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1. Introduction

The notion of a locally convex partial ∗-algebraic module was introduced by Ekhaguere [2] in his
study of the representation of completely positive maps between partial ∗-algebras. Locally convex
partial ∗-algebraic modules are generalizations of inner product modules over B∗-algebras [9]. These
inner product modules [11], now generally known as pre-Hilbert C∗-modules, provide a natural
generalization of the Hilbert space in which the complex field of scalars is replaced by a C∗-algebra.
Although the theory of Hilbert C∗-modules, in the case of commutative unital C∗-algebras, can be
traced back to the work of Kaplansky [4], where he proved that derivations of type I AW∗-algebras
are inner, it was Paschke [9] who gave the general framework. Apart from being interesting on
its own, the theory of Hilbert C∗-modules has had several areas of applications. For example, the
work of Kasparov on KK-theory [5,6], the work of Rieffel on induced representations and Morita
equivalence [11,12], and the work of Woronowicz on C∗-algebraic quantum group theory [14], etc.
For a more detailed bibliography of the theory of Hilbert C∗-modules, see [3]. In this paper, we
develop some of the properties of locally convex partial ∗-algebraic modules by extending a number
of results from the theory of Hilbert C∗-modules [9,10,8,7] to a partial ∗-algebraic setting.

The paper is organized as follows. In section 2, we outline some of the fundamental notions used
in the sequel. See [1,2,13], for more details of these notions. Section 3 outlines the basic notions of
a locally convex partial ∗-algebraic module as introduced in [2]. We develop some basic properties
of locally convex partial ∗-algebraic modules in section 4. In section 5, we study some properties of
certain classes of linear maps acting on locally convex partial ∗-algebraic modules. Most importantly,
we develop some properties of a class of adjointable maps which, in the case of Hilbert C∗-modules,
are operators analogous to the finite-rank operators on a Hilbert space. Finally, in section 6, we
introduce the notion of a locally convex partial ∗-algebraic bimodule. Since we are working with
right locally convex partial ∗-algebraic modules, this notion is natural.

2. Fundamental notions

A partial ∗-algebra is simply a complex involutive linear space A with a multiplication that is defined
only for certain pairs of compatible elements determined by a relation on A. More precisely, there
is the following definition.
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Definition 1 A partial ∗-algebra is a quadruple (A,Γ, �, ∗) comprising:

(a) a linear space A over C;
(b) a relation Γ ⊆ A×A;
(c) a partial multiplication, �, such that

(c1) (x, y) ∈ Γ if and only if x � y ∈ A;
(c2) (x, y), (x, z) ∈ Γ implies (x, λy + µz) ∈ Γ and then

x � (λy + µz) = λ(x � y) + µ(x � z),∀λ, µ ∈ C; and
(d) an involution (x 7→ x∗) such that

(d1) (x+ λy)∗ = x∗ + λy∗,∀x, y ∈ A, λ ∈ C and x∗∗ = x, ∀x ∈ A;
(d2) (x, y) ∈ Γ if and only if (y∗, x∗) ∈ Γ and then (x � y)∗ = y∗ � x∗.

Definition 2 An element e of a partial ∗-algebra B is called a unit, and B is said to be unital, if
(e, x), (x, e) ∈ Γ, and then e∗ = e, and e � x = x � e = x, for every x ∈ B. B is said to be abelian if,
for all x, y ∈ B, (x, y), (y, x) ∈ Γ, and then x � y = y � x.

Remark 1 Partial ∗-algebras are studied by means of their spaces of multipliers.

Definition 3 Let (A,Γ, �, ∗) be a partial ∗-algebra, M ⊂ A and x ∈ A. Put L(x) = {y ∈ A :
(y, x) ∈ Γ}(resp., R(x) = {y ∈ A : (x, y) ∈ Γ}, L(M) =

⋂
x∈M L(x) ≡ {y ∈ A : y ∈ L(x),∀x ∈ M},

R(M) =
⋂
x∈MR(x) ≡ {y ∈ A : y ∈ R(x),∀x ∈ M}). Then L(x) (resp., R(x), L(M), R(M))

is called the space of left multipliers of x (resp., right multipliers of x, left multipliers of M, right
multipliers of M). In particular, elements of L(A) (resp., R(A)) are called universal left (resp.,
universal right) multipliers. M(A) ≡ L(A) ∩R(A) is the so-called universal multipliers of A.

