In honour of Prof. Ekhaguere at 70 On some properties of locally convex partial *-algebraic modules

F.A. Tsav ${ }^{\text {a** }}$ and G.O.S. Ekhaguere ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics and Computer Science, Benue State University, Makurdi, Nigeria;
${ }^{b}$ Department of Mathematics, University of Ibadan, Ibadan, Oyo State, Nigeria

Abstract

In this paper, we begin the systematic study of locally convex partial ${ }^{*}$-algebraic modules. These are generalizations of inner product modules over C^{*}-algebras. We develop some of their properties by extending a number of results in the theory of Hilbert C^{*}-modules to the present partial ${ }^{*}$-algebraic setting.

Keywords: Hilbert C*-modules, partial *-algebras, locally convex partial *-algebraic modules, module maps, adjointable maps.

1. Introduction

The notion of a locally convex partial *-algebraic module was introduced by Ekhaguere [2] in his study of the representation of completely positive maps between partial *-algebras. Locally convex partial *-algebraic modules are generalizations of inner product modules over B^{*}-algebras [9]. These inner product modules [11], now generally known as pre-Hilbert C^{*}-modules, provide a natural generalization of the Hilbert space in which the complex field of scalars is replaced by a C^{*}-algebra. Although the theory of Hilbert C^{*}-modules, in the case of commutative unital C^{*}-algebras, can be traced back to the work of Kaplansky [4], where he proved that derivations of type I AW*-algebras are inner, it was Paschke [9] who gave the general framework. Apart from being interesting on its own, the theory of Hilbert C^{*}-modules has had several areas of applications. For example, the work of Kasparov on KK-theory [5,6], the work of Rieffel on induced representations and Morita equivalence $[11,12]$, and the work of Woronowicz on C^{*}-algebraic quantum group theory [14], etc. For a more detailed bibliography of the theory of Hilbert C^{*}-modules, see [3]. In this paper, we develop some of the properties of locally convex partial *-algebraic modules by extending a number of results from the theory of Hilbert C^{*}-modules $[9,10,8,7]$ to a partial ${ }^{*}$-algebraic setting.

The paper is organized as follows. In section 2, we outline some of the fundamental notions used in the sequel. See $[1,2,13]$, for more details of these notions. Section 3 outlines the basic notions of a locally convex partial ${ }^{*}$-algebraic module as introduced in [2]. We develop some basic properties of locally convex partial ${ }^{*}$-algebraic modules in section 4 . In section 5 , we study some properties of certain classes of linear maps acting on locally convex partial *-algebraic modules. Most importantly, we develop some properties of a class of adjointable maps which, in the case of Hilbert C*-modules, are operators analogous to the finite-rank operators on a Hilbert space. Finally, in section 6, we introduce the notion of a locally convex partial ${ }^{*}$-algebraic bimodule. Since we are working with right locally convex partial *-algebraic modules, this notion is natural.

2. Fundamental notions

A partial *-algebra is simply a complex involutive linear space \mathcal{A} with a multiplication that is defined only for certain pairs of compatible elements determined by a relation on \mathcal{A}. More precisely, there is the following definition.

[^0]Definition 1 A partial ${ }^{*}$-algebra is a quadruple $(\mathcal{A}, \Gamma, \diamond, *)$ comprising:
(a) a linear space \mathcal{A} over \mathbb{C};
(b) a relation $\Gamma \subseteq \mathcal{A} \times \mathcal{A}$;
(c) a partial multiplication, \diamond, such that
(c1) $(x, y) \in \Gamma$ if and only if $x \diamond y \in \mathcal{A}$;
(c2) $(x, y),(x, z) \in \Gamma$ implies $(x, \lambda y+\mu z) \in \Gamma$ and then $x \diamond(\lambda y+\mu z)=\lambda(x \diamond y)+\mu(x \diamond z), \forall \lambda, \mu \in \mathbb{C} ;$ and
(d) an involution $\left(x \mapsto x^{*}\right)$ such that
(d1) $(x+\lambda y)^{*}=x^{*}+\bar{\lambda} y^{*}, \forall x, y \in \mathcal{A}, \lambda \in \mathbb{C}$ and $x^{* *}=x, \forall x \in \mathcal{A}$;
(d2) $(x, y) \in \Gamma$ if and only if $\left(y^{*}, x^{*}\right) \in \Gamma$ and then $(x \diamond y)^{*}=y^{*} \diamond x^{*}$.
Definition 2 An element e of a partial ${ }^{*}$-algebra \mathcal{B} is called a unit, and \mathcal{B} is said to be unital, if $(e, x),(x, e) \in \Gamma$, and then $e^{*}=e$, and $e \diamond x=x \diamond e=x$, for every $x \in \mathcal{B}$. \mathcal{B} is said to be abelian if, for all $x, y \in \mathcal{B},(x, y),(y, x) \in \Gamma$, and then $x \diamond y=y \diamond x$.

