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Abstract. By employing the non-commutative analoque of Leray-Schauder fixed point theorem, Arsela-
Ascoli theorem and Michael selection theorem, we establish the existence of solution of impulsive quantum
stochastic differential inclusions(IQSDI) in the framework of Hudson and Parthasarathy formulation of
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properties of these solutions are studied.
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1. Introduction

For well over a century, differential equations have been used in modeling the dynamics of changing
processes. A great deal of the modeling development has been accompanied by a rich theory for
differential equations. The dynamics of many evolving processes are subject to abrupt changes, such
as shocks, harvesting and natural disasters. These phenomena involve short-term perturbations from
continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an
entire evolution. In models involving such perturbations, it is natural to assume these perturbations
act instantaneously or in the form of ”impulses”. As a consequence, classical impulsive differential
equations have found application in modeling impulsive problems in physics, population dynamics,
ecology, biological systems, biotechnology, industrial robotics, pharmacokinetics, optimal control,
and so forth. Again, associated with this development, a classical theory of impulsive differential
equations has been given extensive attention. Much attention has also been devoted to modeling
natural phenomena with differential equations, both ordinary and functional, for which the part
governing the derivative(s) is not known as a single-valued function. Our consideration in this paper
concerns the establishment of a solution of impulsive quantum stochastic differential inclusions in
the framework of Hudson-Phathasarathy formulation of quantum stochastic calculus.

The plan for the rest of the paper is as follows: section 2 contains fundamental structures and
definitions that we use in the sequel. In section 3 we assemble some auxiliary results that are use
in establishing the main result. The main result concerning the existence of solution to impulsive
quantum stochastic differential inclusion is established in section 4.

2. Fundamental structures and definitions

In this section we state some fundamental structures and definition that will be use in the sequel.
Given a multifunction F : Rm → 2R

m

, a single valued map f : Rm → Rn is a selection if f(x) ∈
F (x) ∀x ∈ R.

(i) Upper and Lower Semi continuous Multivalued Maps: Let N ⊆ Ã and I ⊆ R+. For arbitrary
η, ξ ∈ D⊗E, (t, x), (t0, x0) ∈ I × N and real numbers ε, δη,ξ > 0, we define the map dη,ξ :
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[I ×N ]→ R+ by

dη,ξ((t, x), (t0, x0)) = max{|t− t0|, ‖x− x0‖η,ξ}.

The following shall be employed in what follows. For arbitrary η, ξ ∈ D⊗E

Ã(η, ξ) = {xη,ξ = 〈η, xξ〉, x ∈ Ã}

Bη,ξ,ε(0) = {xη,ξ ∈ Ã(η, ξ) : |xη,ξ| < ε}

Bδη,ξ(t0, x0) = {(t, x) ∈ I ×N : dη,ξ((t, x), (t0, x0)) < δη,ξ}.

(ii) A map φ : I ×N → 2sesq(D⊗E)2 will be said to be upper semi continuous at a point (t0, x0) ∈
I×N , if for each pair η, ξ ∈ D⊗E and ε > 0 there exists δη,ξ = δη,ξ((t0, x0), ε) > 0 such that

φ(t, x)(η, ξ) ⊂ φ(t0, x0)(η, ξ) +Bη,ξ,ε(0)

on Bδη,ξ(t0, x0). The map φ is said to be upper semi continuous if it is upper semi continuous
at every point (t, x) ∈ I ×N . Furthermore, for a sesquilinear formed valued map we define

BP,ε(0) = {ϕ(t, x)(η, ξ) ∈ P(t, x)(η, ξ) : |ϕ(t, x)(η, ξ)| < ε}

(iii) A sesquilinear form valued multifunction P : I × N → 2sesq(D⊗E)2 will be said to be upper
semi continuous at a point (t0, x0) ∈ I × N if for every η, ξ ∈ D⊗E and ε > 0 there exist
δη,ξ = δη,ξ((t0, x0), ε) > 0 such that

P(t, x)(η, ξ) ⊂ P(t0, x0)(η, ξ) +BP,ε(0)

on Bδη,ξ(t0, x0). The map P is said to be upper semi continuous if it is upper semi continuous

at every point (t, x) ∈ I × N . For arbitrary η, ξ ∈ D⊗E, let Φ : I × Ã → 2Ã be a closed

multivalued map. For each pair (t, x), (t
′
, x
′
) ∈ I × Ã we define

dη,ξ((t, x), (t
′
, x
′
)) = max{|t− t′ |, ||x− x′ ||ηξ}

Bη,ξ,δ(t0, xo) = {(t, x) ∈ I × Ã : dη,ξ((t0, x0), (t, x))(η, ξ) < δ} and

Bηξ,ε(Φ(t, x) = {y ∈ Ã : inf
k∈Φ(t,x)

||y − k||η,ξ < ε}.