Definition 4 A partial ∗-algebra B is said to be semi-associative if y ∈ R(x) implies y � z ∈ R(x)
for every z ∈ R(B) and (x � y) � z = x � (y � z).

Remark 2 If a partial ∗-algebra B is semi-associative, then L(B) and R(B) are algebras, while M(B)
is a ∗-algebra.

Definition 5 The positive cone of a partial ∗-algebra A is the set A+ given by A+ := {
∑n

j=1 x
∗
j �

xj : xj ∈ R(A), n ∈ N}. We say that x ∈ A is positive if x ∈ A+ and write x ≥ 0.

Definition 6 Given a Hausdorff locally convex topology τ on A, we call the pair (A, τ) a locally
convex partial ∗-algebra if and only if:

(i) (A0, τ) is a Hausdorff locally convex space, where A0 is the underlying linear space of A,
(ii) the map x ∈ A 7→ x∗ ∈ A is τ -continuous,

(iii) the map x ∈ A 7→ a � x ∈ A is τ -continuous, for all a ∈ L(A) and
(iv) the map x ∈ A 7→ x � b ∈ A is τ -continuous, for all b ∈ R(A).

Definition 7 Let B be a complex linear space and B0 a ∗-algebra contained in B. B is said to be
a quasi ∗-algebra with distinguised ∗-algebra B0 if

(i) B is a bimodule over B0 for which the module action extends the multiplication of B0 such
that x.(y.b) = (x.y).b and x.(b.y) = (x.b).y, for all b ∈ B and x, y ∈ B0;

(ii) the involution ∗ on B extends the involution of B0 such that (x.b)∗ = b∗.x∗ and (b.x)∗ = x∗.b∗,
for all b ∈ B and x ∈ B0.

If B is a locally convex space with a locally convex topology τ such that

(i) B0 is τ -dense in B;
(ii) the involution ∗ is τ -continuous;

(iii) the left and right module actions are separately τ -continuous,

then (B,B0) is said to be a locally convex quasi ∗-algebra.

Remark 3 Every quasi ∗-algebra is a semi-associative partial ∗-algbera
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3. Locally convex partial ∗-algebraic modules

As in [2], let (B, τB) be a locally convex partial ∗-algebra, with involution ∗ and partial multiplication
written as juxtaposition. Let τB be generated by a family {| · |α : α ∈ ∆} of seminorms. In what
follows, we assume, without loss of generality, that the family {| · |α : α ∈ ∆} of seminorms is
directed. Let D be a linear space which is also a right R(B)-module in the sense that x.a+ y.b ∈ D,
whenever x, y ∈ D and a, b ∈ R(B), where the action of R(B) on D is written as z.c for z ∈ D,
c ∈ R(B). Locally convex partial ∗-algebraic modules were introduced in [2] as follows.

Definition 8 A B-valued inner product on D is a conjugate-bilinear map 〈·, ·〉B : D × D −→ B
satisfying the following:

(i) 〈x, x〉B ∈ B+,∀x ∈ D and 〈x, x〉B = 0 only if x = 0,
(ii) 〈x, y〉B = 〈y, x〉∗B,∀x, y ∈ D,

(iii) 〈x, y.b〉B = 〈x, y〉Bb,∀x, y ∈ D, b ∈ R(B)

Lemma 1 Let 〈·, ·〉B be a B-valued inner product on D. Define ‖ · ‖α : D −→ [0,∞) by

‖x‖α = |〈x, x〉B|1/2α , x ∈ D, α ∈ ∆. (1)

Then, the following inequality holds:

1

2
(|〈x, y〉B|α + |〈y, x〉B|α) ≤ ‖x‖α‖y‖α,∀x, y ∈ D, α ∈ ∆. (2)

Moreover, if | · |α is ∗-ivariant, i.e., if |a∗|α = |a|α, ∀a ∈ B, α ∈ ∆, then the inequality (2) reduces to

|〈x, y〉B|α ≤ ‖x‖α‖y‖α, ∀x, y ∈ D, α ∈ ∆. (3)

Corollary 1 If ‖ · ‖α : D −→ [0,∞) is defined as in Equation (1), then ‖ · ‖α is a seminorm on
D for each α ∈ ∆.