Remark 1 Partial *-algebras are studied by means of their spaces of multipliers.
Definition $3 \operatorname{Let}(\mathcal{A}, \Gamma, \diamond, *)$ be a partial ${ }^{*}$-algebra, $\mathcal{M} \subset \mathcal{A}$ and $x \in \mathcal{A}$. Put $L(x)=\{y \in \mathcal{A}$: $(y, x) \in \Gamma\}\left(\right.$ resp., $R(x)=\{y \in \mathcal{A}:(x, y) \in \Gamma\}, L(\mathcal{M})=\bigcap_{x \in \mathcal{M}} L(x) \equiv\{y \in \mathcal{A}: y \in L(x), \forall x \in \mathcal{M}\}$, $\left.R(\mathcal{M})=\bigcap_{x \in \mathcal{M}} R(x) \equiv\{y \in \mathcal{A}: y \in R(x), \forall x \in \mathcal{M}\}\right)$. Then $L(x)(\operatorname{resp} ., R(x), L(\mathcal{M}), R(\mathcal{M}))$ is called the space of left multipliers of x (resp., right multipliers of x, left multipliers of \mathcal{M}, right multipliers of $\mathcal{M})$. In particular, elements of $L(\mathcal{A})$ (resp., $R(\mathcal{A})$) are called universal left (resp., universal right) multipliers. $M(\mathcal{A}) \equiv L(\mathcal{A}) \cap R(\mathcal{A})$ is the so-called universal multipliers of \mathcal{A}.

DEfinition 4 A partial ${ }^{*}$-algebra \mathcal{B} is said to be semi-associative if $y \in R(x)$ implies $y \diamond z \in R(x)$ for every $z \in R(\mathcal{B})$ and $(x \diamond y) \diamond z=x \diamond(y \diamond z)$.

Remark 2 If a partial *-algebra \mathcal{B} is semi-associative, then $L(\mathcal{B})$ and $R(\mathcal{B})$ are algebras, while $M(\mathcal{B})$ is a ${ }^{*}$-algebra.

Definition 5 The positive cone of a partial ${ }^{*}$-algebra \mathcal{A} is the set \mathcal{A}_{+}given by $\mathcal{A}_{+}:=\left\{\sum_{j=1}^{n} x_{j}^{*} \diamond\right.$ $\left.x_{j}: x_{j} \in R(\mathcal{A}), n \in \mathbb{N}\right\}$. We say that $x \in \mathcal{A}$ is positive if $x \in \mathcal{A}_{+}$and write $x \geq 0$.

Definition 6 Given a Hausdorff locally convex topology τ on \mathcal{A}, we call the pair (\mathcal{A}, τ) a locally convex partial *-algebra if and only if:
(i) $\left(\mathcal{A}_{0}, \tau\right)$ is a Hausdorff locally convex space, where \mathcal{A}_{0} is the underlying linear space of \mathcal{A},
(ii) the map $x \in \mathcal{A} \mapsto x^{*} \in \mathcal{A}$ is τ-continuous,
(iii) the map $x \in \mathcal{A} \mapsto a \diamond x \in \mathcal{A}$ is τ-continuous, for all $a \in L(\mathcal{A})$ and
(iv) the map $x \in \mathcal{A} \mapsto x \diamond b \in \mathcal{A}$ is τ-continuous, for all $b \in R(\mathcal{A})$.

