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Abstract. A perpetual American power put option is a special flavor of power option. It grants its holder
rights, but not obligation to sell an underlying stock in a fixed price at any time up until infinite future. In
option valuation, the Mellin transforms enables option equations to be solved directly in terms of market
prices rather than log-prices, providing a more natural setting to the problem of valuation. In this paper,
we present the Mellin transforms and its applications in perpetual American power put option valuation
with non-dividend paying stock. We obtain the integral representations for the price and the free boundary
of American power put option by means of the Mellin inversion formula and value-matching condition,
respectively. We also extend our results to obtain the free boundary and the fundamental analytic valuation
formula for perpetual American power put option. The main tool in this approach is the principle of smooth
pasting condition. We assume assets are driven by geometric wiener process. Numerical result shows that
the value of a perpetual American power put option with n = 1 on a non-dividend paying stock coincides
with the value of Merton (1973). Hence, the Mellin transforms is a good alternative approach for the
valuation of perpetual American power put option.

Keywords: geometric Brownian motion, perpetual American option, power put option, transform method,
smooth pasting condition.

1. Introduction

Power option is a financial derivative in which the payoff at time to expiry is related to the nth

power of the underlying asset price. Because of the non-linear characteristics of these options, they
are appropriate for hedging non-linear price risks. Power options preserve volatility exposure better
than plain vanilla options if the underlying moves significantly in the same direction. These options
offer flexibility to investors and of practical interest since many OTC-traded options exhibit such a
payoff structure. For example, an option whose payoff is a polynomial function of the Nikkei level
at the expiry was issued in Tokyo (see Heynen and Kat (1996)). Bankers Trust in Germany has
issued capped foreign-exchange power options with power exponent two (Topper (1999), Zhang et
al. (2016)). More examples on power options can be found in Tompkins (1999) and Macovschi and
Quittard-Pinon (2006). Power option comes in two forms namely power call option and power put
option. A power call option is an option with non-linear payoff given by the difference between
underlying asset price at expiry raised to a strictly positive power and the strike price. A power
put option is an option with non-linear payoff given by the difference between the strike price
and underlying asset price at expiry raised to a strictly positive power. For a power option on the
underlying asset price SnT with strike price K and time to expiry T , the payoff for the power call
option is given by

Pnc (SnT , T ) = max(SnT −K, 0) = (SnT −K)+ (1)

and the payoff for the power put option is given by

Pnp (SnT , T ) = max(K − SnT , 0) = (K − SnT )+ (2)
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where n is some power (n > 0). Power options can be classified as European or American. European
power option can be exercised only at the expiry date while American power option can be exercised
before or at the expiry date. The early exercise feature of the American power put option makes the
valuation of the option mathematically challenging and therefore, creating a great field of research.
Perpetual American power put option is a financial contract that grants its holder rights, but not
obligation to sell an underlying stock in a fixed price at any time up until infinite future. In other
words, this type of power option never expires. Obviously, in a special case of vanilla perpetual option,
a plain perpetual American put on a non-dividend yield should at least satisfy (Wang (2007)):

K − S0 ≤ P∞(S0,K, r,∞, σ) ≤ K, for 0 < t ≤ ∞ (3)

and

PA(S0,K, r,∞, σ) ≤ P∞(S0,K, r,∞, σ), for 0 < t ≤ ∞ (4)

with the current stock price S0, strike price K, risk-free interest rate r, expiration time ∞ and
volatility σ. A closed form solution for the free boundary and price of the American put was derived
by Samuelson (1965) and McKean (1965). Merton (1973) proposed a closed-form solution for pricing
a perpetual American put option. For the mathematical background of the Mellin transforms in
derivatives valuation see Panini and Srivastav (2005), Frontczak and Schöbel (2008), Zieneb and
Rokiah (2011), Nwozo and Fadugba (2014), Fadugba and Nwozo (2015) just to mention a few. In
this paper, we focus on the Mellin transforms and its applications in perpetual American power put
options valuation with non-dividend yield under geometric wiener process. We also assume that the
underlying asset price follows lognormal distribution. The rest of the paper is structured as follows:
In Section 2, we present American power put options in the domain of the Mellin transforms. Section
3 presents the Mellin transforms for the valuation of the perpetual American power put option. In
Section 4, we present some numerical examples and discussion of results. Section 5 concludes the
paper.

