayesian literature as would be examined in this
section.

Consider a linear regression model with a constant term, β0, and k potential explanatory variables
x1, x2, , xk

y = β0 + β1x1 + β2x2 + ...+ βkxk + u (1)

From model (1), 2k different models are feasible based on inclusion and exclusion of each regressor.
If we let Mj for j = 1, 2, 3, , 2k denote the different models under consideration. Having constructed
the model space, the posterior distribution of any coefficient, say βr, given the data D is

Pr(βr|D) =
∑

j:βr∈Mj

Pr(βr|Mj)Pr(Mj |D) (2)

The logic of Bayesian inference requires one to obtain result for every model under consideration
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and average them. The weights in the averaging are the posterior model probabilities, Pr(MjD).
These weights are the key feature for estimation via BMA. The posterior model probability Mj is
the ratio of its marginal likelihood to the sum of marginal likelihoods over the entire model space
and is given by

Pr(Mj |D) =
Pr(D|Mj)Pr(Mj)

Pr(D)
=

Pr(D|Mj)Pr(Mj)∑2k

i=1 Pr(D|Mi)Pr(Mi)
(3)

where the marginal likelihood of the jth model is

Pr(D|Mj) =

∫
Pr(D|βj ,Mj)Pr(β

j |Mj)dβ
j (4)

and βj is the vector of parameters from model Mj , Pr(β
jMj) is a prior probability distribution

assigned to the parameters of model Mj , Pr(Mj) is the probability that Mj is the true model and
Pr(Dβj ,Mj) is the likelihood.

The estimated posterior means and standard deviations of β̂ = (β̂0, β̂1, ..., β̂k) are then constructed
as

E[β̂|D] =

2k∑
j=1

β̂P r(Mj |D) (5)

V [β̂|D] =

2k∑
j=1

(V ar[β|D,Mj ] + β̂2)Pr(Mj |D)− E[β̂|D]2 (6)

Each Model implies a forecast density f1, ..., fp, where p = 2k. Similarly, each model produces a point
forecast. In reality the true model is unknown thus leading to model uncertainty. In such situation,
the point forecast density becomes

f∗ =

p∑
j=1

Pr(Mj |D)fj (7)

This implies that the point forecast in (7) weights each of the 2k forecasts by the posterior density of
the model. Thus, the weights in the averaging are the posterior model probabilities. In summary, the
BMA approach simply involves the following three steps: (1) specifying the models, (2) specifying the
model priors and (3) and specifying parameter priors. The only thing remaining is just computation
once the three steps are accomplished.

2.1 The models

Even though the models could be of any type but for this paper we assume they are linear regression
models. Hence, the jth model is

Model Mj yj = Xjβj + Uj j = 1, 2, ..., p = 2k (8)
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Since all the p linear regression models differ only in their explanatory variables and it is standard
to assume that all the models have an intercept, equation can be written as

Model Mj y = αlN +Xjβj + U j = 1, 2, ..., p = 2k (9)

where ln = N×1 vector of ones, Xj is N×kj matrix containing some (or all) the predictor variables.
Equation (9) will differ from model to model only in the predictor variables included or excluded.
The vector of disturbance terms, U, is assumed to be a multivariate Normal distribution with mean
0N and covariance σ2IN , N(0N , h

−1IN ) where h = σ−2, the error precision. Using the definition of
the multivariate Normal density, the likelihood function for the jth model can be written as

P (y|βj , h) =
1

(2π)N/2
{h1/2exp[(βj − β̂j)‘X ‘

jXj(βj − β̂j)]}hv/2exp[−
hv

2s−2
] (10)

where v = N − k, β̂j = (X ‘
jXj)

−1X ‘
jy the ordinary least square estimator and s2 = (βj−β̂j)‘(βj−β̂j)

v .
The natural conjugate prior for (10) is Normal - Gamma density. Therefore, if we elicit a prior for
βj conditional on h of the form

βj |h ∼ N(β∗j , h
−1V∗j) (11)

and a prior for h of the form

h ∼ G(s−2∗ , v∗) (12)

Then the posterior will also have Normal-Gamma density of the form

βj , h|y ∼ NG(β∗j , V
∗
j , s

∗−2, v∗) (13)

Where

V ∗j = (V −1∗j +X ‘
jXj)

−1 (14)