Definition 7 Let \mathcal{B} be a complex linear space and $\mathcal{B}_{0} a^{*}$-algebra contained in \mathcal{B}. \mathcal{B} is said to be a quasi ${ }^{*}$-algebra with distinguised ${ }^{*}$-algebra \mathcal{B}_{0} if
(i) \mathcal{B} is a bimodule over \mathcal{B}_{0} for which the module action extends the multiplication of \mathcal{B}_{0} such that $x .(y . b)=(x . y) . b$ and $x .(b . y)=(x . b) . y$, for all $b \in \mathcal{B}$ and $x, y \in \mathcal{B}_{0}$;
(ii) the involution * on \mathcal{B} extends the involution of \mathcal{B}_{0} such that $(x . b)^{*}=b^{*} \cdot x^{*}$ and $(b . x)^{*}=x^{*} . b^{*}$, for all $b \in \mathcal{B}$ and $x \in \mathcal{B}_{0}$.
If \mathcal{B} is a locally convex space with a locally convex topology τ such that
(i) \mathcal{B}_{0} is τ-dense in \mathcal{B};
(ii) the involution * is τ-continuous;
(iii) the left and right module actions are separately τ-continuous,
then $\left(\mathcal{B}, \mathcal{B}_{0}\right)$ is said to be a locally convex quasi ${ }^{*}$-algebra.
Remark 3 Every quasi *-algebra is a semi-associative partial *-algbera

3. Locally convex partial *-algebraic modules

As in [2], let $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$ be a locally convex partial *-algebra, with involution * and partial multiplication written as juxtaposition. Let $\tau_{\mathcal{B}}$ be generated by a family $\left\{|\cdot|_{\alpha}: \alpha \in \Delta\right\}$ of seminorms. In what follows, we assume, without loss of generality, that the family $\left\{|\cdot|_{\alpha}: \alpha \in \Delta\right\}$ of seminorms is directed. Let \mathcal{D} be a linear space which is also a right $R(\mathcal{B})$-module in the sense that $x . a+y . b \in \mathcal{D}$, whenever $x, y \in \mathcal{D}$ and $a, b \in R(\mathcal{B})$, where the action of $R(\mathcal{B})$ on \mathcal{D} is written as $z . c$ for $z \in \mathcal{D}$, $c \in R(\mathcal{B})$. Locally convex partial ${ }^{*}$-algebraic modules were introduced in [2] as follows.

Definition $8 \quad A \mathcal{B}$-valued inner product on \mathcal{D} is a conjugate-bilinear map $\langle\cdot, \cdot\rangle_{\mathcal{B}}: \mathcal{D} \times \mathcal{D} \longrightarrow \mathcal{B}$ satisfying the following:
(i) $\langle x, x\rangle_{\mathcal{B}} \in \mathcal{B}_{+}, \forall x \in \mathcal{D}$ and $\langle x, x\rangle_{\mathcal{B}}=0$ only if $x=0$,
(ii) $\langle x, y\rangle_{\mathcal{B}}=\langle y, x\rangle_{\mathcal{B}}^{*}, \forall x, y \in \mathcal{D}$,
(iii) $\langle x, y . b\rangle_{\mathcal{B}}=\langle x, y\rangle_{\mathcal{B}} b, \forall x, y \in \mathcal{D}, b \in R(\mathcal{B})$

Lemma 1 Let $\langle\cdot, \cdot\rangle_{\mathcal{B}}$ be a \mathcal{B}-valued inner product on \mathcal{D}. Define $\|\cdot\|_{\alpha}: \mathcal{D} \longrightarrow[0, \infty)$ by

$$
\begin{equation*}
\|x\|_{\alpha}=\left|\langle x, x\rangle_{\mathcal{B}}\right|_{\alpha}^{1 / 2}, x \in \mathcal{D}, \alpha \in \Delta \tag{1}
\end{equation*}
$$

Then, the following inequality holds:

$$
\begin{equation*}
\frac{1}{2}\left(\left|\langle x, y\rangle_{\mathcal{B}}\right|_{\alpha}+\left|\langle y, x\rangle_{\mathcal{B}}\right|_{\alpha}\right) \leq\|x\|_{\alpha}\|y\|_{\alpha}, \forall x, y \in \mathcal{D}, \alpha \in \Delta \tag{2}
\end{equation*}
$$

Moreover, if $|\cdot|_{\alpha}$ is ${ }^{*}$-ivariant, i.e., if $\left|a^{*}\right|_{\alpha}=|a|_{\alpha}, \forall a \in \mathcal{B}, \alpha \in \Delta$, then the inequality (2) reduces to

$$
\begin{equation*}
\left|\langle x, y\rangle_{\mathcal{B}}\right|_{\alpha} \leq\|x\|_{\alpha}\|y\|_{\alpha}, \forall x, y \in \mathcal{D}, \alpha \in \Delta \tag{3}
\end{equation*}
$$

Corollary 1 If $\|\cdot\|_{\alpha}: \mathcal{D} \longrightarrow[0, \infty)$ is defined as in Equation (1), then $\|\cdot\|_{\alpha}$ is a seminorm on \mathcal{D} for each $\alpha \in \Delta$.

