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Abstract. This paper presents the analysis and application of preemptive resume and non-preemptive
priorities scheduling for an M/G/1 queueing system. Our analysis is based on the fact that, in real life
problems such as telecommunication system, supermarket operation, production system, e.t.c. It is usual
to assign priorities according to the perceived importance of the customer. We consider the general case of
j ≥ 2 different classes of customers in which the different classes can have different service requirement. for
both preemptive resume priority and non-preemptive priority scheduling, we develop efficient algorithms to
calculate the time it takes to serve all customers of equal or higher priority that are present at the moment
a class j customer arrives, we as well obtained the following measures for the two priorities scheduling,
mean response or sojourn time of a class j customers, the number waitng in the queue, average number of
class j customers present in the system and total waiting time for a class j customer.

Keywords: preemptive resume priority scheduling, non-preemptive priority scheduling, Little’s law, PASTA
property.

1. Introduction

In a queueing system in which customers are distinguished by class, it is usual to assign priorities
according to the perceived importance of the customer. The most important class of customers is
assigned priority 1; classes of customers of lesser importance are assigned priorities 2, 3, · · · . When
the system contains customers of different classes, those with priority j are served before those of
priority j+1, j = 1, 2, · · · . Customers within each class are served in first-come, first-served order.
The question remains as to how a customer in service should be treated when a higher-priority
customer arrives. This gives rise to two scheduling policies. The first policy is called preemptive
priority and in this case, a lower-priority customer in service is ejected from service the moment
a higher-priority customer arrives. The interrupted customer is allowed back into service once the
queue contains no customer having a higher priority. The interruption of service may mean that
all of the progress made toward satisfying the ejected customers service requirement has been lost,
so that it becomes necessary to start this service from the beginning once again. This is called
preempt-restart. Happily, in many cases, the work completed on the ejected customer up to the
point of interruption is not lost so that when that customer is again taken into service, the service
process can continue from where it left off. This is called preempt-resume.

The second policy is nonpreemptive. In this scheduling, the service of a low-priority customer will
begin when there are no higher-priority customers present. Now, however, once service has been
initiated on a low-priority customer, the server is obligated to serve this customer to completion,
even if one or more higher-priority customers arrive during this service.

Nomenclature

λ: Arrival rate
j : Class of customer in service
E[y]: Average length of a busy period
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µ: Service rate
Y : The random variable that describes the length of a busy period
Ni: Random variable of the number of customers served during the ith, i = 1, 2, · · · , n busy period
X : Service time random variable when arrival occurs
x : duration of service time random variable X
R : Response time
< : Residual service time
fX(x): Density function of random variable X
b(x)dx : Frequency of occurrences of service interval having length x
M(x) : Number of customers served by time t
Wq: Expected time arriving customer must wait until its service begins. Lq : Expected number of
customers waiting in the queue
E[<] : Mean residual service time
ρ : Workload intensity
W q

j : the total time spent waiting by a class j customer
λ1 : Arrival rate of class-1 customers
λ2 : Arrival rate of class-2 customers

2. Materials and methods

2.1 M/M/1: Priority queue with two customers classes

2.1.1 M/M/1: Preemptive priority policy

To analyse the M/M/1 queue with two customer classes that operate under the preemptive priority
policy. Let Customers of class 1 arrive according to a Poisson process with rate λ1; those of class
2 arrive according to a second (independent) Poisson process having rate λ2. Customers of both

classes receive the same exponentially distributed service at rate µ. We shall let ρ1 =
λ1
µ

, ρ2 =
λ2
µ

,

and assume that ρ = ρ1 + ρ2 < 1. Given that the service is exponentially distributed, it matters
little whether we designate preempt-resume or preempt-restartthanks to the memoryless property
of the exponential distribution. Furthermore, since we have conveniently chosen the service time
of all customers to be the same, the total number of customers present, N , is independent of the

scheduling policy chosen. It then follows from standard M/M/1 results that E[N ] =
ρ

1− ρ
. From

the perspective of a class 1 customer, class 2 customers do not exist, since service to customers of
class 2 is immediately interrupted upon the arrival of a class 1 customer. To a class 1 customer, the
system behaves exactly like an M/M/1 queue with arrival rate λ1 and service rate µ. The mean
number of class 1 customers present and the mean response time for such a customer are given,

respectively, by E[N1] =
ρ1

1− ρ1
and E[R1] =

1

µ(1− ρ1)
. Mean number of class 2 customers present

is

E[N2] = E[N ]− E[N1] =
ρ

1− ρ
− ρ1

1− ρ1
=

ρ1 + ρ2
1− ρ1 − ρ2

− ρ1
1− ρ1

=
ρ2

(1− ρ1)(1− ρ1 − ρ2)

By Little’s law, the mean response time of class 2 customers is given as

E[R2] =
1/µ

(1− ρ1)(1− ρ1 − ρ2)
.