β∗j = V ∗j (V −1∗j β∗j +X ‘
jXj β̂j) (15)

v∗ = v∗ +N (16)

and s∗−1 is defined implicitly through

v∗s∗2j = v∗s
2
∗ + vs2 + (β̂j − β∗j)‘[V∗j + (X ‘

jXj)
−1]−1(β̂j − β∗j) (17)

By integrating out from (13) it gives the marginal posterior distribution for h which is a multivariate
t distribution given as

βj |y ∼ t(β∗j , s∗2j V ∗j , v∗) (18)

It follows from the definition of the t distribution that
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E(βj |y,Mj) = β∗j = V ∗j X
‘
jy (19)

and

var(βj |y,Mj) =
v∗s∗2j
v∗ − 2

V ∗j (20)

At this stage, the values of the prior hyperparameters β∗j , V∗j , s
−2
∗ , and v∗ must be chosen to reflect

the researcher’s prior information or belief. The rule of thumb suggested by Koop (2000) is that
”when comparing models using posterior odds ratios, it is acceptable to use noninformative priors
over parameters which are common to all models. However, informative, proper priors should be
used over all other parameters”. Thus since error precision, h, and the intercept, α, are common to
all models the standard noninformative prior can be used for them. Hence, the prior for h is

P (h) ∝ 1

h
(21)

and the prior for the intercept is

P (α) ∝ 1 (22)

Fernandez et al (2001b) suggested the need to standardize (subtract off the means) all the predictor
variables in the model to be confidently sure that the noninformative prior for the intercept has
similar implications for all the models. Now we want to determine the value for βj . The usual
practice is to center priors over the hypothesis that predictor variables are not related or have no
effect on the dependent variable. Since there are many variables involved in BMA, we might suspect
that some of them are not important. In that case, we set

β∗j = 0kj

Finally, we left with choosing the value for V ∗j . This involves setting

V ∗j = (gjX
‘
jXj)

−1 (23)

The gj is a scalar quantity called the g-prior and it was first introduced in Zellner (1986). The
g-prior is simply saying that the prior covariance of βj is proportional to the comparable data-based
quantity. In other words, it has similar properties as the information provided by the explanatory
variables. The use of g-prior simplifies the problem of eliciting prior covariance matrices by reducing
it to choosing just a single hyperparameter. If gj = 0, this implies a perfectly noninformative
prior. If gj = 1

2 , it implies that prior and data information are weighted equally in the posterior
covariance matrix. Fernandez et al (2001b) carried out an extensive experimentation which led to
the recommendation that gj can be choosing such that

gj =

{
1
N ifN > k2
1
k2 ifN ≤ k2 (24)

Finally, each model in the model space is assigned equal probability. That is, P (Mj) = 1
2k .
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3. BMA computation and packages

Ideally the results of (19), (20) and (23) are needed to be able to implement BMA but the large
number of models involved makes it an almost impossible task. Fortunately, literature on BMA has
focused on how these quantities can be approximated or computed analytically. Various algorithms
have been developed which can compute the posterior probabilities. The most popular of these
algorithms is the Markov Chain Monte Carlo Model Composition (MC3) initially developed by
Madigan and York (1995). The most common MC3 algorithm for sampling from the model space is
a Metropolis-Hastings algorithm. For the constraint of space, these algorithms cannot be discussed
here. However, there are now packages in R software that can implement the BMA. In the rest of
this section we present an overview of three currently available packages that can implement BMA
in R software. It is probably the only software that provides a suite of routines to conduct a BMA
analysis. Amini and Parmeter (2011) provides similarities of the features of the three packages and
a detailed comparison of the options for model sampling and search, construction of model priors,
call outputs and diagnostics.

3.1 The BMS package

BMS is an acronym for Bayesian Model Selection. The package excels in offering a range of widely
used prior structures coupled with efficient MCMC algorithms to sort through the model space.
It allows for uniform and binomial-beta priors on the model space as well as informative prior
inclusion probabilities. Via these customized model priors one can thus fuse prior beliefs into the
otherwise purely agnostic analysis that is prevalent in the applied literature using BMA. The BMS
package also provides various specifications for Zellner’s g prior including the so-called hyper- g
priors advocated in Liang et al. (2008); Ley and Steel (2010); Feldkircher and Zeugner (2009). The
sensitivity of BMA results to the specification of Zellner’s g prior is well documented in the literature
(Feldkircher and Zeugner 2011). The package comes along with numerous graphical tools to analyze
posterior coefficient densities, the posterior model size or predictive densities. It also includes a
graphical representation of the model space via an image plot.