Remark 4 We observe that the family $\left\{\|\cdot\|_{\alpha}: \alpha \in \Delta\right\}$ of seminorms is directed.
Definition 9 A locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module is a triple $\left(\mathcal{D},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}}\right)$ comprising:
(a) a linear space \mathcal{D} which is also a right $R(\mathcal{B})$-module;
(b) a \mathcal{B}-valued inner product $\langle\cdot, \cdot\rangle_{\mathcal{B}}: \mathcal{D} \times \mathcal{D} \longrightarrow \mathcal{B}$; and
(c) a locally convex topology $\tau_{\mathcal{D}, \mathcal{B}}$ on \mathcal{D} generated by the family $\left\{\|\cdot\|_{\alpha}: \alpha \in \Delta\right\}$ of seminorms given by (1) and, with respect to this topology, the map $l_{R}(b): \mathcal{D} \longrightarrow \mathcal{D}$ given by $l_{R}(b) x=$ $x . b, \forall x \in \mathcal{D}$, is continuous for each $b \in R(\mathcal{B})$; i.e., for each $\alpha \in \Delta, \exists a \beta(\alpha) \in \Delta$ and $K_{\alpha, b}>0$ such that $\left\|l_{R}(b) x\right\|_{\alpha} \leq K_{\alpha, b}\|x\|_{\beta(\alpha)}$
Proposition 1 Let $\left(\mathcal{D},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}}\right)$ be a locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module. Then the \mathcal{B}-valued inner product $\langle\cdot, \cdot\rangle_{\mathcal{B}}$ on \mathcal{D} is $\tau_{\mathcal{B}}$-continuous.

Proof. Let $\left(x_{\lambda}\right)$ and $\left(y_{\mu}\right)$ be nets in \mathcal{D} such that $x_{\lambda} \longrightarrow x$ and $y_{\mu} \longrightarrow y$. Then

$$
\begin{aligned}
\left|\left\langle x_{\lambda}, y_{\mu}\right\rangle_{\mathcal{B}}-\langle x, y\rangle_{\mathcal{B}}\right|_{\alpha} & =\left|\left\langle x_{\lambda}-x, y\right\rangle_{\mathcal{B}}-\left\langle x_{\lambda}, y\right\rangle_{\mathcal{B}}+\left\langle x_{\lambda}, y_{\mu}\right\rangle_{\mathcal{B}}\right|_{\alpha} \\
& =\left|\left\langle x_{\lambda}-x, y\right\rangle_{\mathcal{B}}-\left\langle x_{\lambda}, y-y_{\mu}\right\rangle_{\mathcal{B}}\right|_{\alpha} \\
& =\left|\left\langle x_{\lambda}-x, y\right\rangle_{\mathcal{B}}+\left\langle x_{\lambda}, y_{\mu}-y\right\rangle_{\mathcal{B}}\right|_{\alpha} \\
& \leq\left|\left\langle x_{\lambda}-x, y\right\rangle_{\mathcal{B}}\right|_{\alpha}+\left|\left\langle x_{\lambda}, y_{\mu}-y\right\rangle_{\mathcal{B}}\right|_{\alpha} \\
& \leq\left(\left|\left\langle x_{\lambda}-x, y\right\rangle_{\mathcal{B}}\right|_{\alpha}+\left|\left\langle y, x_{\lambda}-x\right\rangle_{\mathcal{B}}\right|_{\alpha}\right)+\left(\left|\left\langle x_{\lambda}, y_{\mu}-y\right\rangle_{\mathcal{B}}\right|_{\alpha}+\left|\left\langle y_{\mu}-y, x_{\lambda}\right\rangle_{\mathcal{B}}\right|_{\alpha}\right) \\
& \leq 2\left(\left\|x_{\lambda}-x\right\|_{\alpha}\|y\|_{\alpha}+\left\|x_{\lambda}\right\|_{\alpha}\left\|y_{\mu}-y\right\|_{\alpha}\right) \\
& \leq 2\left[\left\|x_{\lambda}-x\right\|_{\alpha}\|y\|_{\alpha}+\left(\left\|x_{\lambda}-x\right\|_{\alpha}+\|x\|_{\alpha}\right)\left\|y_{\mu}-y\right\|_{\alpha}\right] \\
& =2\left(\left\|x_{\lambda}-x\right\|_{\alpha}\|y\|_{\alpha}+\left\|x_{\lambda}-x\right\|_{\alpha}\left\|y_{\mu}-y\right\|_{\alpha}+\|x\|_{\alpha}\left\|y_{\mu}-y\right\|_{\alpha}\right) \longrightarrow 0 .
\end{aligned}
$$