2. American power put option in the domain of the Mellin transforms

Analytical approximations and numerical techniques have been proposed for the valuation of plain
American put option but there is no known closed-form solution for the price of American power
put option. The following result gives the integral representation for the price of the American
power put option and the integral equation to determine the free boundary of the option via the
Mellin transforms for the case of non-dividend yield.

Theorem 2.1 Let Snt be the price of underlying asset, K be the strike price, r be the risk-
free interest rate, q be the dividend yield and T be the time to expiry. Assume Snt yields no dividend
and follows a random process in

dSnt =

(
nr +

n(n− 1)σ2

2

)
Snt dt+ nσSnt dWt (5)

then the integral representation for the price of the American power put option PnA(Snt , t) is given
by

PnA(Snt , t) =
1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1

2
n2σ2(ω2+α1ω−α2)(T−t)(Snt )−ωdω

+
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(Ŝnt (y))ω

ω
e

1

2
n2σ2(ω2+α1ω−α2)(y−t)dydω
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Proof: Consider the non-homogeneous Black-Scholes partial differential equation for the price of
American power put option with non-dividend yield given by

∂PnA(Snt , t)

∂t
+ n

(
1

2
σ2(n− 1) + r

)
Snt
∂PnA(Snt , t)

∂Snt

+
1

2
(σnSnt )2∂

2PnA(Snt , t)

∂(Snt )2
− rPnA(Snt , t) = f(Snt , t) (6)

where the early exercise function f(Snt , t) defined on (0,∞)× (0, T ) is given by

f(Snt , t) =

{
−rK, if 0 < Snt ≤ Ŝnt
0, if Snt > Ŝnt .

(7)

The final time condition is given by

PnA(SnT , T ) = φ(SnT ) = max(K − SnT , 0) = (K − SnT )+ on [0,∞).

The other boundary conditions are given by

lim
Snt→∞

PnA(Snt , t) = 0 on [0, T ) (8)

lim
Snt→0

PnA(Snt , t) = K on [0, T ) (9)

The free boundary Ŝnt is determined by the value-matching condition and super-contact condition
given by

PnA(Ŝnt , t) = K − Ŝnt (10)

and

∂PnA(Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝnt

= −1 (11)

respectively. Equations (10) and (11) ensure that the price of the power option is continuous across
the free boundary and the slope of the price is continuous across the free boundary, respectively.
The two conditions are jointly referred to as the smooth pasting conditions. Let P̃nA(ω, t) be the
Mellin transform of the American power put option which is defined by the relation

M(PnA(Snt , t), ω) = P̃nA(Snt , t) =

∫ ∞
0

PnA(Snt , t)(S
n
t )ω−1dSnt (12)

where ω is a complex variable with 0 < <(ω) <∞. Conversely the inversion formula for the Mellin
transform in (12) is defined as

PnA(Snt , t) =M(P̃nA(ω, t)) = (2πi)−1

∫ c+i∞

c−i∞
P̃nA(ω, t)(Snt )−ωdω (13)
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Taking the Mellin transform of (6) by means of (12), we have that

∂P̃nA(ω, t)

∂t
+
n2σ2

2

(
ω2 + ω

(
1− n− 1

n
− 2r

nσ2

)
− 2r

n2σ2

)
P̃nA(ω, t) = f̃(ω, t) (14)

Setting α1 =
(
1− n−1

n −
2r
nσ2

)
and α2 = 2r

n2σ2 . Then (14) becomes

∂P̃nA(ω, t)

∂t
+
n2σ2

2
(ω2 + ωα1 − α2)P̃nA(ω, t) = f̃(ω, t) (15)

Similarly, the Mellin transform of the early exercise function in (15) is obtained as

f̃(ω, t) =

∫ ∞
0

f(Snt , t)(S
n
t )ω−1dSnt

=

∫ Ŝnt

0
−rK(Snt )ω−1dSnt

=
−rK(Ŝnt )ω

ω

(16)

Solving further and from the theory of differential equations, the particular solution of (15) is
obtained as

P̃nA(ω, t)(p.sol) =

∫ T

t

rK(Ŝnt )ω

ω
e

1

2
n2σ2(ω2+α1ω−α2)(y−t)dy (17)

Similarly, the complementary solution of the left hand side of (15) is obtained as