(iv) A map Φ : I×N → 2sesq(D⊗E)2 will be said to be lower semi continuous at a point (t0, x0) ∈ I×
N , with respect to the seminorm ||.||ηξ if for each pair η, ξ ∈ D⊗E and ε > 0 there exists δη,ξ =
δη,ξ((t0, x0), ε) > 0 such that for each yo ∈ Φ(to, xo), infy∈Φ(t,x) ||y − yo||ηξ < ε, ∀ y ∈
N , almost all t ∈ I and dη,ξ((t, x), (t

′
, x
′
)) < δη,ξ. If Φ is lower semi continuous at every

point (t0, x0) ∈ I × N with respect to the seminorm ||.||ηξ, then it will be said to be lower
semi continuous on I ×N .

(v) A sesquilinear form valued multifunction P : I × N → 2sesq(D⊗E)2 will be said to be lower
semi continuous at a point (t0, x0) ∈ I ×N , with respect to the seminorm ||.||ηξ if for every
η, ξ ∈ D⊗E and ε > 0 there exist δη,ξ = δη,ξ((t0, x0), ε) > 0 such that for each
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yηξ,0 ∈ P(t0, x0)(η, ξ) infyηξ∈P(t,x) |yηξ,0 − yηξ| < ε, ∀ y ∈ N , almost all t ∈
I and dη,ξ((t, x), (t0, x0)) < δη,ξ

(vi) The space Pad(I, Ã)wac = {X : I → Ã : X is adapted and weakly absolutely continu-
ous everywhere except for some tk at which X(t−k ) and X(t+k ), k = 1, 2, ...,m exists and
X(t−k ) = X(t+k )}.

(vii) For each pair η, ξ ∈ D⊗E, we define the space of complex valued numbers associated with

(i) as Pad(I, Ã)wac,ηξ = {〈η,Φ(.)ξ〉 : Φ ∈ Pad(I, Ã)wac}.
(viii) On Pad(I, Ã)wac, we define a seminorm

‖Φ‖p,ηξ = sup{‖Φ(t)‖ηξ, t ∈ I}, (2.0)

and denote by Pwac(Ã) the completion of the locally convex space whose topology is gener-
ated by the seminorm in (2.0).

(ix) Let E,F,G,H ∈ L2
loc(I×Ã)mvs and (t0, x0) be a fixed point of I×Ã. Then a relation of the

form

dX(t) ∈ E(t,X(t))dΛπ(t) + F (t,X(t))dAf (t) +G(t,X(t))dA+
g (t) +H(t, x(t))dt

for almost all t ∈ I\{tk}mk=1,

∆Xt=tk = Jk(X(tk)), t = tk, k = 1, 2, ...,m (2.1)

X(t0) = Φ(t), t ∈ I

or equivalently

d

dt
[〈η,X(t)ξ〉] ∈ P(t,X(t))(η, ξ) almost all t ∈ I\{tk}mk=1,

〈η,∆Xt=tkξ〉 = 〈η, JkX(tk)ξ〉, t = tk, k = 1, 2, ...,m, (2.2)

〈η,X(t0)ξ〉 = 〈η, φ(t)ξ〉, t ∈ I,

where 0 = t0 < t1 < t2 < ..... < tm < tm+1 = T, I = [0, T ], is called impulsive quan-

tum stochastic differential inclusions (IQSDI). Note: The map P : I × Ã → 2sesq(D⊗E)2

is a multivalued sesquilinear form having non empty, compact values. X(t0) ∈ Ã, Jk ∈
C(Ã, Ã), k = 1, 2, ...,m.∆X|t=tk = X(t+k )−X(t−k ), X(t−k ), X(t+k ) represent the left and
the right limit of X(t).