Remark 4 We observe that the family {‖ · ‖α : α ∈ ∆} of seminorms is directed.

Definition 9 A locally convex (B, τB)-module is a triple (D, 〈·, ·〉B, τD,B) comprising:

(a) a linear space D which is also a right R(B)-module;
(b) a B-valued inner product 〈·, ·〉B : D ×D −→ B; and
(c) a locally convex topology τD,B on D generated by the family {‖ · ‖α : α ∈ ∆} of seminorms

given by (1) and, with respect to this topology, the map lR(b) : D −→ D given by lR(b)x =
x.b,∀x ∈ D, is continuous for each b ∈ R(B); i.e., for each α ∈ ∆,∃ a β(α) ∈ ∆ and Kα,b > 0
such that ‖lR(b)x‖α ≤ Kα,b‖x‖β(α)

Proposition 1 Let (D, 〈·, ·〉B, τD,B) be a locally convex (B, τB)-module. Then the B-valued inner
product 〈·, ·〉B on D is τB-continuous.
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Proof. Let (xλ) and (yµ) be nets in D such that xλ −→ x and yµ −→ y. Then

|〈xλ, yµ〉B − 〈x, y〉B|α = |〈xλ − x, y〉B − 〈xλ, y〉B + 〈xλ, yµ〉B|α
= |〈xλ − x, y〉B − 〈xλ, y − yµ〉B|α
= |〈xλ − x, y〉B + 〈xλ, yµ − y〉B|α
≤ |〈xλ − x, y〉B|α + |〈xλ, yµ − y〉B|α
≤ (|〈xλ − x, y〉B|α + |〈y, xλ − x〉B|α) + (|〈xλ, yµ − y〉B|α + |〈yµ − y, xλ〉B|α)

≤ 2(‖xλ − x‖α‖y‖α + ‖xλ‖α‖yµ − y‖α)

≤ 2[‖xλ − x‖α‖y‖α + (‖xλ − x‖α + ‖x‖α)‖yµ − y‖α]

= 2(‖xλ − x‖α‖y‖α + ‖xλ − x‖α‖yµ − y‖α + ‖x‖α‖yµ − y‖α) −→ 0.

Hence 〈xλ, yµ〉B −→ 〈x, y〉B. This completes the proof. �

Remark 5 The lemma above implies that the B-valued inner product 〈·, ·〉B on D can be extended
to a B-valued inner product on the τD,B-completion of D. We shall always denote also by 〈·, ·〉B, the
B-valued inner product on the τD,B-completion of D.

Example 1 Let (B, τB) be a semi-associative locally convex partial ∗-algebra whose topology is
generated by the family {| · |α : α ∈ ∆} of seminorms. If we take D as R(B) and define 〈·, ·〉B :
D × D −→ B by 〈x, y〉B = x∗y,∀x, y ∈ D, then (D, 〈·, ·〉B, τD,B) is a locally convex (B, τB)-module,

where we take τD,B to be the locally convex topology on D generated by ‖x‖α = |〈x, x〉B|1/2α . Indeed:

(b) (i) 〈x, x〉B = x∗x ∈ B+,∀x ∈ R(B) and if x = 0, then〈x, x〉B = x∗x = 0;
(ii) 〈y, x〉∗B = (y∗x)∗ = x∗y = 〈x, y〉B,∀x, y ∈ R(B),

(iii) 〈x, y.b〉B = x∗(y.b) = (x∗y)b = 〈x, y〉Bb,∀x, y ∈ R(B), b ∈ R(B); and
(c) The continuity of the map x ∈ R(B) 7−→ lR(b)x = x.b ∈ R(B) follows from the assumption

that (B, τB) is a locally convex partial ∗-algebra.

4. Some basic properties of locally convex (B, τB)-modules

Definition 10 Let A be a partial ∗-algebra and B a linear subspace of A. Then B is said to be a
left (resp., right) ideal in A, if a ∈ L(A) and b ∈ B (resp., a ∈ R(A) and b ∈ B) implies ab ∈ B
(resp., ba ∈ B). If B is both a left and a right ideal in A, then B is called a two-sided ideal, or simply,
an ideal in A.

Proposition 2 Let (D, 〈·, ·〉B, τD,B) be a locally convex (B, τB)-module. Define the linear subspace,
MD of B by

MD = span{〈x, y〉B : x, y ∈ D}
⋂
R(B).

