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Abstract. This work concerns the establishment of the non-commutative generalization of the classical
Leray Schauder fixed point theorem, Arsela-Ascoli theorem and Micheal selection theorem in a locally
convex space. This results will be employed subsequently in establishing the existence of solutions of some
classes of impulsive quantum stochastic differential inclusions.
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1. Introduction

Solutions have been proffered to series of problems arising in quantum calculus, in particular quan-
tum stochastic differential equations in the framework of Hudson and Parthasarathy formulation.
Problems such as existence of solutions; both analytic and numerical approaches [Ayoola,GOS,
Ogundiran, Bishop etc]. We observed that in an attempt to establish solution to problems arising
in quantum stochastic differential inclusion, fixed point and selection theorems are employed.

In quantum calculus, the setting is non-commutative and processes are operator valued.

In this paper we establish the non-commutative generalization of Leray-Schauder fixed point
theorem, Arzela-Ascoli theorem and Micheal selection theorem.

The rest of the paper is organised as follows. Section 2 contains fundamental structures and
definitions that we use in the sequel. In section 3, we establish the non-commutative analoque of
Leray-Schauder fixed point theorem. In section 4, we establish the non-commutative analoque of
Arsela-Ascoli fixed point theorem. In section 5 we established some auxiliary results that are use in
establishing Michael selection theorem; while section 6 is on non-commutative analogue of Michael
selection theorem.

2. Fundamental structures and definitions

In this section we state some fundamental structures and definition that will be use in the sequel.

(i) Let D be some pre-Hilbert space whose completion is R and + is a fixed Hilbert space.
LgY (Ry),t € R is a space of square integrable 7 - values maps on Ry. The inner product of

the Hilbert space R ® I'(L2(R) will be denoted by (.,.) and ||.|| the norm induced by (., .).
Let E, ¢ > 0 be linear space generated by the exponential vector in Fock space F(Lg (Ry)),

A= LI(DRE,R @ (L2 (Ry)),t >0

where ® denotes the algebraic tensor product and I; denotes the identity map on R ®
(L ([0 t))),t > 0 For every n,{ € DRE such that n = c®e(a), £ = d®e(8), «,f €
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L2

> 1oc(Ry) define

x|l = [, 2€)|, =€ A

then the family of seminorms

{-

né 1 5 € D@E}

generates a topology 7., called the weak topology on .A. The completion of the locally convex
spaces (A, 7,) is denoted by A.

Given a multifunction F' : R™ — 28" a single valued map f : R™ — R" is a selection if
f(z) € F(z) VzeR. )

Upper and Lower Semi continuous Multivalued Maps: Let AV C A and I C R, . For arbitrary
n,§ € DRE, (t,x), (to,z0) € I x N and real numbers ¢,d, ¢ > 0, we define the map d ¢ :

[I X ./\[] — RJr by
dpe((t, ), (to, o)) = max{|t — to|, ||z — zo||ye}-

For arbitrary n,¢ € DRQE

A(n,€) = {ane = (n,2€), v € A}

Byee(0) = {zpe € A, ) : |zye] < €}

Bgmg(to,fbo) = {(t,fb) el xN: dn7§((t, l’), (to,l‘o)) < 57775}.

Amap ¢: I xN — 25¢s4(DBE)” will be said to be upper semi continuous at a point (g, zg) €
I x N | if for each pair 7, & € DQE and € > 0 there exists d, ¢ = 0, ¢((to, z0), €) > 0 such that

o(t, 2)(n,€) C (to, 20)(n, ) + Byg,e(0)

on Bs, . (to, o). The map ¢ is said to be upper semi continuous if it is upper semi continuous
at every point (¢,x) € I x N. Furthermore, for a sesquilinear formed valued map we define

Bec(0) = {p(t,2)(n, &) € P(t,2)(n, &) = [o(t, 2)(1,€)] < €}

A sesquilinear form valued multifunction P : I x N' — 25¢s4(DBE)* wi]] be said to be upper
semi continuous at a point (tg,xg) € I x N if for every 1, € DRQE and € > 0 there exist
dne = 0pe((to, z0),€) > 0 such that