2.1.2 M/M/1: Nonpreemptive scheduling policy

For the nonpreemptive scheduling policy. This time an arriving class 1 customer finding a class 2
customer in service is forced to wait until that class 2 customer finishes its service. From PASTA,
we know that an arriving class 1 customer will find, on average, E[N1] class 1 customers already
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present, each of which requires
1

µ
time units to complete its service. The arriving customer also has

a mean service time of
1

µ
, and if the arriving customer finds a class 2 customer in service, a further

1

µ
time units must be added into the total time the arriving class 1 customer spends in the system.

The probability of an arriving customer finding a class 2 customer in service is equal to ρ2, recall
that the probability the system has at least one customer is ρ = ρ1 + ρ2. Summing these three time
periods together, we compute the mean response time for a class 1 customer as

E[R1] =
E[N1]

µ
+

1

µ
+
ρ2
µ

(1)

By Little’s law, we have E[N1] = λ1E[R1], which when substituted into Equation (1) gives

E[R1] =
λ1E[R1]

µ
+

1

µ
+
ρ2
µ

Solving for E[R1] yields E[R1] =
(1 + ρ2)/µ

1− ρ1
. Mean number of class 1 customers is obtained as

E[N1] =
(1 + ρ2)ρ1

1− ρ1
. Mean number of class 2 customers can be found from

E[N2] = E[N ]− E[N1] =
ρ1 + ρ2

1− ρ1 − ρ2
− (1 + ρ2)ρ1

1− ρ1
=
ρ2 − ρ1ρ2 + ρ21ρ2 + ρ1ρ2

2

(1− ρ1)(1− ρ1 − ρ2)

=
ρ2[1− ρ1(1− ρ1 − ρ2)]
(1− ρ1)(1− ρ1 − ρ2)

Finally, from Little’s law, the mean response time for class 2 customers is

E[R2] =
E[N2]

λ2
=

[1− ρ1(1− ρ1 − ρ2)]/µ
(1− ρ1)(1− ρ1 − ρ2)

2.2 M/G/1: Priority queue with two customers classes

2.2.1 M/G/1: NonPreemptive priority scheduling

Let us consider the general case of J ≥ 2 different classes of customer in which the different classes
can have different service requirements. We assume that the arrival process of class j customers,
j = 1, 2, · · · , J , is Poisson with parameter λj and that the service time distribution of this class of
customers is general, having a probability density function denoted by bj(x), x ≥ 0, and expecta-

tion x̄j =
1

µj
. We shall let ρj =

λj
µj

and assume that ρ =
∑J

j=1 ρj < 1. Let Lj and Lq
j be the mean

number of class j customers in the system and waiting in the queue respectively; we shall let E[Rj ]
and W q

j be the mean response time and mean time spent waiting respectively; and we shall let E[<j ]
be the expected residual service time of a class j customer. We consider first the non-preemptive
priority scheduling case. Here the time an arriving class j customer, to whom we refer to as the
tagged customer, spends waiting in the queue is the sum of the following three time periods.
1. The residual service time of the customer in service.
2. The sum of the service time of all customers of classes 1 through j that are already present the
moment the tagged customer arrives.
3. The sum of the service time of all higher-priority customers who arrive during the time the tagged
customer spends waiting in the queue.
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The response time of the tagged customer is found by adding its service requirement to this total.
Two features allow us to treat the first of these three periods relatively simply. First, an arriving
customer, whatever the class, must permit the customer in service to finish its service: the probability
that the customer in service is of class j is given by ρj (observe that ρ = ρ1 + ρ2 + · · · + ρJ is the
probability that the server is busy). Second, we know that the expected remaining service time of any
customer in service as seen by an arriving customer whose arrival process is Poisson is E[<j ] if the
customer in service is of class j. Thus the expected residual service time as experienced by the tagged
customer is E[<] =

∑J
i=1E[<i]. The second time period is found by using the PASTA property:

the tagged customer finds the queueing system at steady state, and hence observes the stationary
distribution of all classes of customer already present. Given that, at equilibrium, the mean number
of class i customers waiting in the queue is Lq

i , the mean duration to serve all customers of equal

or higher priority found by the arriving tagged customer is
∑j

i=1 x̄i. The mean length of time such

customers spend waiting in the queue is W q
1 = Lq

1x̄1 +
∑J

i=1 ρiE[<i]. By applying Little’s law,

Lq
1 = λ1W

q
1 and W q

1 = λ1W
q
1 x̄1 +

∑J
i=1 ρiE[<i] = ρ1W

q
1 +

∑J
i=1 ρiE[<i] leads to

W q
1 =

∑J
i=1 ρiE[<i]