Then MD is an ideal in B.

Proof. Take an element m in MD. Then m may be expressed as m =
∑n

j=1 λj〈xj , yj〉B, ∀λj ∈
C,∀xj , yj ∈ D, n ∈ N. So if b ∈ R(B), then mb = (

∑n
j=1 λj〈xj , yj〉B)b =

∑n
j=1 λj〈xj , yj〉Bb =∑n

j=1 λj〈xj , yj .b〉B, by Condition (iii) of Definition 8. It follows that mb ∈ MD, i.e., MD is a right
ideal in B, by Definition 10.

To show thatMD is also a left ideal in B, we first note that conditions (ii) and (iii) of Definition ??
imply 〈x.b, y〉B = b∗〈x, y〉B, ∀b ∈ R(B). It now follows from this that, if m ∈ MD and a ∈ L(B),
then am ∈ MD, i.e., MD is a left ideal in B, by Definition 10. Hence MD is, indeed, an ideal in
B. �

Definition 11 Let (D, 〈·, ·〉B, τD,B) be a locally convex (B, τB)-module. Then D will be called full
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if MD is dense in R(B).

Example 2 Let {Dj} := {(Dj , 〈·, ·〉B, τDj ,B)} be a finite collection of locally convex (B, τB)-
modules. Let D be the set of n-tuples x = (x1, . . . , xn) where xj ∈ Dj (j = 1, . . . , n), and define
the following (componentwise) operations: (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn) and
(x1, . . . , xn).b = (x1.b, . . . , xn.b), b ∈ R(B). Then D is the direct sum of the R(B)-modules {Dj},
i.e., D :=

⊕n
j=1Dj . D is also a right R(B)-module under these operations. If we define the B-valued

inner product on D by 〈x, y〉B :=
∑n

j=1〈xj , yj〉B, where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ D, then

(D, 〈·, ·〉B, τD,B) is a locally convex (B, τB)-module. We shall denote by Dn the direct sum of n copies
of a locally convex (B, τB)-module D. Now let D = R(B)n, the direct sum of n copies of the locally
convex (B, τB)-module R(B). Then D is full. Here, MD = span{

∑n
j=1 a

∗
jbj : aj , bj ∈ R(B), n ∈

N}
⋂
R(B) ⊂ R(B). But B+ = {

∑n
j=1 b

∗
jbj : bj ∈ R(B), n ∈ N} ⊂ {

∑n
j=1 a

∗
jbj : aj , bj ∈ R(B), n ∈ N}.

This implies that spanB+
⋂
R(B) ⊂MD. So, if spanB+ coincides with the partial ∗-algebra B, then

it follows that R(B) ⊂MD. Hence MD is dense in R(B).

Remark 6 From the preceding example, we have the following result.

Proposition 3 If the linear span of B+ coincides with the partial ∗-algebra B, then the locally
convex (B, τB)-module R(B) is full.

5. Adjointable maps on locally convex (B, τB)-modules

We now turn to a study of some classes of maps acting on locally convex partial ∗-algebraic mod-
ules. Let (X , 〈·, ·〉B, τX ,B) and (Y, 〈·, ·〉B, τY,B) be complete locally convex (B, τB)-modules and let
(D, 〈·, ·〉B, τD,B) be a dense locally convex (B, τB)-submodule of X .

Definition 12 A map t : X −→ Y is called a (B, τB)-module map (or simply, a module map)
if and only if t(x.b) = (tx).b, ∀x ∈ D, b ∈ R(B). One also says that t is a (B, τB)-linear map. We
denote by LB(X ,Y), the set of all linear (B, τB)-module maps from X to Y.

Definition 13 We call a map t : X −→ Y adjointable if there exists a map t∗ : Y −→ X such
that

〈tx, y〉Y,B = 〈x, t∗y〉X ,B, ∀x ∈ D, y ∈ Y (4)

The map t∗ will be called the adjoint of t.

Proposition 4 If the map t : X −→ Y is adjointable, then t ∈ LB(X ,Y).