P̃nA(ω, t)comp.sol = c(ω)e−
1

2
n2σ2(ω2+α1ω−α2)t (18)

where c(ω) is the integration constant given by

c(ω) = φ̃(ω, t)e
1

2
n2σ2(ω2+α1ω−α2)T (19)

φ̃(ω, t) is the Mellin transform of the final time condition and is given by

φ̃(ω, t) =

∫ ∞
0

(K − SnT )+(SnT )ω−1dSnT

=

∫ K

0
(K − SnT )(SnT )ω−1dSnT

=
Kω+1

ω(ω + 1)

(20)

Using (19) and (20) in (18) yields

P̃nA(ω, t)comp.sol =
Kω+1

ω(ω + 1)
e

1

2
n2σ2(ω2+α1ω−α2)(T−t) (21)
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Hence the general solution of (15) is given by

P̃nA(ω, t) = P̃nA(ω, t)comp.sol + P̃nA(ω, t)(p.sol)

=
Kω+1

ω(ω + 1)
e

1

2
n2σ2(ω2+α1ω−α2)(T−t)

+

∫ T

t

rK(Ŝny )ω

ω
e

1

2
n2σ2(ω2+α1ω−α2)(y−t)dy

(22)

The Mellin inversion of (22) is obtained as

PnA(Snt , t) =
1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1

2
n2σ2(ω2+α1ω−α2)(T−t)(Snt )−ωdω

+
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(Ŝny )ω

ω
e

1

2
n2σ2(ω2+α1ω−α2)(y−t)dydω (23)

where (Snt , t) ∈ {(0,∞)× [0, T )}, c ∈ (0,∞) and {ω ∈ C|0 < <(ω) <∞}. This completes the proof.

Remark 2.1.1

(i) Equations (10) and (11) jointly ensure that the premature exercise of the American power

put option on the endogenously determined early exercise boundary, Ŝnt , will be optimal and
self-financing.

(ii) Equation (23) expresses the value of an American power put option as the sum of the value
of a European power put option and the early exercise premium.

(iii) The first term in (23) is the integral representation for the price of the European power
put option which pays no dividend yield (stems from the minimum guaranteed payoff of the
American power put). The second term in (23) is called the early exercise premium (the
value attributable to the right of exercising the option early) for the American power put
option with non-dividend yield denoted by enp (Snt , t). Therefore (23) becomes

PnA(Snt , t) = PnE(Snt , t) + enp (Snt , t) (24)

where

PnE(Snt , t) =
1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1

2
n2σ2(ω2+α1ω−α2)(T−t)(Snt )−ωdω

enp (Snt , t) =
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(Ŝny )ω

ω
e

1

2
n2σ2(ω2+α1ω−α2)(y−t)dydω

(iv) Setting Snt = Ŝnt in (24) and using the value-matching condition given by (10), the integral
representation for the free boundary of the American power put option with non-dividend
yield is obtained as

Ŝnt = K − PnE(Ŝnt , t)

−rK
2πi

∫ c+i∞

c−i∞
(Ŝnt )−ω

∫ T

t

(Ŝny )ω

ω
e

1

2
n2σ2(ω2+α1ω−α2)(y−t)dydω (25)
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where

PnE(Ŝnt , t) =
1

2πi

∫ c+i∞

c−i∞

Kω+1

ω(ω + 1)
e

1

2
n2σ2(ω2+α1ω−α2)(T−t)(Ŝnt )−ωdω

(v) The American power put option PnA(Snt , t) which pays no dividend yield satisfies the decom-
position

PnA(Snt , t) = PnE(Snt , t)

+
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(Ŝny )ω

ω
e

1

2
n2σ2(ω2+α1ω−α2)(y−t)dydω

where α1 =
(
1− n−1

n −
2r
nσ2

)
and α2 = 2r

n2σ2 , (Snt , t) ∈ {(0,∞) × [0, T )}, c ∈ (0,∞) and
{ω ∈ C|0 < <(ω) <∞}.

(vi) The upper and the lower bounds for an American power put option with n = 1 on a non-
dividend yield is given by

(K − St) ≤ PA(St,K, r, T, σ) ≤ CA(St,K, r, T, σ) + (K − St) ≤ K

3. The free boundary and the fundamental analytic valuation formula for perpetual
American power put option

Now, we apply the integral representations in (23) to power options which have no expiry date. The
expressions for the free boundary and the fundamental analytic valuation formula of the perpetual
American power put option with non-dividend yield, using the Mellin transforms are given by the
following result.