P(t,2)(n,€) C P(to, x0)(n,£) + Br.e(0)

on Bs, . (to, o). The map PP is said to be upper semi continuous if it is upper semi continuous

at every point (¢t,x) € I x N. For arbitrary n,£ € DRE, let ® : I x A — 24 be a closed
multivalued map. For each pair (¢,z), (t,2) € I x A we define

dye((t, ), (tl,x/)) = max{|t — t/|, ||z — ZBlHng}

By s(to, 7o) = {(t,2) € I x A dye((to, z0), (t,2))(1,€) < 8} and
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(vi)

(vii)

(viii)

(xii)

(xiii)

Be(®(t,z) = {y € A: ke}bn(g,x) ly — kllne < €}

Amap ® : IxN — 25¢52(P9E)* wil] he said to be lower semi continuous at a point (tg, zg) € Ix
N, with respect to the seminorm |[[.||¢ if for each pair n,{ € DQE and € > 0 there exists d, ¢ =
dpe((to, z0),€) > 0 such that for each y, € ®(t,,x,), infycqt,z) |y — Yollne <€, V ye
N, almost all t€Tand d,e((t,z),(t,2")) < &,¢. If @ is lower semi continuous at every
point (tg, o) € I x N with respect to the seminorm |[.||,¢, then it will be said to be lower
semi continuous on I x N.

A sesquilinear form valued multifunction P : I x N — 25¢sa(DSE)* will be said to be
lower semi continuous at a point (to,zo) € I x N, with respect to the seminorm ||.||¢
if for every 7,6 € D®E and € > 0 there exist 0,¢ = 0,¢((to,z0),e) > 0 such that
for each y,e0 € P(to, 0)(n,€) infy  cpuo) [Yneo — ynel <€, V y € N,almost all t €
I and dné((t, .%'), (to,xo)) < 57775

Let M C A, for an arbitrary pair 7,6 € D®E, a map ¢ : M — 25¢s4(DBE)* ig gaid to
be locally Lipschitizian if for every z € M there exist a neighbourhood V(z) such that
V' x1,x2 € V(x), there exists L, ¢ > 0, such that

lo(x1)(n,€) — p(x2)(n,&)| < Lyellzr — x2|lne

Let M C A, a family of open subsets {€; }ic; of M, such that M = U;c;€; is called an open
covering of M. Let {€;};cr and {w;}jes be two coverings of M. {€;}icr is a refinement of
{wj}jes if for every i € I, there exist j € J, J C I such that €; C wj. Let {;}ier be a
covering, if J C I and {Q;};cs is again a covering, then {£2;};cs is a sub covering.
A covering {€;};er of M is called locally finite if for every x € M, there exists a neighbour-
hood V of x such that Q; NV # () only for a finite number of indexes.
Let ¢ : M — 25¢59(PE)° " the closure of this set is called a support of ¢, (supp(y)). A
family {¢;} is called a locally Lipschitzian partition of unity if for all : € I
(a) @; is locally Lipschitzian and non negative
(b) the support of ¢; are closed locally finite covering of M;
(c) for each x € M, >, ;pi(x) =1

We say that a partition of unity {¢; };cs is subordinated to a covering {Q;}icr if V i€
I, supp(pi) € Q. . )
Let vg, v1, ..., v, be an affine independent set of n + 1 points in 4. The convex hull {z € A :
=" AV, 0<ReA<land0<ImA<1, > 7", |\|=1}is called closed n-simplex
and is denoted by vg, v1, ..., v,. The points vy, v1, ..., v,. are called the vertices of the simplex.
For 0 <k <n, 0<iy<i <...<i, <n, the k-simplex v;,,v;,,...,v; is a subset of the
n-simplex vy, v1, ..., Un; is called the k-dimensional face (or simply k face of vg,v1, ..., vp. in
addition if y = >~7°) N\jv;, we let x(y) = [2 : A; > 0].
Let K be a non empty set, and ¢ : K — 25 a multifunction, an element z € K is said to be
a fixed point of ¢ if z € p(z).

3. Non-commutative analogue of Leray-Schauder fixed point theorem

THEOREM 3.1 [23] Let K # 0, K C A be compact and satisfies the following

(i) ®:

K — 25 be upper semi continuous and compact map

(ii) The set {X € K : X = A®(X) for some X\ € C such that 0 < ReA <1 and 0 < ImA < 1} is
bounded.

(iii) ®(X (1)) is a non-empty closed and convex subset of K for each X(t) € K,

then there exist y(t) € K such that y(t) € ®(y(t)).