Proof. Let t : X −→ Y be adjointable. Then ∀x, y ∈ D, z ∈ Y, α ∈ C and b ∈ R(B)

〈t[(x+ αy).b], z〉Y,B = 〈(x+ αy).b, t∗z〉X ,B = b∗〈x+ αy, t∗z〉XB
= b∗(〈x, t∗z〉X ,B + α〈y, t∗z〉X ,B) = b∗〈x, t∗z〉X ,B + αb∗〈y, t∗z〉X ,B
= b∗〈tx, z〉Y,B + αb∗〈ty, z〉Y,B = 〈tx.b, z〉Y,B + 〈α(ty).b, z〉Y,B
= 〈tx.b+ α(ty).b, z〉Y,B.

This implies that t[(x + αy).b] = tx.b + α(ty).b. It follows that t (as well as t∗) is a linear (B, τB)-
module map. Hence t ∈ LB(X ,Y). �

Notation 5.1 Let (D, 〈·, ·〉B, τD,B) be a dense locally convex (B, τB)-submodule of (X , 〈·, ·〉B, τX ,B).
LB(D,X ) becomes a linear space when furnished with the usual (pointwise) operations of vector
addition, t + s and scalar multiplication, λt, t, s ∈ LB(D,X ), λ ∈ C. Now set L∗B(D,X ) := {t ∈
LB(D,X ) : t is continuous and adjointable}. Since D is dense in X , t∗ is uniquely determined, and
hence, well-defined. It follows that L∗B(D,X ) is a ∗-invariant linear subspace of LB(D,X ). It is not
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a ∗-algebra, except L∗B(D,X ) ≡ L∗B(D,D) = L∗B(D) := {t ∈ L∗B(D,X ) : tD ⊆ D and t∗D ⊆ D}.
However, if one sets L+B (D,X ) := {t ∈ L∗B(D,X ) : dom(t∗) ⊇ D}, then:

Proposition 5 The linear space L+B (D,X ) is a partial ∗-algebra with:

(i) involution: t 7−→ t+ := t∗ � D, for all t ∈ L+B (D,X ) and
(ii) partial multiplication, specified by

Γ = {(t, s) ∈ L+B (D,X )2 : sD ⊆ dom(t+∗) and t+D ⊆ dom(s∗)}t ◦ s = t+∗s.

Definition 14 A +-invariant linear subspace M of L+B (D,X ) is called a partial ∗-subalgebra of
L+B (D,X ) if t, s ∈M, with t ∈ L(s) implies t ◦ s ∈M.

Remark 7 The next result introduces a class of adjointable maps on locally convex partial ∗-
algebraic modules. In the case of Hilbert C∗-modules, they are operators analogous to the finite-rank
operators on a Hilbert space. Let X be a complete locally convex (B, τB)-module. Set D = {z ∈ X :
〈x, z〉B ∈ R(B),∀x,∈ X}. In what follows, we shall assume that D is dense in X .

Proposition 6 For x, y ∈ X , define the map πBx,y : D −→ X as

πBx,y(z) = x.〈y, z〉B. (5)

Then the map πBx,y is continuous and adjointable with adjoint

(
πBx,y

)+
:=
(
πBx,y

)∗
� D = πBy,x (6)

Proof. Let z ∈ D. Then ‖πBx,y(z)‖α = ‖x.〈y, z〉B‖α. Since the right R(B)-module action is continuous,

it follows that there exist β(α) and a constant Kα,〈y,z〉B > 0 such that ‖πBx,y(z)‖α ≤ Kα,〈y,z〉B‖x‖β(α).
Let Cα = sup

{
Kα,〈y,z〉B
‖y‖α‖z‖α : y ∈ X , z ∈ D with ‖y‖α 6= 0, ‖z‖α 6= 0

}
. Then Kα,〈y,z〉B ≤ Cα‖y‖α‖z‖α.

So we have ‖πBx,y(z)‖α ≤ Cα‖x‖β(α)‖y‖α‖z‖α i.e., ‖πBx,y(z)‖α ≤ M(α,z,y)‖z‖γ(α), where M(α,z,y) =

Cα‖x‖β(α)‖y‖α. Hence πBx,y is continuous. Now let u, z ∈ D. Then

∗πBx,y(z)uB = 〈x.〈y, z〉B, u〉B = 〈z, y〉B〈x, u〉B

= 〈z, y.〈x, u〉B〉B = ∗zπBy,x(u)B.

i.e.,

∗πBx,y(z)uB = ∗zπBy,x(u)B. (7)