For any process X : I → Ã and any t ∈ I, X(t) represents the history of the state from
previous time up to the present time t , the map Jk characterize the jump of the solutions
at impulse points tk, k = 1, 2, ...,m.

(x) By solution of Impulsive quantum stochastic differential inclusion (2.1) or equivalently (2.2)
we mean a stochastic process Φ : Ã → Ã lying in the space Pwac(Ã)∩wac((tk, tk+1), Ã), 0 ≤
k ≤ m, satisfying

d

dt
[〈η,Φ(t)ξ〉] ∈ P(t,Φ(t))(η, ξ) almost all t ∈ I\[tk]mk=1

and the condition

∆Φ|t=tk = Jk(Φ(t−k )) and Φ(0) = X0.
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The following theorems shall be employ to prove our main result.

3. Theorems

Theorem 3.1 Let U and U denote respectively the open and closed subsets of a convex set K of
Ã such that 0 ∈ U and let N : U → K be a compact and semi continuous map. Then either
(i) The equation x = Nx has a solution in U or
(ii) There exists a point u ∈ δU such that u = λNu for some λ ∈ C such that Reλ ∈ (0, 1) and
Imλ ∈ (0, 1), where δU is a boundary of U.

Theorem 3.2 Let X : I → Ã be a stochastic process that satisfy the following conditions :
(i) For any arbitrary pair η, ξ ∈ D⊗E,
let K ⊂ Ã such that F : K → K is a compact map.
(ii) ‖f(x)‖ηξ ≤ m for each x ∈ X, f ∈ F and m <∞.
(iii) For every ε > 0 (depending on η, ξ) there exist δηξ such that for every x, y ∈ X,

d(x, y)(η, ξ) < δηξ.

Then,

〈η, (f(x)− f(y))ξ〉 < ε ∀ f ∈ F, x, y ∈ X.

Next, we shall establish the a priori estimates on possible solutions of problem (2.1)-(2.2).

Theorem 3.3 Suppose that the following hold for arbitrary pair η, ξ ∈ D⊗E. (i) There exists a
continuous non-decreasing function φ : R+ → R+ and

p ∈ L1(I,R+) such that |P(t, x)(η, ξ)| ≤ p(t)φ(||X||η,ξ)

for a.e t ∈ I and x ∈ Ã (3.3.1)

with ∫ tk

tk−1

p(s)ds <

∫ ∞
Nk−1,η,ξ

du

φ(u)
, k = 1, ...,m+ 1, (3.3.2)

where

N0,η,ξ = ||x0||η,ξ,

Nk−1,η,ξ = sup
||x||η,ξ∈[−Mk−2,Mk−2]

||Jk−1(x)||η,ξ +Mk−2,

Mk−2 = Γ−1
k−1

∫ tk−1

tk−2

p(s)ds, for k = 1, ...,m+ 1, (3.3.3)

and

Γl(z) =

∫ z

Nl−1,η,ξ

du

φ(u)
, z ≥ Nl−1 l ∈ [1, ...,m+ 1]. (3.3.4)
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Then, for each k = 1, ...,m+ 1 there exists a constant Mk−1,η,ξ such that

sup{||X(t)||η,ξ : t ∈ [tk, tk+1]} ≤Mk−1,η,ξ (3.3.5)

for each solution X of the problem (2.1 - 2.2).

Proof. Let X be a possible solution of (2.2). Then X|[0,t1] is a solution to

d

dt
〈η,X(t)ξ〉 ∈ P(t,X(t))(η, ξ) almost all t ∈ [0, t1], X(0) = X0. (3.3.7)

Since

d

dt
|〈η,X(t)ξ〉| ≤ | d

dt
〈η,X(t)ξ〉|, (3.3.8)

we have

d

dt
|〈η,X(t)ξ〉| ≤ p(t)φ(‖X(t)‖ηξ), for a.e t ∈ [0, t1]. (3.3.9)

Let t∗ ∈ [0, t1] such that

sup{‖X(t)‖ηξ : t ∈ [0, t1]} = ‖X(t∗)‖ηξ}, (3.3.10)

then

d

dt
|〈η,X(t)ξ〉|

φ(‖X(t)‖ηξ)
≤ p(t) for a.e t ∈ [0, t1]). (3.3.11)