Theorem 3.1 Consider the perpetual American power put option with non-dividend yield.
If T →∞ and 0 < <(ω) < ω2, then the free boundary of the perpetual American power put option
is given by

Ŝn∞ = Ŝn∞(t) = K
α2

(ω2 − ω1)
(26)

and the fundamental valuation formula of the perpetual American power put option becomes

Pn∞(Snt , t) =
α2K

ω2(ω2 − ω1)

(
Snt

Ŝn∞

)−ω2

for Ŝn∞ < Snt (27)

where

α2 =
2r

n2σ2
(28)

Proof: The integral representation for the price of the American power put option which pays no
dividend yield given by (23) can be expressed as

PnA(Snt , t) = PnE(Snt , t) + Pn1 (Snt , t) (29)
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where

PnE(Snt , t) = Ke−r(T−t)N (−d2,n)

− Snt e(r(n−1)+ 1

2
n(n−1)σ2)(T−t)N (−d1,n)

(30)

with

d1,n =
ln
(
Snt
K

)
+ n

(
r +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√
T − t

d2,n =
ln
(
Snt
K

)
+ n

(
r − σ2

2

)
(T − t)

nσ
√
T − t

and

Pn1 (Snt , t) =
rK

2πi

∫ c+i∞

c−i∞
(Snt )−ω

∫ T

t

(Ŝny )ω

ω
e

1

2
n2σ2(ω2+α1ω−α2)(y−t)dydω (31)

For (29) to hold as T →∞, it is necessary that <(ω2 +α1ω−α2) < 0, that is 0 < <(ω) < ω2, where
ω2 is one of the roots of ω2 + α1ω − α2 = 0. Using the super-contact condition (11), the perpetual
American power put option as T →∞ becomes

∂PnA(Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

=
∂PnE(Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

+
∂Pn1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

= −1 (32)

where the free boundary Ŝnt = Ŝn∞ is now independent of time. Now, Differentiating (30) with respect

to Snt at Snt = Ŝn∞ yields

∂PnE(Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

= −e(r(n−1)+ 1

2
n(n−1)σ2)(T−t)N (−d̂1,n) (33)

where

d̂1,n =
ln
(
Ŝn∞
K

)
+ n

(
r +

(
n− 1

2

)
σ2
)

(T − t)

nσ
√
T − t

(34)

As T →∞, d̂1,n →∞ and therefore

∂PnE(Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

→ 0 (35)

Also consider the Pn1 (Snt , t) term,

∂Pn1 (Snt , t)

∂Snt
= −rK

2πi

∫ c+i∞

c−i∞
(Snt )−1

(∫ T

t

(
Snt

Ŝny

)−ω
e

1

2
n2σ2(ω2+α1ω−α2)(y−t)dy

)
dω (36)
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Taking the limit of (36) as T →∞ yields

∂Pn1 (Snt , t)

∂Snt
= −rK

2πi

∫ c+i∞

c−i∞
(Snt )−1

(∫ ∞
t

(
Snt

Ŝn∞

)−ω
e

1

2
n2σ2(ω2+α1ω−α2)(y−t)dy

)
dω (37)

Therefore,

∂Pn1 (Snt , t)

∂Snt
= −rK

2πi

∫ c+i∞

c−i∞
(Snt )−1

(
Snt

Ŝn∞

)−ω( e
1

2
n2σ2(ω2+α1ω−α2)(y−t)

1
2n

2σ2(ω2 + α1ω − α2)

∣∣∣∣∣
∞

t

)
dω

= −rK
2πi

2

n2σ2

∫ c+i∞

c−i∞
(Snt )−1

(
Snt

Ŝn∞

)−ω(e 1

2
n2σ2(ω2+α1ω−α2)(y−t)

(ω2 + α1ω − α2)

∣∣∣∣∣
∞

t

)
dω

=
rK

2πi

2

n2σ2

∫ c+i∞

c−i∞
(Snt )−1

(
Snt

Ŝn∞

)−ω dω

(ω2 + α1ω − α2)

Thus,

∂Pn1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

=
K

2πi

2r

n2σ2

∫ c+i∞

c−i∞

dω

Ŝn∞(ω2 + α1ω − α2)
(38)