It follows that πBx,y is adjointable with adjoint
(
πBx,y

)+
:=
(
πBx,y

)∗
� D = πBy,x. Since πBx,y is continuous,

πBx,y ∈ L+B (D,X ). �

Remark 8 From the preceding, we note that, since D ⊆ dom((πBx,y)
∗) we have, for n ∈ N,

dom((
∑n

j=1 π
B
xj ,yj )

∗) ⊇ dom((πBx1,y1)
∗)
⋂

dom((πBx2,y2)
∗)
⋂
· · ·
⋂

dom((πBxn,yn)∗) ⊇ D. It follows that∑n
j=1 π

B
xj ,yj ∈ L

+
B (D,X ). Also, for α ∈ C and πBx,y ∈ L+B (D,X ), it is clear that απBx,y ∈ L+B (D,X ).

So we introduce the linear subspace K+
B (D,X ) = span{πBx,y ∈ L+B (D,X ) : x, y ∈ X} of L+B (D,X ).

Proposition 7 K+
B (D,X ) is a partial ∗-subalgebra and an ideal of L+B (D,X ).

Proof. We first show that K+
B (D,X ) is +-invariant, i.e., for T ∈ K+

B (D,X ), T+ ∈ K+
B (D,X ), where

T+ := T ∗ � D. Indeed, if T ∈ K+
B (D,X ), then T may be expressed as T =

∑n
j=1 π

B
xj ,yj ,∀xj , yj ∈ X

and n ∈ N. Applying (6), we have T+ = (
∑n

j=1 π
B
xj ,yj )

+ =
∑n

j=1(π
B
xj ,yj )

+ =
∑n

j=1(π
B
xj ,yj )

∗ � D =
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j=1 π

B
yj ,xj ∈ K

+
B (D,X ). Next, we show that K+

B (D,X ) is a partial ∗-subalgebra of L+B (D,X ). To

this end, let T, S ∈ K+
B (D,X ), with T =

∑m
j=1 π

B
xj ,yj and S =

∑n
k=1 π

B
uk,vk , ∀uk, vk, xj , yj ∈ X and

m,n ∈ N. Then we claim that T ◦ S ∈ K+
B (D,X ) whenever ukyjB ∈M(B), j = 1, · · ·m, k = 1, · · ·n.

This is seen as follows. For w, z ∈ D,

∗(T ◦ S)(z)wB = ∗

 m∑
j=1

πBxj ,yj

 ◦( n∑
k=1

πBuk,vk

) (z)wB

= ∗

 m∑
j=1

πBxj ,yj

+∗(
n∑
k=1

πBuk,vk

)
(z)wB

= ∗

(
n∑
k=1

πBuk,vk

)
(z)

 m∑
j=1

πBxj ,yj

+

(w)

B

= ∗

(
n∑
k=1

πBuk,vk

)
(z)

 m∑
j=1

πByj ,xj

 (w)

B

= ∗
n∑
k=1

πBuk,vk(z)

m∑
j=1

πByj ,xj (w)

B

= ∗
n∑
k=1

(uk.vkzB)

m∑
j=1

(yj .xjwB)

B

=
∑

1≤j≤m
1≤k≤n

∗uk.vkzByj .xjwBB

=
∑

1≤j≤m
1≤k≤n

zvkB
(
∗ukyj .xjwBB

)
=
∑

1≤j≤m
1≤k≤n

zvkB
(
∗ukyjBxjwB

)

Hence, whenever ∗ukyjB ∈M(B), j = 1, · · ·m, k = 1, · · ·n, we have that

∗(T ◦ S)(z)wB =
∑

1≤j≤m
1≤k≤n

zvkB
(
∗ukyjBxjwB

)
=
∑

1≤j≤m
1≤k≤n

zvkBxj . ∗ yjukBwB

=
∑

1≤j≤m
1≤k≤n

xj . ∗ yjukBvkzBwB =
∑

1≤j≤m
1≤k≤n

∗πBxj .yjukB,vk(z)wB

It follows that T ◦ S lies in K+
B (D,X ) with T ◦ S =

∑
1≤j≤m
1≤k≤n

πBxj .yjukB,vk , whenever ∗ukyjB ∈ M(B),

j = 1, · · ·m, k = 1, · · ·n. Finally, we show that K+
B (D,X ) is an ideal of L+B (D,X ). Let

∑n
j=1 π

B
xj ,yj ∈
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K+
B (D,X ) and t ∈ L+B (D,X ). For any u, z ∈ D, we have