Since enumerating all potential variable combinations becomes infeasible quickly for a large num-
ber of covariates, the BMS package uses Markov Chain Monte Carlo (MCMC) samplers to gather
results on the most important part of the posterior distribution when more than 14 covariates exist
(Amini and Parmeter 2011).

3.2 The BAS Package

BAS is an acronym for Bayesian Adaptive Sampling. The package performs Bayesian Model Averag-
ing in linear models using stochastic or deterministic sampling without replacement from posterior
distributions (Clyde 2010). Prior distributions on coefficients are of the form of Zellner’s g-prior or
mixtures of g-priors. Options include the Zellner-Siow Cauchy Priors, the Liang et al hyper- g priors,
Local and Global Empirical Bayes estimates of g, and other default model selection criteria such as
AIC and BIC. Sampling probabilities may be updated based on the sampled models. The family of
prior distribution on the models is nearly identical to the BMS package allowing uniform, Bernoulli
or Beta-Binomial distributions as priors.

If the number of covariates is less than 25, the BAS package enumerates all models; otherwise it
implements three different search algorithms to find the models with the highest posterior probabil-
ity. The first is Bayesian Adaptive Sampling algorithm which samples models from the model space
without replacement using the initial sampling probabilities, and will update the sampling probabil-
ities using the estimated marginal inclusion probabilities. The second algorithm is Adaptive MCMC
sampler. The last algorithm runs an initial MCMC to calculate marginal inclusion probabilities and
then samples without replacement (Amini and Parmeter 2011).
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3.3 The BMA package

The BMA package, an acronym for Bayesian Model Averaging, performs BMA analysis assuming
a uniform distribution on model priors and using a simple BIC (Bayesian Information criterion)
approximation to construct the prior probabilities on the regressions coefficients (Raftery et al
(2010)). The package is inflexible regarding model priors, assuming all models are on equal footing
a priori. The model prior is set to 1

2k where k is the total number of variables included in the
analysis. Unlike BMS and BAS packages, BMA does not employ Zellner’s g-priors as its choice of
the prior distributions for the regression coefficients. Instead, it employs the BIC approximation,
which corresponds fairly closely to the uniform information priors (UIP).

4. Application of BMA to Nigerian inflation

The data used are yearly which spans through 1970-2011 (42 observations) and were sourced from the
2012 CBN Statistical Bulletin and 2012 World Development Indicators (WDI). The study variable
is inflation rate while the predictors are real interest rate (RIR), openness (open) measured as the
ratio of total trade to GDP per capita, total public wage (Topbwg), food price for consumer price
index (Fdcpi), government expenditure (Gexp), official real exchange rate (oer), term of trade (Tot),
government capita formation (Gcf), investment (human capita) (Hc), fiscal deficit (Fisdefc), average
rainfall (Rain), GDP per capita (Gdppc), petroleum local price (Pet) and money supply (M2). The
MC3 sampler uses 100000 draws after the burn ins of 20000 with uniform distribution as the prior
model and the modified g-prior, g = BRIC for parameters.

In performing Bayesian Model Averaging (BMA) analysis, the first thing to check for after the
models sampling is the simulation convergence. The argument, Corr PMP in Table 1 below explains
the convergence for the simulation between the Analytical (exact) and the MCMC counts PMPs.
And with the 0.9964, the simulation converges almost accurately.

Table 1: Checking for the PMP Convergence
Mean no. regressors
(”3.3463”)

Draws
(”1e+05”)

Model space 2K
(”32768”)

% Top models
(”98”)

Model Prior ”uni-
form / 7.5”

No. models visited
”31966”

Burn ins
”20000”

% visited ”98” No. Obs ”42” g-Prior ”BRIC”

Shrinkage-Stats
”Av=0.9956”

Time
”26.85938
secs”

Corr PMP
”0.9964”

Source: Authors

Figure 1b is the plot for the convergence of the model simulation. From the density plot, the corre-
lation value (0.9964) for the model simulation convergence is also confirmed below. Figure 1a shows
the average number of the regressors (model size = 3.3463) for the 2000 best models.

Table 2 shows the importance of using the top models for inference instead of the full model
(model space). With the best 2000 models, the MC3 sampler (PMP MCMC) estimate (0.98276) was
accurate when compared with the posterior probability for the true (exact) model. This is because
the sampler visited about 98% (31966) of the model space (32768) for its simulation. This is realized
when all PMP values for the 31966 visited models and the exact models (32768) were summed
separately and then compared.