1− ρ1
(2)

From this result, the response time of class 1 customers can be computed and then, using Littles law,
the mean number in the system and the mean number waiting in the queue. Equation (2) will serve as
the basis clause of a recurrence relation involving customers of lower priority classes. For customers
of class 2 or greater, we need to compute the third time period, the time spent waiting for the service
completion of all higher-priority customers who arrive while the tagged customer is waiting. Given
that we have defined W q

j to be the total time spent waiting by a class j customer, the time spent

serving higher-priority customers who arrive during this wait is
∑J−1

i=1 λiW
q
j x̄i = W q

j

∑J−1
i=1 ρi. Thus

the total time spent waiting by a class j customer is

W q
j =

J∑
i=1

ρiE[<i] +

j∑
i=1

Lq
1x̄1 +W q

j

J−1∑
i=1

ρi.

W q
j (1−

J−1∑
i=1

ρi) =

J∑
i=1

ρiE[<i] +

j∑
i=1

λiW
q
i x̄i

=

j−1∑
i=1

ρiE[<i] +

J−1∑
i=1

ρiW
q
i + ρjW

q
j (3)

which leads to

W q
j (1−

J−1∑
i=1

ρi) =

j∑
i=1

ρiE[<i] +

J−1∑
i=1

ρiW
q
i

Comparing the right-hand side of this equation with the right-hand side of Equation (3), W q
j (1 −∑j

i=1 ρi) = W q
j j−1(1−

∑j−2
i=1 ρi) and multiplying both sides with (1−

∑j−1
i=1 ρi),

W q
j (1−

j∑
i=1

ρi)(1−
j−1∑
i=1

ρi) = W q
j j−1(1−

j−2∑
i=1

ρi)(1−
j−1∑
i=1

ρi)
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For the highest-priority customers. Repeated application of this recurrence leads to

W q
j (1−

j∑
i=1

ρi)(1−
j−1∑
i=1

ρi) = W q
1 (1− ρ1)

By substituting for W q
1 using equation (2),

W q
j =

∑J
i=1 ρiE[<i]

(1−
∑j

i=1 ρi)(1−
∑j−1

i=1 ρi)
, j = 1, 2, · · · , J (4)

The mean response time of class j customers can now be found by adding x̄j to this equation, and
then Littles law can be used to determine the mean number of class k customers in the system and
waiting in the queue.

2.2.2 M/G/1: preempt-resume priority scheduling

This is when the scheduling policy is such that a low-priority customer in service is interrupted
to allow an arriving customer of a higher priority to begin service immediately. The interrupted
customer is later scheduled to continue its service from the point at which it was interrupted. With
this policy, customers of class j + 1, j + 2, · · · , J do not affect the progress of class j customers;
customers with lower priorities are essentially invisible to higher-priority customers. In light of this
we may set λk = 0 for k = j + 1, j + 2, · · · , J when analyzing the performance of class j customers.
Therefore TA

1 is equal to the sum of the residual service time of the customer in service and the

time required to serve all waiting customers: i.e., TA
1 =

∑j
i=1 ρiE[<i] +

∑j
i=1 ρiT

A
1 which leads to

TA
1 =

∑j
i=1 ρiE[<i]

1−
∑j

i=1 ρi
.

Also

TA
2 =

j−1∑
i=1

ρiE[Rj ] = (W q
j + 1/µj)

j−1∑
i=1

ρi.

The total waiting time for a class j customer is then equal to

W q
j = TA

1 + TA
2 =

∑j
i=1 ρiE[<i]

1−
∑j

i=1 ρi
+ (W q

j + 1/µj)

j−1∑
i=1

ρi.

Therefore,

W q
j =

∑J
i=1 ρiE[<i]

(1−
∑j

i=1 ρi)(1−
∑j−1

i=1 ρi)
+

1/µj
∑j−1

i=1 ρi

1−
∑j

i=1 ρi
(5)

The mean response or sojourn time of a class j customer is

E[Rj ] = W q
j +

1

µj
=

∑J
i=1 ρiE[<i]

(1−
∑j

i=1 ρi)(1−
∑j−1

i=1 ρi)
+

1/µj

1−
∑j

i=1 ρi

It is also possible to solve for the mean response time directly from

E[Rj ] = TA
1 + TA

2 +
1

µj
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E[Rj ] =
1

(1−
∑j

i=1 ρi)
[

∑J
i=1 ρiE[<i]

(1−
∑j

i=1 ρi)
+

1

µj
]

The time spent waiting by a class j customer prior to entering service for the first time, is given by

TB
1 =

∑J
i=1 ρiE[<i]

(1−
∑j

i=1 ρi)(1−
∑j−1

i=1 ρi)

The remaining time spent in service and in interrupted periods caused by higher priority customers
who arrive after the customer first starts its service, is given by

TB
2 =

1/µj
∑j−1

i=1 ρi

1−
∑j

i=1 ρi

which is the second term in Equaion 7.