THEOREM 3.2  (Leray-Schauder’s Principle) Suppose that given any arbitrary pair n,& € DQRE the
map N : A — A satisfies the following conditions :
(i) K C A and U be open K.
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(ii) S : K C A — K is upper semi continuous and compact.
(iii) there exists an r > 0 such that if v = ANz with A € C,

[2llne <7

Then the equation x = N(z) has a fized point.

THEOREM 3.3  (Leray-Schauder’s Theorem) Let U and U denote respectively the open and closed
subsets of a convex set K of A such that0 € U and let N : U — K be a compact and semi continuous
map. Then either

(i) The equation x = Nz has a solution in U or

(ii) There exists a point u € 6U such that w = ANwu for some X\ € C such that ReX € (0,1) and
Im\ € (0,1), where 6U is a boundary of U.

Proof. Let assume N\o0U as a fixed point, then we define a map (from Leray- Schauder’s Principle)

N(2),if [N(@)llpe < 2r

S(x): M i T T
[N (2)|]ne’ £ IN(@)[lne > 2

We claim that S : K — K is compact on K = {z : ||z[, ¢ < 2r}. To establish compactness, let {x,}
be a sequence in K, we consider (a) a subsequence {y,} of {x,} such that | N (y,)||ne < 2r for all n
(b) a subsequence {y,} of {z,} such that ||N(yy)||ne > 2r for all n.

In case (a) we have {z,} of {y,} such that S(z,) = N(z,) — y as n — oo. In case (b), let

1
) = N GoTe

— oo and N(z,) >y as n — oo.
Zn)lln.e

Using Schaefer’s theorem (Theorem 3.1) we have x € K for which S(z) = x if || N (yy)|l5¢ < 2r then,
N(xz) = S(x) = x. The other case || N(z)|,¢ > 2r is impossible, for otherwise

2r

S(x)=AN(z)=z, A= m,

ReX, ImX € (0,1).

Let assume N\dU is fixed point free. From condition (ii) u € §U. Let F : U — K be a constant
map u — 0, consider the compact homotopy H)y : U — K given by H(u,\) = AF(u) joining N to
F,if Hy : U — K is fixed point free on §U then by Leray - Schauder’s (Theorem 3.2) F as a fixed
point. If the homotopy is not fixed point free on U then there is an x € U with x = AN (z), Since
Re\ # 0 because 0 ¢ 60U and A # 1 because N\oU has been assumed to be fixed point free, then
condition (ii) is satisfied. n

4. Non-commutative analogue of Arsela-Ascoli theorem
THEOREM 4.1 Let X : I — A be a stochastic process that satisfy the following conditions : (i) For
any arbitrary pairn, & € DRE, let K C A such that F' : K — K is a compact map. (ii) || f(x)|[ne < m

for each x € X, f € F and m < oo. (i) For every e > 0 (depending on n,§) there exist 0pe such
that for every x,y € X,

d(xv y)(77: 5) < 577{'

Then

(n,(flx) = fy)E)<e ¥V feF, xzycX.
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Proof. Given that F is bounded and equicontinuous on K. We claim that we can define a sequence
{fyen} in F. Let Kg denote the subsets of K such that

Kq = {xnﬁh Tng 2, Tngdy -oees }

The sequence

{foea(w1), fre2(2), fres(xs), -}

is bounded and therefore contains a convergence subsequence. Let

{foen1(1), fren2(w1), freas(@n), -+ }

be the subsequence that converges, next the sequence

{foean(@e), fren2(x2), freas(x), -}

is also bounded, it has a convergent subsequence

{fne21(x2), fre22(x2), fre23(w2), ...}

the sequence

{foe21(x3), foe2.2(x3), fre2,3(xs), -}

is bounded and it contain convergent subsequence, continuing this process gives rise to an array

fir fiz fis -
fo1 fo2 fo3 ...
f3.1 [32 f3,3 .-

The first row is a sequence maps that converges at x1. The second row is a subsequence of the
first row and it converges at x1 and xo. The third row is a subsequence of the second row and it
converges at x1,x2,x3 and so on. Considering the sequence down the diagonal, it is a subsequence
of the original sequence {fy¢,} and it converges at x € X. By the equicontinuity property of
{fnen}, given any x,y € X and any € > 0 consider d,¢ > 0 there exists |z — ylye < ope  {fren(®)}
converges. Let n,m > N = |fye n(x) — | fre,m(2)| < € hence

| fne(@) = | fren (@) + [fnen (@) = [frem(2)| + | foem (@) = [ foem(@)] < 3e,

which implies

d(w,y)(n,§) < dye

Then

m, (f(x)—fy)E) <e ¥ feF, xzyelX.
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5. Lemmas

The following lemmas would be employed in the the prove of Micheal selection theorem.