Since α2 = 2r
n2σ2 , (38) becomes

∂Pn1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

=
α2K

2πi

∫ c+i∞

c−i∞

dω

Ŝn∞(ω2 + α1ω − α2)
(39)

But ω2 + α1ω − α2 = (ω − ω1)(ω − ω2), where

ω =
−α1 ±

√
α2

1 + 4α2

2
(40)

ω1 =
−α1 −

√
α2

1 + 4α2

2
(41)

ω2 =
−α1 +

√
α2

1 + 4α2

2
(42)

The limiting cases ω1 and ω2 are the roots of ω2 + α1ω − α2. Hence (39) becomes

∂Pn1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

=
α2K

2πi

∫ c+i∞

c−i∞

dω

Ŝn∞(ω − ω1)(ω − ω2)
(43)

By applying the residue theorem given by

1

2πi

∫
δω
f(ω)dω =

k∑
j=0

Res(f, ωj), ω ∈ C (44)

Therefore, (43) leads to a relation

∂Pn1 (Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

= α2
K

Ŝn∞(ω1 − ω2)
(45)
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Substituting (35) and (45) into (32) gives

∂PnA(Snt , t)

∂Snt

∣∣∣∣∣
Snt =Ŝn∞

= 0 + α2
K

Ŝn∞(ω1 − ω2)
= −1

The free boundary of a perpetual American power put option is obtained as

Ŝn∞ = K
α2

(ω2 − ω1)
(46)

Next, use (46) to derive an expression for the price of perpetual American power put option
Pn∞(Snt , t). Note that the price of a perpetual European power put option is zero, since it can
never be exercised. Therefore, taking the limit as T → ∞ in (29), the price of perpetual American

power put option for Snt > Ŝn∞ is given by

P∞(Snt , t) =
rK

2πi

∫ c+i∞

c−i∞

(
Snt

Ŝn∞

)−ω 1

ω

(∫ ∞
t

e
1

2
n2σ2(ω2+α1ω−α2)(y−t)dy

)
dω (47)

where <(ω2 +α1ω−α2) < 0. Integrating the inner integral (that is, the time variable) in (44) leads
to

P∞(Snt , t) = −rK
2πi

2

n2σ2

∫ c+i∞

c−i∞

(
Snt

Ŝn∞

)−ω dω

ω(ω − ω1)(ω − ω2)
(48)

Once again applying the residue theorem (44) to get

Pn∞(Snt , t) =
α2K

ω2(ω2 − ω1)

(
Snt

Ŝn∞

)−ω2

for Ŝn∞ < Snt (49)

Equation (49) is the fundamental valuation formula of perpetual American power put option. This
completes the proof.

Remark 3.1.1

(i) Note that the price of a perpetual European power put option with non-dividend yield is
zero, since it can never be exercised before expiration.

(ii) For n = 1, the free boundary of the perpetual American put option with non-dividend yield
given by (46) coincides with the Merton’s result (1973) given by

S∗∞ =

(
k1

k1 + 1

)
K

with k1 = 2r
σ2 .

3.1 Derivation of a closed-form solution for the free boundary and price of the
perpetual American put option (Samuelson (1965) and McKean (1965))

In the special case of a perpetual option, a closed-form solution for the free boundary and price of
the American put was derived by McKean (1965) and Samuelson (1965). They derived the price P∞
as a solution of the time-independent homogeneous second order partial differential equation given
by

1

2
σ2S2∂

2P∞
∂S2

+ rS
∂P∞
∂S
− rP∞ = 0, for S > S∗∞ (50)
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with boundary conditions

P∞ → 0 as S →∞ (51)

P∞(S∗∞) = K − S∗∞ (52)

∂P∞
∂S

∣∣∣∣∣
S=S∗∞

= −1 (53)

Equation (50) has a solution of the form

P∞(S) = c1S
µ+ + c2S

µ− (54)

where µ+ and µ− are given by

µ+ = 1 (55)

and

µ− = −2r

σ2
(56)

respectively. Since P∞ vanishes as S →∞, c1 = 0 then we have that

P∞(S) = c2S
µ− (57)

Using (52), (53) and (57), we obtain

S∗∞ =
rK

σ2

2 + r
(58)

P∞(S) = (K − S∗∞)

(
S

S∗∞

)− 2r

σ2

(59)

Equations (58) and (59) give the free boundary and the price of a perpetual put option respectively.