∗

t ◦ n∑
j=1

πBxj ,yj

 (u)zB = ∗t+∗
 n∑
j=1

πBxj ,yj

 (u)zB = ∗
n∑
j=1

πBxj ,yj (u)t+zB

=

n∑
j=1

∗πBxj ,yj (u)t+(z)B =

n∑
j=1

∗xj .yjuBt+(z)B

=

n∑
j=1

∗t+∗(xj).yjuBzB =

n∑
j=1

∗πBt+∗(xj),yj (u)zB

= ∗
n∑
j=1

πBt+∗(xj),yj (u)zB = ∗

 n∑
j=1

πBt+∗(xj),yj

 (u)zB

It follows that

t ◦
n∑
j=1

πBxj ,yj =

n∑
j=1

πBt+∗(xj),yj ∈ K
+
B (D,X ) (8)

Thus K+
B (D,X ) is a left ideal of L+B (D,X ). On the other hand, let

∑n
j=1 π

B
xj ,yj ∈ K

+
B (D,X ) and

s ∈ L+B (D,X ). For any u, z ∈ D, we have

∗

 n∑
j=1

πBxj ,yj

 ◦ s
 (u)zB = ∗

 n∑
j=1

πBxj ,yj

+∗

s(u)zB = ∗s(u)

 n∑
j=1

πBxj ,yj

+

(z)

B

= ∗s(u)

n∑
j=1

πByj ,xj (z)

B

=

n∑
j=1

∗s(u)πByj ,xj (z)B

=

n∑
j=1

∗us∗πByj ,xj (z)B =

n∑
j=1

∗uπBs+(yj),xj
(z)
B

=

n∑
j=1

∗u
(
πBxj ,s+(yj)

)+
(z)
B

= ∗

 n∑
j=1

πBxj ,s+(yj)

 (u)zB

It follows that  n∑
j=1

πBxj ,yj

 ◦ s =

n∑
j=1

πBxj ,s+(yj)
∈ K+

B (D,X ). (9)

Thus K+
B (D,X ) is a right ideal of L+B (D,X ). This completes the proof. �

6. Locally convex partial ∗-algebraic bimodules

Definition 15 Let (A, τA) and (B, τB) be two locally convex, semi-associative partial ∗-algebras,
and let AD ≡ (D,A〈·, ·〉, τD,A) be a (left) locally convex (A, τA)-module and DB ≡ (D, 〈·, ·〉B, τD,B) a
(right) locally convex (B, τB)-module. Then D is said to be a locally convex (A, τA)-(B, τB)-bimodule
if the following properties are satisfied:
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(i) A〈x, y〉.z = x.〈y, z〉B, ∀x, y, z ∈ D such that A〈x, y〉 ∈ L(A), 〈y, z〉B ∈ R(B);
(ii) for each b ∈ R(B), the map x ∈ DB 7−→ x.b ∈ DB is τD,A-continuous; i.e., for each α ∈ ∆,
∃ β(α) ∈ ∆ and a constant Kα,b > 0 such that ‖x.b‖α ≤ Kα,b‖x‖β(α);

(iii) for each a ∈ L(A), the map x ∈ AD 7−→ a.x ∈ AD is τD,B-continuous; i.e., for each γ ∈ Λ,
∃ ζ(γ) ∈ Λ and a constant Kγ,a > 0 such that ‖a.x‖γ ≤ Kγ,a‖x‖ζ(γ).

Remark 9 Suppose a = A〈x, x〉 ∈ L(A) and b = 〈x, x〉B ∈ R(B). Then, by Property (i) of Def-
inition 15, a.x = x.b, ∀x ∈ D. It now follows from Properties (ii) and (iii) of Definition 15 that

the topologies τD,A and τD,B are generated by the same family of seminorms ‖x‖α = |A〈x, x〉|1/2α =

|〈x, x〉B|1/2β = ‖x‖β.

Definition 16 A τD,B-complete locally convex (A, τA)-(B, τB)-bimodule D will be called an (A, τA)-
(B, τB)-imprimitivity bimodule if it is full both as a left and as a right locally convex partial ∗-algebraic
module.