LEMMA 5.1  Assume that P : (I X fl) — 25esa(DRE)” 4o ¢ non-empty compact valued multivalued map
such that

(a) (t,x) — P(t,x)(n, &) is measurable
(b) © — P(t,z)(n,&) is lower semi continuous for t € I and for each r > 0, there exists a map
h, € Lj,.(I,Ry) such that

P(t,2)(n,&)| = inf{||v|[ye : vme € P(t,2)(1,€)} < hy(t) for acet € I and x € A such that
|z|[ne < 7. Then (t,x) = P(t,x)(n,§) is lower semi continuous.

Proof. For arbitrary 1, ¢ € DQE. For any point (tg, z¢) € I x A with respect to the seminorm ||.| Ine
given r > 0, there exists d,¢ > 0, such that for each y,¢ 0 € P(to, z0)(n, &)

<he(t), ¥V zeAalmostall tel and

inf UYne.0 — Ynev
yng.uep(t,x)(mf)| (3 3
dnf((ta .’E), (t07 IIZ()) < (5,75

Let

dﬂf = min{éng(to, 1‘0)}

Then for any r > 0, there exist d,¢, such that for each y,¢ 0 € P(to, z0)(n,&)

inf Yne.0 — Ynel <Opey V ze A almostall tel and
Bty V760 T Ynel < On

dne((t, @) (to, 70) < dne,u,s

where 0,¢ = min{d,¢, }. This implies that the map (t,z) — P(t,z)(n, &) is lower semi continuous at
(to, o). Since (to, o) € I x A is arbitrary , then (t,z) — P(¢,z)(n,£) is lower semicontinuous. M

LEMMA 5.2 Assume that Fy : (I x A) — 25esa(DBE)* o lower semi continuous and (I x A —
25¢s4(DSE)* pos an open graph corresponding to each pair n,& € D®E and

Fi(t,z)(n,§) N Fa(t,x)(n,§) #0  for each (t,x) € (I x A).

Then the sesquilinear form valued map Fy N Fy : (I fl) — 25e5a(DRE)* ¢ Jower semi continuous.

Proof. Fix (t*,2*) in (I x A), let y(t*,2*)(n,&) € Fi N Fy(t*,2*)(n,€) and w > 0. For some o >
0, |y(t*, z*)(n, &) — F1(t*, 2*)(n,&)| = F1(t*,x*) — 0. There exists §; such that to any (t,z) € I x A
with dye((¢,2)(t*, 2*)) < 61, we associate y(t,z)(n,§) in Fp(t,x)(n,§) so that

[y(t,2)(0.€) = y(t",2") (0, §)] < minfe, T}
and d9 such that

dpe((t, z)(t", 2%) < da.
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This implies that

Fi(t,z) > Fi(t*, 2*) — %
and 9 then we have
d"?ﬁ((ta l‘)(t*, x*) < (53'

which implies

Bt 27) (0,€) = Fa(t,2)(n, )| < 2.
Then we have
dng((t, x)(t*, l‘*) < min{él, 02, 53}
’y(tv 95)(77:5) - Fl(ta 95)(775)| <
[y(t,2)(n.€) = y(t*. ")) + [P (7, 2) (0. ) = Fi(t.a)(m, )] < 5 + Fult.a)(n€) = 6+ 5
which means

y(t,x)(n,€) € Fi N Fy(t,)(n,€)

and

ly(t*,2*)(n€) — y(t, x)(né)| < w.

LEMMA 5.3  Assume that the map P : (I x fl) —y 9sesq(DOE)” satisfies the following conditions :

(i) (t,x) — P(t,z)(n,§) is convex valued. }
(ii) (t,z) — P(t,x)(n,§) is lower semi continuous on (I x A).

Then for each e > 0 andzeach pair 1, ¢ € D ® E there exists a continuous sesquilinear form
F,: (I x A) — 25¢4PSE)" gieh, that for every

(ta) € (IxA), freclt,o) € V(B(E2)(0.8),€),
where V (P(t,x)(n,§), €) is a neighbourhood of P(t,x)(n, &) and fpe (t,x) = (n, fe(t, x)E).