From inequality (3.3.11), it follows that

∫ t∗

0

d

dt
|〈η,X(s)ξ〉|

φ(‖X(s)‖ηξ)
≤
∫ t∗

0
p(s)ds. (3.3.12)

Using change of variable formula, we get

Γ1(‖X(t∗)‖ηξ) =

∫ ||X(t∗||η,ξ

||X0||η,ξ

du

φ(u)
≤
∫ t∗

0
p(s)ds ≤

∫ t1

0
p(s)ds. (3.3.13)

Given that φ : R+ → R+ and p ∈ L1(I,R+) such that

|P(t,X)(η, ξ)| ≤ p(t)φ(||X||η,ξ),

we obtain that

‖X(t∗)‖ηξ ≤ Γ−1
1

(∫ t1

0
p(s)ds

)
Hence,

‖X(t∗)‖ηξ = sup{[‖X(t)‖ηξ : t ∈ [0, t1]} ≤ Γ−1
1

(∫ t1

0
p(s)ds

)
:= M0.
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Now X|[t1,t2] is a solution to

d

dt
〈η,X(t)ξ〉 ∈ P(t,X(t))(η, ξ) almost all t ∈ [t1, t2]

∆X|t=t1 = Jk(X(t1)). (3.3.14)

Then

d

dt
|〈η,X(t)ξ〉| ≤ p(t)φ(||X(t)||η,ξ) almost all t ∈ [t1, t2]. (3.3.16)

Let t∗ ∈ [t1, t2] such that

sup{‖X(t)‖ηξ : t ∈ [t1, t2]} = ‖X(t∗)‖ηξ. (3.3.17)

Then

d

dt
|〈η,X(t)ξ〉|

φ(‖X(t)‖ηξ
≤ p(t). (3.3.18)

From this inequality, it follows that

∫ t∗

t1

d

dt
|〈η,X(s)ξ〉|

(|X(s)|
ds ≤

∫ t∗

t1

p(s)ds. (3.3.19)

Proceeding as above we obtain

Γ2|X(t∗)| =
∫ |X(t∗)|

N1

du

φ(u)
≤
∫ t∗

t1

p(s)ds ≤
∫ t2

t1

p(s)ds. (3.3.20)

This yields

|X(t∗)| = sup{|X(t)| : t ∈ [t1, t2]} ≤ Γ−1
2

(∫ t2

t1

p(s)ds

)
:= M1. (3.3.21)

Continuing this process and taken into account that X|[tm,T ] is a solution to the problem,

d

dt
〈η,X(t)ξ〉 ∈ P(t,X(t))(η, ξ) almost all t ∈ [tm, T ]

∆X|t=tm = Jk(X(tm)), (3.3.22)

then there exist a constant Mm such that

sup{‖X(t)‖ηξ : t ∈ [tm, T ]} ≤ Γ−1
m+1

(∫ T

tm

p(s)ds

)
:= Mm. (3.3.23)
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Consequently for each X to (2.2), we have

‖X‖η,ξ ≤ max{‖X0‖ηξ,Mk−1 : k = 1, ...,m+ 1}. (3.3.24)

�

Theorem 3.4 Assume that the map P : (I × Ã)→ 2sesq(D⊗E)2 satisfies the following conditions :
(i) for each pair η, ξ ∈ D⊗E,P(t, x)(η, ξ) is closed and convex in C.
(ii) The map (t, x)→ P(t, x)(η, ξ) is lower semi continuous on (I × Ã),
then there exists a continuous map f : (I × Ã)→ sesq(D⊗ E)2

which is a selection of P(t, x)(η, ξ).

4. Main result

The following theorem furnish our main result.

Theorem 4.1 Suppose that the following hypothesis are satisfied
(i) The map P : I×Ã → 2sesq(D⊗E)2 is such that for each pair η, ξ ∈ D⊗E, (t, x) ∈ I×Ã,P(t, x)(η, ξ)
is closed and convex in C, the space of complex numbers.
(ii) The map (t, x)→ P(t, x)(η, ξ) is lower semi continuous and measurable on (I × Ã).
(iii) For every r > 0, there exists function hηξ,r : I → R lying in L

′
(I,R+), such that |P(t, x)(η, ξ)| =

sup{|vηξ| : vηξ ∈ P(t, x)(η, ξ)} ≤ hηξ,r, for a.e t ∈ I and x ∈ Ã with ||x||ηξ ≤ r.
Then the impulsive problem (2.1) -( 2.2) has a solution.