Hence $\left\langle x_{\lambda}, y_{\mu}\right\rangle_{\mathcal{B}} \longrightarrow\langle x, y\rangle_{\mathcal{B}}$. This completes the proof.
Remark 5 The lemma above implies that the $\mathcal{\mathcal { B }}$-valued inner product $\langle\cdot, \cdot\rangle_{\mathcal{B}}$ on \mathcal{D} can be extended to a \mathcal{B}-valued inner product on the $\tau_{\mathcal{D}, \mathcal{B}}$-completion of \mathcal{D}. We shall always denote also by $\langle\cdot, \cdot\rangle_{\mathcal{B}}$, the \mathcal{B}-valued inner product on the $\tau_{\mathcal{D}, \mathcal{B}}$-completion of \mathcal{D}.

Example 1 Let $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$ be a semi-associative locally convex partial ${ }^{*}$-algebra whose topology is generated by the family $\left\{|\cdot|_{\alpha}: \alpha \in \Delta\right\}$ of seminorms. If we take \mathcal{D} as $R(\mathcal{B})$ and define $\langle\cdot, \cdot\rangle_{\mathcal{B}}$: $\mathcal{D} \times \mathcal{D} \longrightarrow \mathcal{B}$ by $\langle x, y\rangle_{\mathcal{B}}=x^{*} y, \forall x, y \in \mathcal{D}$, then $\left(\mathcal{D},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}}\right)$ is a locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module, where we take $\tau_{\mathcal{D}, \mathcal{B}}$ to be the locally convex topology on \mathcal{D} generated by $\|x\|_{\alpha}=\left|\langle x, x\rangle_{\mathcal{B}}\right|_{\alpha}^{1 / 2}$. Indeed:
(b) (i) $\langle x, x\rangle_{\mathcal{B}}=x^{*} x \in \mathcal{B}_{+}, \forall x \in R(\mathcal{B})$ and if $x=0$, then $\langle x, x\rangle_{\mathcal{B}}=x^{*} x=0$;
(ii) $\langle y, x\rangle_{\mathcal{B}}^{*}=\left(y^{*} x\right)^{*}=x^{*} y=\langle x, y\rangle_{\mathcal{B}}, \forall x, y \in R(\mathcal{B})$,
(iii) $\langle x, y . b\rangle_{\mathcal{B}}=x^{*}(y . b)=\left(x^{*} y\right) b=\langle x, y\rangle_{\mathcal{B}} b, \forall x, y \in R(\mathcal{B}), b \in R(\mathcal{B})$; and
(c) The continuity of the map $x \in R(\mathcal{B}) \longmapsto l_{R}(b) x=x . b \in R(\mathcal{B})$ follows from the assumption that $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$ is a locally convex partial ${ }^{*}$-algebra.

4. Some basic properties of locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-modules

Definition 10 Let \mathcal{A} be a partial ${ }^{*}$-algebra and \mathcal{B} a linear subspace of \mathcal{A}. Then \mathcal{B} is said to be a left (resp., right) ideal in \mathcal{A}, if $a \in L(\mathcal{A})$ and $b \in \mathcal{B}$ (resp., $a \in R(\mathcal{A})$ and $b \in \mathcal{B}$) implies ab $\in \mathcal{B}$ (resp., ba $\in \mathcal{B}$). If \mathcal{B} is both a left and a right ideal in \mathcal{A}, then \mathcal{B} is called a two-sided ideal, or simply, an ideal in \mathcal{A}.