Proof. Since (t,z) — P(t,2)(n,£) is lower semi continuous, we associate to each

(t,2) € (I x A), ype € P(t,2)(n,€)

an open neighbourhood U(t,x) of (¢,z) such that P(¢,z)(n,&) = JU(t,z). Let P(t',z')(n, &) =
Jw(t,z), where w(t,x) C U(t,z) otherwise, suppose there is (t,z) € w\U. There exists «a D
w such that (t,x) ¢ «, this implies that (¢,2) ¢ « since w is locally finite, there exists a
neighbourhood V (P(t',z')(n,£),€) of P(t,2")(n,£) such that

VP, 2)(n,€),€) N Blyye,e) #0, forall (¢',2') € U(t,z),
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where ye = (n,9€),y € A. Hence the space (I x A) is paracompact. Then, there exists a locally
finite refinement {U’(t, z), (t,z) € (I x A)}. Moreover, to each locally finite covering, we associate a
locally Lipschitz partition of unity {¢: .}, (t,2) € (I x A). Hence we define

fls,u) = > rals, )y,
(t,x)e(Ix A)

Then f. is continuous as a locally finite sum of continuous maps. Also if ¢(t,z) >0 V(t,z) € U C
U(t,x), then y,e € V(P(t,2)(n,§);€). This implies that

m fe(s,w)e) = D brals,u)(n,yg) € V(P x)(n,);e).

(t,z)e(Ix A)

6. Non-commutative analogue of Michael’s selection theorem

THEOREM 6.1 Assume that the map P : (I x A) — 25¢51PEE)” sutisfies the following conditions : (i)
for each pair n,§ € DRE,P(t, z)(n,&) is closed and convez in C. (i) The map (t,z) = P(t,z)(n,§)
is lower semi continuous on (I x A), then there exists a continuous map f : (I x A) — sesq(D @ E)?
which is a selection of P(t,z)(n,&).

Proof. We employ the principle of mathematical induction as follows. A sequence of continuous
sesquilinear valued map is defined as follows

fo: (I x A) = sesq(DQE)?

satisfying the following assertions:
(i) For all (t,z) € (I x A), arbitrary pair n,{ € D®E,

AWt 2), B2 0, 6) < o ¥ mEN,

1
|frme(t, ) — fre(t, x)| < =2 foreach n=2,3,...

1
(a) Case n = 1. The conclusion of the theorem follows by putting € = 3 in lemma 3. This implies

1
f 1 (t,CL‘) € V(P(t»ﬂf)(ﬁ,f)a 5)
7755
(b) Assume that we have defined the maps fi,..., f : (I x A) — sesq(D ® E)? such that (i) - (i)
holds.
We shall construct the following map fni1 : (I x A) — sesq(D® E)? satisfying (i) and (ii).

Consider the multivalued map

Pn+1(t7 x)(% é) = P(tv x)(na 5) N B(fn,nﬁ(ta x)a 2%)

from condition (ii), for each (t,z) € (I x A) we have

Puii(t,)(m,€) #0 ¥ (t,2) € (I x A).
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By lemma 2 the map (¢,2) — Ppi1(t,x)(n, ) is lower semi continuous. From lemma 3 applied to
Ppt1(t, z)(n, &), there exists a continuous map

frg1 s (I x A) = sesq(D @ E)?

such that
Fuea (6,2)(1,) € VOB 2)(01,), ).
where
VOB, ) (1, ), 2n—1+1) is a neighbourhood  P(, 2)(n, &)
and

A oet,2), P ) (0,6)) < o

Hence it follows that

1
d(fr1me(t, @), P(t,2)(n,€)) < GYEs)

and

Frn £ (6:2)(1 ) € VOB ) (1,6), )

which completes the induction.
From (ii) we obtain that the sequence {fy,¢}nen is a uniform Cauchy sequence in C which

converges to a continuous function f,¢ : (I x A) — C. From (i) and the fact that P(¢,x)(n, &) is
closed for each (t,z) € (I x.A), we have fye(t,x) € P(t,x)(n,§) V (t,x) € (IxA)asP(t,z)(n,§) C
25e54(DSE)” then there exist a map f : (I x A) — sesq(D @ E)? such that

fﬂﬁ(tvx) = <77a f(t7$)§>
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