Table 2: Cumulative Model Probabilities for the Exact and the MCMC
PMP (Exact) PMP (MCMC)

0.98276 0.98276
Source: Authors

Table 3 relates the importance of each regressor with its posterior mean, standard deviation and
conditional posterior sign over the plausible models. This relevance of the regressors is measured in
BMA by the Posterior Inclusion Probability (PIP). The higher the probability, the more important
is the regressor, especially when the PIP value is above 50%. Out of all the regressors, it was only the
real interest rate (RIR) that has best PIP (95%) and therefore is the most important variable when
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Figure 1a (above): Model size plot & Figure 1b (below): PMP convergence plot

modeling Nigerian Inflation. It is also noticed that the regressor has a negative average posterior
mean (-0.5893) and a standard deviation (0.2213). This negative sign is clearly explained by the
conditional posterior index in the 5th column of Table 3. In addition, all other regressors have PIPs
less than 50% and therefore are not strong determinants of inflation in Nigeria. All these redundant
variables have their posterior standard deviations greater than their posterior means, thus suggesting
parameter uncertainty (under model uncertainty).

Table 3: Posterior Inclusion Probability for all the regressors using the MCMC simulation
Regressor PIP Post Mean Post SD Cond.Pos.Sign Index

RIR 0.94883 -0.5893134 0.2212822 0.000000 15
Topbwg 0.38754 3.8926630 6.2763182 0.98934304 10
Open 0.37942 7.2760745 11.1009453 1.00000000 1
Fdcpi 0.20926 0.9373426 3.9343907 0.75929466 6
Gcf 0.18659 -0.8347824 2.6331984 0.03092341 12

Fisdefc 0.17756 -0.5376326 1.5075153 0.04353458 14
Gexp 0.16992 -0.7068562 2.8030096 0.09539783 11

Totpop 0.15134 -8.4078828 1450.1471 0.18607110 9
Rain 0.13220 -2.4449614 8.4558834 0.00000000 13
Rgdp 0.12777 2.2389171 1449.8909 0.21562182 8
Oer 0.11526 -0.1078729 1.7996881 0.35259413 3

Gdppc 0.11226 -3.7732818 1449.8238 0.33413504 7
Hc 0.09710 0.4316577 3.2055089 0.76138002 4
M2 0.07715 -0.6757781 15.7186686 0.31406351 2
Pet 0.07407 1.2859611 46.3338398 0.35830971 5

Source: Authors

Table 4 is similar to Table 3 except for the PIP values of the regressors which are higher in the
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Figure 2: Model inclusion cumulative probability based on best 2000 models

exact simulation. Most Bayesians, like Fernandez et al (2001b) prefer exact simulation for their
inference.

Table 4: Posterior Inclusion Probability for the first six regressors using the Exact simulation
Regressor PIP Post Mean Post SD Cond.Pos.Sign Index

RIR 0.9556723 -0.5938350 0.2162564 0.00000000 15
Topbwg 0.3907474 7.5136548 11.1517022 1.00000000 10
Open 0.3729707 3.7319986 6.0918903 0.99278141 1
Fdcpi 0.1969269 0.8820093 3.7454258 0.77036304 6
Gcf 0.1764572 -0.7763577 2.4821112 0.03148911 12

Fisdefc 0.1723858 -0.5241394 1.4835624 0.04030597 14
Source: Authors

Figure 2 depicts the inclusion probability for the models. It explains the best 2000 models scaled
by their posterior model probability (PMPs). This cumulates the probabilities for the 2000 best
models out of the 31966 visited models. The figure also indicates signs of the regressor coefficients
in the models. The RIR appears almost in all the 2000 best models (PIP = 96%) and has a negative
sign with red while the blue represents a positive coefficient for a regressor in a model.