Remark 3.1.2 Equations (58) and (59) can be obtained by means of the Mellin transforms
by setting n = 1 in (46) and (49), respectively.

The following result gives the probabilistic approach for the valuation of an American power put
option with n = 1 on a non-dividend yield.

Theorem 3.2 The value of an American power put option with n = 1; PA(S0,K, r, T, σ) on
a non-dividend paying stock is equal to the expected value of the maximum option premium.

PA(S0,K, r, T, σ) = EQ{max[PE(S0,K, r, T, σ),MaxPremium(early exercise)]} (60)

Proof: According to the definition of an American power put option with n = 1, the holder has
the right to exercise it at any time during its lifetime. As we know, when an American power put
option with n = 1 is not early-exercised, the premium will be equal to its European counterpart.

PA(S0,K, r, T, σ) = PE(S0,K, r, T, σ) (61)
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The holder of an American put option should take an optimal exercise strategy to get maximum
option premium. So the valuation of the option is such an optimization problem:

(i) When the maximum option premium of optimally early exercise is not less than
PE(S0,K, r, T, σ), the American power put option with n = 1 should be optimally early-
exercised and get the max premium

PA(S0,K, r, T, σ) = Max Premium(early exercise) (62)

(ii) Otherwise, the American power put option with n = 1 should not be early-exercised and get
the same premium as its European counterpart:

PA(S0,K, r, T, σ) = PE(S0,K, r, T, σ) (63)

Therefore,

PA(S0,K, r, T, σ) = EQ{max[PE(S0,K, r, T, σ),MaxPremium(early exercise)]}

This completes the proof.
The following result gives an alternative approach for the derivation of closed-form solution for

the valuation of American put option of power one on a non-dividend yield.

Theorem 3.3 The price of an American power put option with n = 1 on a non-dividend
paying stock at current time t = 0 is given by

PA(S0,K, r, T, σ) = PE(S0,Ke
rT , r, T, σ)N (−d4)

+ max[(K − S0), PE(S0,K, r, T, σ)]N (d4)
(64)

where

PE(S0,K, r, T, σ) = Ke−rTN (−d2)− SN (−d1) (65)

and

PE(S0,Ke
rT , r, T, σ) = KN (−d4)− SN (−d3) (66)

with

d1 =
ln
(
S0

K

)
+
(
r + 0.5σ2

)
T

σ
√
T

(67)

d2 =
ln
(
S0

K

)
+
(
r − 0.5σ2

)
T

σ
√
T

(68)

d3 =
ln
(
S0

K

)
+ 0.5σ2T

σ
√
T

(69)

d4 =
ln
(
S0

K

)
− 0.5σ2T

σ
√
T

(70)
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Proof: From theorem 3.2, we have that

PA(S0,K, r, T, σ) = EQ{max[PE(S0,K, r, T, σ),MaxPremium(early exercise)]}

Here, MaxPremium(early exercise) is either PE(S0,K, r, T, σ) orK−S0, with the probabilityN(−d4)
or N(d4), respectively. Since

PE(S0,Ke
rT , r, T, σ) > PE(S0,K, r, T, σ)

Therefore,

PA(S0,K, r, T, σ) = EQ{max[PE(S0,K, r, T, σ),MaxPremium(early exercise)]}

= PE(S0,Ke
rT , r, T, σ)N (−d4)

+ max[(K − S0), PE(S0,K, r, T, σ)]N (−d4)

This completes the proof.
The following result shows that the price of perpetual American put option of power one is equal

to its strike price.