3. Numerical examples

Example 1 Consider a queueing system which caters to three different classes of customers whose
arrival processes are all Poisson. The most important customers require x̄1 = 1 time unit of service

and have a mean interarrival period of
1

λ1
= 4 time units. The corresponding values for classes 2 and

3 are x̄2 = 5,
1

λ2
= 20, and x̄3 = 20,

1

λ2
= 50, respectively. Thus ρ1 = 1/4, ρ2 = 5/20, ρ3 =

20/50, and ρ = ρ1 + ρ2 + ρ2 = .9 < 1. To facilitate the computation of the residual service times,
we shall assume that all service time distributions are deterministic. Thus <1 = .5, <2 = 2.5,
and <3 = 10.0. With the nonpreemptive priority policy, the times spent waiting in the queue by a
customer of each of the three classes are as follows:

W q
1 =

ρ1<1 + ρ2<2 + ρ3<3

1− ρ1
=

4.75

0.75
= 6.333

W q
2 =

ρ1<1 + ρ2<2 + ρ3<3

(1− ρ1)(1− ρ1 − ρ2)
=

4.75

0.50× 0.75
= 12.667

W q
3 =

ρ1<1 + ρ2<2 + ρ3<3

(1− ρ1 − ρ2)(1− ρ1 − ρ2 − ρ3)
=

4.75

0.10× 0.5
= 95

For the preemptive- resume scheduling, the corresponding waiting times are

W q
1 =

ρ1<1

1− ρ1
=

0.125

0.75
= 0.1667

W q
2 =

ρ1<1 + ρ2<2

(1− ρ1)(1− ρ1 − ρ2)
+
ρ1/µ2
1− ρ1

=
0.75

0.50× 0.75
+

1.25

0.75
= 3.667

W q
3 =

ρ1<1 + ρ2<2 + ρ3<3

(1− ρ1 − ρ2)(1− ρ1 − ρ2 − ρ3)
+

(ρ1 + ρ1)/µ3
1− ρ1 − ρ2

=
4.75

0.10× 0.5
+

10

0.5
= 115.0

Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018) 68



... M/G/1 queueing system Agboola Trans. of NAMP

Example 2 Consider a nonpreemptive priority M/G/1 queue with three classes of customer. The first
two moments of the highest priority customers are given by E[S1] = 5 and E[S2

1 ] = 28, respectively.
The corresponding values for classes 2 and 3 are E[S2] = 4; E[S2

2 ] = 24 and E[S3] = 22; E[S2
3 ] =

1, 184, respectively. Arrival rates for the three classes are such that ρ1 = 1/3, ρ2 = 11/30, and
ρ3 = 11/60, respectively, and so ρ = ρ1 + ρ2 + ρ3 = 53/60. The mean residual service times are

E[<1] =
E[S2

1 ]

2E[S1]
=

28

10
= 2.8,

E[<2] =
E[S2

2 ]

2E[S2]
=

24

8
= 3,

E[<3] =
E[S2

3 ]

2E[S3]
=

1184

44
= 26.9091.

The mean time spent waiting by customers of each class given that

3∑
j=1

ρjE[<j ] = 6.9667,

W q
1 =

∑3
j=1 ρjE[<j ]

1− ρ1
=

6.9667

2/3
= 10.45,

W q
2 =

∑3
j=1 ρjE[<j ]

(1− ρ1 − ρ2)(1− ρ1)
=

6.9667

3/10× 2/3
= 34.8333,

W q
3 =

∑3
j=1 ρjE[<j ]

(1− ρ1 − ρ2 − ρ3)(1− ρ1 − ρ2)
=

6.9667

7/60× 3/10
= 199.0476.

4. Conclusion

This study has surveyed the questions of priorities scheduling for M/G/1 queueing model that arise
in queueing theory and its application such as Preempt-Resume Priority Scheduling and Nonpre-
emptive priority policy. we were able to developed efficient algorithms to calculate the time it takes
to serve all customers of equal or higher priority that are present at the moment a class j customer
arrives, we as well obtained the following measures for the two priorities scheduling, mean response
or sojourn time of a class j customers, the number waitng in the queue, average number of class j
customers present in the system and total waiting time for a class j customer while the numerical
examples were presented to reflect its applicatiation to real life problems.
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