Table 5 shows the coefficients of the regressors in each of the first best 10 models in the model space
along with their PMPs for both the analytical and MCMC counts. From the table, the best model
(model1) for the Nigerian Inflation has a PMP value of 0.050 (by exact) and 0.047 (by MCMC)
with coefficients, -0.6712 (RIR) and 12.944 (openness). It implies about 5% certainty that the true
model is model 1.The probability value confirms that the posterior mass is not concentrated on just
a few models. Similarly, Table 5 indicates that the true inflation model (model 1) is always favoured
compared to any other model despite low posterior mass allocated to it.
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Table 5: Posterior Inclusion Probability for all the regressors using the MCMC simulation

Model
Coefficient 1 2 3 4 5 6 7 8 9 10
RIR -0.67 -0.62 -0.72 -0.60 -0.62 -0.55 -0.54 -0.65 -0.65 -0.61
Topbwg - - 4.21 11.12 13.37 - - 9.85 8.18 -
Open 12.94 - - - - 22.72 23.69 - - 15.33
Fdcpi - - - - - - - - - -
Gcf - - - - - -3.18 - - -3.50 -
Fisdefc - - - -4.19 - - - - - -
Gexp - - - - - - - -3.80 - -
Totpop - - - - -39.61 - - - - -
Rain - - - - - - - - - -
Rgdp - - - - - - -16.1 - - -
Oer - - - - - - - - - -
Gdppc - - - - - - - - - -27.2
Hc - - - - - - - - - -
M2 - - - - - - - - - -
Pet - - - - - - - - - -
PMP(Exact) 0.05 0.035 0.032 0.032 0.027 0.025 0.021 0.019 0.018 0.017
PMP(MCMC) 0.047 0.035 0.032 0.033 0.028 0.026 0.018 0.021 0.018 0.013

Source: Authors

Figure 3 depicts the marginal density of the real interest rate (RIR) along with its PIP value (95%).
The middle vertical line indicates the posterior expected value (-0.60) over the model space. The
posterior mean of this variable is with a negative sign which conforms to the theoretical expectation.
In theory, an interest rate below zero should lower all market rates, thus also reducing borrowing
costs for companies and households. In practice, though, theres a risk that the policy might do more
harm than good.

Table 6 gives the predicted values for the year 2010 and the year 2011 representing the 41st and
42nd observations respectively. The values are conditional on what we know from other years (1970-
2009) on the predictor variables. The predictions are 13.697701 and 1.728355 for 2010 and 2011
respectively. And when compared with their actual values (13.7202, 10.8408), the forecast for 2010
has a good fit (prediction), unlike the forecast for 2011. The forecast for 2011 suggests that it is an
outlier or that our predictive model might not perform that well. Thus, other priors settings or data
could then be examined in order to improve the out of sample predictive performance of the true
model.

Table 6: Predictions for years 2010 and 2011
Year 2010 (41st observation) Year 2011 (42nd observation)

13.697701 1.728355
Source: Authors

Table 7 shows the 95% credible interval predictive values for years 2010 and 2011. The results
show that the predicted values for the years are within the limits.

Table 7: Predictions for years 2010 and 2011
5% 95%

Year 2010 (41st observation) -14.04985 41.38725
Year 2011 (42nd observation) -25.43557 28.83423

Source: Authors

Figure 4 depicts only the expected value for the 2010 predictive density without comparing it with
the actual value using 500 models. From the density, the expected predictive value of 13.697701 in
table 6 is confirmed for this year. The expected predictive value is the red solid line and while the
red break lines are the standard error of the distribution.

Figure 5 compares the predictive density for the year, 2010 between the expected and the actual
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Figure 3: Marginal density of Real Interest Rate (RIR)

 

Figure 4: Predictive density for year 2010 over 500 models
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Figure 5: Plot comparison between the actual and the expected predicted values for 500 models.

values for 500 models. The density confirms likely the actual value of 13.7202 when compared with
the expected value of 13.697701. This shows that the BMA prediction has good forecast. The dark
break line is for the actual value, the expected predictive value is the red solid line and while the
red break lines are the standard error of the distribution.

5. Conclusion

The crux of this paper is the practical demonstration of BMA technique to modelling inflation and
for determining the predictors of inflation in Nigeria. It has been shown from the application to
inflation that judicious pooling of information from a large number of predictors can be very helpful
in forecasting inflation in the short term. Implementing BMA can be computationally demanding,
since it is quite common for the number of models to be astronomical. We provide an overview
of three currently available packages in R that can implement a BMA for empirical exercise. We
recognize that this paper is a work in progress and there are still many areas to fine tune. One of
such is the data. The quality and quantity of the predictor variables are far from being satisfactory
considering the underlying requirements of BMA. The low frequency (yearly) nature of the series
is another potential drawback. The least considered in most other studies is quarterly data with
number of predictors as high as 70 and even more. The other critical issue is the assessment of
the performance of the BMA inflation forecasts when compared with forecasts from other existing
models. In sum, BMA could an addition to the suite of models available to forecast inflation by the
monetary authorities in Nigeria.
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