Lemma 2 Let (A, τA) and (B, τB) be two locally convex, semi-associative partial ∗-algebras. If D is
an (A, τA)-(B, τB)-imprimitivity bimodule, then the following hold:

〈a.x, y〉B = 〈x, a∗.y〉B and A〈x.b, y〉 = A〈x, y.b∗〉,∀x, y ∈ D, a ∈ L(A), b ∈ R(B). (10)

Proof. Since AD is full, we may set an a ∈ L(A) as a =
∑n

j=1 A〈uj , vj〉, for some uj , vj ∈ AD, n ∈ N.
It follows that

〈a.x, y〉B = [
] n∑
j=1

A〈ujvj〉.x, yB = [
]
uj .

n∑
j=1

〈vj , x〉ByB =

n∑
j=1

〈x, vj〉B〈uj , y〉B

=

n∑
j=1

〈x, vj .〈uj , y〉B〉B =

n∑
j=1

〈x,A〈vj , uj〉.y〉B = [
]
x

n∑
j=1

A〈vj , uj〉.y
B

= 〈x, a∗.y〉B

i.e., 〈a.x, y〉B = 〈x, a∗.y〉B.

Similarly, DB is full, so we may set an element b ∈ R(B) as b =
∑n

j=1〈vj , wj〉B, for some vj , wj ∈ DB,
n ∈ N. Then we have that

A〈x.b, y〉 = A[
]
x.

n∑
j=1

〈vj , wj〉By = A[
] n∑
j=1

A〈x, vj〉.wjy =

n∑
j=1

A〈x, vj〉A〈wj , y〉

=

n∑
j=1

A〈x,A〈y, wj〉.vj〉 =

n∑
j=1

A〈x, y.〈wj , vj〉B〉 = A[
]
xy.

n∑
j=1

〈wj , vj〉B = A〈x, y.b∗〉.

i.e., A〈x.b, y〉 = A〈x, y.b∗〉.

�

Remark 10 Equation (4) and Lemma 2 imply that the elements of L(A) act as adjointable maps
on DB and the elements of R(B) act as adjointable maps on AD.

Lemma 3 Let (A, τA) and (B, τB) be two locally convex, semi-associative partial ∗-algebras and let
D be both AD and DB. If D satisfies (10) of Lemma 2, then D satisfies Properties (ii) and (iii) of
Definition 15.

Proof. Suppose (10) holds for all x, y ∈ D, a ∈ L(A), b ∈ R(B). Then the elements of L(A) act
as adjointable maps on (D, 〈·, ·〉B, τD,B), by Remark 10. Similarly, the elements of R(B) act as
adjointable maps on (D,A〈·, ·〉, τD,A). The required result now follows, since the left and right module
actions are continuous. �
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Corollary 2 Let D be both a full (left) locally convex (A, τA)-module and a full (right) lo-
cally convex (B, τB)-module satisfying Property (i) of Definition 15. Then D is an (A, τA)-(B, τB)-
imprimitivity bimodule if and only if D satisfies (10) of Lemma 2.

Proof. This follows from Lemmas 2 and 3. �

Example 3 Let (B, τB) be a complete locally convex semi-associative partial ∗-algebra and let
D = M(B) such that M(B) is an ideal of B. Then D is both a left L(B)- and a right R(B)-module.
D is also a (B, τB)− (B, τB)-imprimitivity bimodule with the B-valued inner products B〈a, b〉 = ab∗,
∀a, b ∈ BD and 〈a, b〉B = a∗b, ∀a, b ∈ DB. To see this, it suffices by Corollary 2, to show that

(i) D satisfies Property (i) of Definition 15;
(ii) D satisfies (10) of Lemma 2;
(iii) D is full both as a (left) locally convex (B, τB)-module and as a (right) locally convex (B, τB)-

module. Indeed:
(i) For all a, b, c ∈ D, B〈a, b〉c = (ab∗)c = a(b∗c) = a〈b, c〉B
(ii) For all a′ ∈ L(B), a, b ∈ D, 〈a′a, b〉B = (a′a)∗b = (a∗a′∗)b = a∗(a′∗b) = 〈a, a′∗b〉B. Also,

for all b′ ∈ R(B), a, b ∈ D, B〈ab′, b〉 = (ab′)b∗ = a(b′b∗) = a(bb′∗)∗ = B〈a, bb′∗〉
(iii) The locally convex (B, τB)-modules L(B) and R(B) are both full, by Proposition 3.
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