Proposition 3.1 The price of a perpetual American put option of power one on a non-dividend
paying stock is equal to its strike price

P∞(S0,K, r,∞, σ) = K (71)

Proof: A perpetual American put option of power one on a non-dividend paying stock whose
maturity time is infinite is given by

P∞(S0,K, r,∞, σ) = PA(S0,K, r, T, σ), (when T →∞) (72)

From theorem 3.3, we know that

PA(S0,K, r, T, σ) = PE(S0,Ke
rT , r, T, σ)N (−d4)

+ max[(K − S0), PE(S0,K, r, T, σ)]N (d4)

where

PE(S0,K, r, T, σ) = Ke−rTN (−d2)− SN (−d1)

and

PE(S0,Ke
rT , r, T, σ) = KN (−d4)− SN (−d3)

with

d1 =
ln
(
S0

K

)
+
(
r + 0.5σ2

)
T

σ
√
T

, d2 =
ln
(
S0

K

)
+
(
r − 0.5σ2

)
T

σ
√
T

d3 =
ln
(
S0

K

)
+ 0.5σ2T

σ
√
T

, d4 =
ln
(
S0

K

)
− 0.5σ2T

σ
√
T
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For perpetual American put option of power one,

d3 = lim
T→∞

ln
(
S0

K

)
+ 0.5σ2T

σ
√
T

=∞ (73)

d4 = lim
T→∞

ln
(
S0

K

)
− 0.5σ2T

σ
√
T

= −∞ (74)

Therefore,

lim
T→∞

N (d4) = 0; lim
T→∞

N (−d4) = 1; lim
T→∞

N(−d3) = 0; (75)

lim
T→∞

PE(S0,Ke
rT , r, T, σ) = lim

T→∞
(KN (−d4)− S0N (−d3)) = K (76)

Thus,

lim
T→∞

PA(S0,K, r, T, σ) = lim
T→∞

PE(S0,Ke
rT , r, T, σ)N (−d4)

+ lim
T→∞

max[(K − S0), PE(S0,K, r, T, σ)]N (d4)

= K

Hence,

P∞(S0,K, r,∞, σ) = K (77)

This completes the proof.

4. Numerical examples and discussion of results

This section presents some numerical examples and discussion of results.

4.1 Numerical examples

Example 1: By varying volatility, we consider the valuation of perpetual American power put
option with non-dividend yield by means of (49) with the following parameters

n = 1, St = 30,K = 31, r = 0.01, T =∞, t = 0

The price of perpetual American put option of power one is shown in Figure 1 below.

Example 2: We consider the valuation of the American power put option for n = 1 with
the following parameters:
At The Money (ATM): St = 100,K = 100, r = 0.03, σ = 0.6, t = 0
In The Money (ITM): St = 100,K = 150, r = 0.03, σ = 0.6, t = 0
Out of The Money (OTM): St = 100,K = 50, r = 0.03, σ = 0.6, t = 0

The relationship between the price of the option (at the money, in the money, out of the money,
respectively) and the maturity time T is shown in Figures 2-4 below.
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Figure 1. Price of perpetual American put option of power one at different volatility, σ.

Figure 2. Price of American put option of power one at different maturity time, T for the case of ATM.

Figure 3. Price of American put option of power one at different maturity time, T for the case of ITM.

Figure 4. Price of American put option of power one at different maturity time, T for the case of OTM.
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4.2 Discussion of results

Figure 1 shows the results based on formula (49) for the price of perpetual American power put
option for n = 1 at different volatility. It is observed that the result obtained satisfies the upper
limit of perpetual American put option on a non-dividend yield given by (3). From Figures 2-4, It
is observed that the price of an American power put option for n = 1:

(i) increases as maturity time T increases.
(ii) tends to K as maturity time T is large.
(iii) satisfies the upper bound for American put option on a non-dividend yield.

5. Conclusion

In this paper, we considered the Mellin transforms and its applications in perpetual American
power put option valuation. The integral representations for the price and the free boundary of the
American power put option was obtained. The integral representation for the price of the American
power put option with non-dividend yield was used to obtain the free boundary and the fundamental
valuation formula for perpetual American power put option. The main tool in this approach is the
principle of smooth pasting condition. Our expression for the price of perpetual American power
put option was derived as a steady-state solution1 to the non-homogeneous Black-Scholes equation
rather than as a solution to a ‘static’ problem2. We deduced that the value of the price of perpetual
American power put option with n = 1 coincides with the value of Merton’s (1973). We observed
that the result obtained satisfies the upper limit of perpetual American put option on a non-dividend
yield given by (3) as shown in Figure 1 above. We also showed that the value of a perpetual American
put option of power one on a non-dividend yield is equal to its strike price. From Figures 2-4, it
is clearly seen that the price of American power put option with n = 1 increases as the maturity
time increases and tends to K for large value of maturity time. Hence, Mellin transforms is a good
approach for the valuation of American power put option with non-dividend yield.
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