Proof. Let

f : Pwac(Ã)→ L′loc(Ã)

such that

f(x) ∈ F(x) ∀ y ∈ Pwac(Ã).

Consider the single valued problem

d

dt
〈η,X(t)ξ〉 = F (X(t))(η, ξ) t ∈ I, t 6= tk, k = 1, 2, ...m

∆X|t=tk = Jk(X(t−k ))ξ t = tk, k = 1, 2, ...,m

X(0) = X0.


(4.1)

Let

N(X)(t)(η, ξ) = ‖N(X)(t)‖ηξ = |〈η,N(X)(t)ξ〉| = 〈η, x0ξ〉+

∫ t

0
|〈η, (E(t,X(t))dΛπ(t)+

F (t,X(t))dAf (t) +G(t,X(t))dA+
g (t) +H(t,X(t))dt)ξ〉|+

∑
0<tk<t

〈η, Jk(X(t−k ))ξ〉,

where

(E(t,X(t))dΛπ(t) + F (t,X(t))dAf (t) +G(t,X(t))dA+
g (t) +H(t,X(t))dt ≡ P(t,X(t))(η, ξ).
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We now transform problem (4.1) into a fixed point problem by considering the operators

Nηξ(X)(t) = x0 +

∫ t

0
f(X(s))(η, ξ) +

∑
0<tk<t

〈η, Jk(X(t−k ))ξ〉. (4.2)

We show that Nηξ is compact for each pair η, ξ ∈ D⊗E. That is

N(X)(t) = x0 +
∑∫ t0

t
E(t,X(t))dΛπ(t) + F (t,X(t))dAf (t)+

G(t,X(t))dA+
g (t) +H(t,X(t))dt+

∑
0<tk<t

Jk(X(t−k ))

N : Pwac(Ã)→ Pwac(Ã).

Step 1 : N is continuous. Let {Xn} be a sequence such that Xn → X ∈ Pwac(Ã).

‖N(Xn(t))−N(X(t))‖η,ξ ≤
∫ t

0
|P(s,Xn(s))(η, ξ)− P(s,X(s))(η, ξ)|ds

+
∑

0<tk<t

||Jk(Xn(t−k ))− Jk(X(t−k ))||η,ξ

≤
∫ T

0
|P(s,Xn(s))(η, ξ)− P(s,X(s))(η, ξ)|ds

+
∑

0<tk<t
||Jk(Xn(t−k ))− Jk(X(t−k ))||η,ξ. (4.3)

Since P and JK , k = 1, 2, ....,m are continuous, then

‖N(Xn)−N(X))||η,ξ ≤ ‖P(t,Xn(s))(η, ξ)− P(t,X(s))(η, ξ)‖η,ξ

+
∑

0<tk<t
|Jk(Xn(t−k ))− Jk(X(t−k ))| → 0 (4.5)

as n→∞ which implies that N is continuous.

Step 2 : N maps bounded set into bounded sets in Pwac(Ã). Let X ∈ Bq = [x ∈ Pwac(Ã) :
||x||η,ξ ≤ q] for arbitrary η, ξ ∈ D⊗E we have that

‖N(X)‖η,ξ ≤ q,

since Jk, k = 1, ...,m are continuous from assumption (iii), we have

‖N(X(t))‖η,ξ ≤ ‖X0‖ηξ +

∫ t

0
|P(t,X(s))(η, ξ)|ds+

∑
0<tk<t

||Jk(X(t−k ))||η,ξ

≤ ‖X0‖ηξ + ||hq||L′ +
∑m

k=1 ||Jk(x(t−k )||η,ξ := l. (4.6)

Step 3 : N maps bounded set into equicontinuous sets of Pwac(Ã). Let r1, r2,∈ I and let Bq = [X ∈
Pwac(Ã) : ||X||η,ξ ≤ q] be a bounded set of Pwac(Ã). Then

‖N(X)(r2)−N(X)(r1)‖η,ξ ≤
∫ r2

r1

|hq(s))|ds+
∑

0<tk<r2−r1

||Jk(x(t−k )||η,ξ. (4.7)
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As r2 → r1, the right hand side of the above inequality tends to zero. This established the equicon-
tinuity of the case where t 6= ti, i = 1, 2, ....,m. To examine equicontinuity at t = ti we have

‖N(X)(r2)−N(X)(r1)‖η,ξ ≤ |P(r2, Xn(s))(η, ξ)− P(r1, X(s))(η, ξ)|ds∑
0<tk<t

‖Jk(Xn(t−k ))− Jk(X(t−k ))‖η,ξ‖X0‖η,ξ

+

∫ r2

r1

|P(r2 − s,X(s))(η, ξ)− P(r1 − s,X(s))(η, ξ)|ds

+
∑

0<tk<t

‖Jk(Xn(t−k ))− Jk(X(t−k ))‖η,ξ(B(X(s))|ds

+

∫ r2

r1

|P(r2 − s,X(s))(η, ξ)|(B(x(s))|ds

+

∫ r1

0
|P(r2 − s,X(s))(η, ξ)− P(r1 − s,X(s))(η, ξ)|φq(s)ds

+

∫ r2

r1

|P(r2 − s,X(s))(η, ξ)|

+
∑

r1<0<r2

Jk|P(r2 − tk, X(s))− P(r1 − tk, X(s))|. (4.8)

The right hand side of (4.8) tends to zero as r2 − r1 → 0. To show equicontinuity at the left limit
t = t−k fix δ1 > 0 such that [tk : k 6= i] ∩ [ti − δ1, ti + δ1] = ∅. For 0 < h < δ1, we have

|N(X)(ti)−N(X)(ti − h)| ≤ |P((ti, X(s))(η, ξ)− P((ti − h,X(s))(η, ξ)|||X0||η,ξ

+

∫ ti−h

0
|P(ti − s,X(s))(η, ξ)− P(ti − h− s,X(s))(η, ξ)|(B(X(s))|ds

+

∫ ti

ti−h
|P(ti − h,X(s))(η, ξ)|(B(x(s))|ds

+

∫ ti−h

0
|P(ti − s,X(s))− P(ti − h− s,X(s))|(B(X(s))|ds

+

∫ ti

ti−h
|P(t− i− s,X(s))(η, ξ)|(B(X(s))|ds

+

∫ ti−h

0
|[P(t− i− h− s,X(s))− P(ti − s,X(s))]φq(s)|ds

+

∫ ti−h

0
|[P(ti − h− s,X(s))]φq(s)|ds

+

l−1∑
k=1

[P(ti − h− tk, X(s))− P(ti − tks,X(s))]Jk(X(t−k )).

To show equicontinuity at the right limit t = t+k , fix δ2 > 0 such that [tk : k 6= i]∩ [ti−δ2, ti+δ2] = ∅.
For 0 < h < δ2, we have

|N(x)(ti + h)−N(x)(ti)| ≤ |[P(ti + h,X(s))− P(ti, X(s))||X0||η,ξ +
∫ ti

0 |P(ti + h− s,X(s))−
P(ti − s,X(s))|(B(X(s))|ds+

∫ ti+h
ti

|P(ti − h,X(s))|(B(X(s))|ds+
∫ ti

0 |P(ti + h− s,X(s))

−P(ti − s,X(s))|φq(s)ds|+
∫ ti+h
ti

|P(ti − h,X(s))(φq(s)|ds+
∑

0<tk<ti
[P(ti − h− tk)−

P(ti − tk, X(s))] +
∑

ti<tk<ti+1
|P(ti − h− tk, X(s))Jk(X(t+k ))|. (4.9)
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The right hand tends to zero as h→ 0. Set

U = [X ∈ Pwac(Ã) : ‖x‖Pwac ≤ max[X0,Mk−1 : k = 1, ....,m+ 1].

As a consequence of steps 1,2 and 3, we can conclude that

N : U → Pwac(Ã)

is compact. From the choice of U there is no y ∈ δU such that x = λNx for any λ ∈ C such that
Reλ ∈ (0, 1) and Imλ ∈ (0, 1) As a result , we deduce that N has a fixed point x ∈ U which is a
solution to problem (2.1 - 1.2). �
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