Proposition $2 \operatorname{Let}\left(\mathcal{D},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}}\right)$ be a locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module. Define the linear subspace, $\mathcal{M}_{\mathcal{D}}$ of \mathcal{B} by

$$
\mathcal{M}_{\mathcal{D}}=\operatorname{span}\left\{\langle x, y\rangle_{\mathcal{B}}: x, y \in \mathcal{D}\right\} \bigcap R(\mathcal{B})
$$

Then $\mathcal{M}_{\mathcal{D}}$ is an ideal in \mathcal{B}.
Proof. Take an element m in $\mathcal{M}_{\mathcal{D}}$. Then m may be expressed as $m=\sum_{j=1}^{n} \lambda_{j}\left\langle x_{j}, y_{j}\right\rangle_{\mathcal{B}}, \forall \lambda_{j} \in$ $\mathbb{C}, \forall x_{j}, y_{j} \in \mathcal{D}, n \in \mathbb{N}$. So if $b \in R(\mathcal{B})$, then $m b=\left(\sum_{j=1}^{n} \lambda_{j}\left\langle x_{j}, y_{j}\right\rangle_{\mathcal{B}}\right) b=\sum_{j=1}^{n} \lambda_{j}\left\langle x_{j}, y_{j}\right\rangle_{\mathcal{B}} b=$ $\sum_{j=1}^{n} \lambda_{j}\left\langle x_{j}, y_{j} . b\right\rangle_{\mathcal{B}}$, by Condition (iii) of Definition 8. It follows that $m b \in \mathcal{M}_{\mathcal{D}}$, i.e., $\mathcal{M}_{\mathcal{D}}$ is a right ideal in \mathcal{B}, by Definition 10.

To show that $\mathcal{M}_{\mathcal{D}}$ is also a left ideal in \mathcal{B}, we first note that conditions (ii) and (iii) of Definition ?? imply $\langle x . b, y\rangle_{\mathcal{B}}=b^{*}\langle x, y\rangle_{\mathcal{B}}, \forall b \in R(\mathcal{B})$. It now follows from this that, if $m \in \mathcal{M}_{\mathcal{D}}$ and $a \in L(\mathcal{B})$, then $a m \in \mathcal{M}_{\mathcal{D}}$, i.e., $\mathcal{M}_{\mathcal{D}}$ is a left ideal in \mathcal{B}, by Definition 10. Hence $\mathcal{M}_{\mathcal{D}}$ is, indeed, an ideal in \mathcal{B}.

Definition 11 Let $\left(\mathcal{D},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}}\right)$ be a locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module. Then \mathcal{D} will be called full
if $\mathcal{M}_{\mathcal{D}}$ is dense in $R(\mathcal{B})$.
Example 2 Let $\left\{\mathcal{D}_{j}\right\}:=\left\{\left(\mathcal{D}_{j},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{D}_{j}, \mathcal{B}}\right)\right\}$ be a finite collection of locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$ modules. Let \mathcal{D} be the set of n-tuples $x=\left(x_{1}, \ldots, x_{n}\right)$ where $x_{j} \in \mathcal{D}_{j}(j=1, \ldots, n)$, and define the following (componentwise) operations: $\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$ and $\left(x_{1}, \ldots, x_{n}\right) \cdot b=\left(x_{1} . b, \ldots, x_{n} . b\right), b \in R(\mathcal{B})$. Then \mathcal{D} is the direct sum of the $R(\mathcal{B})$-modules $\left\{\mathcal{D}_{j}\right\}$, i.e., $\mathcal{D}:=\bigoplus_{j=1}^{n} \mathcal{D}_{j}$. \mathcal{D} is also a right $R(\mathcal{B})$-module under these operations. If we define the \mathcal{B}-valued inner product on \mathcal{D} by $\langle x, y\rangle_{\mathcal{B}}:=\sum_{j=1}^{n}\left\langle x_{j}, y_{j}\right\rangle_{\mathcal{B}}$, where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in \mathcal{D}$, then $\left(\mathcal{D},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}}\right)$ is a locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module. We shall denote by \mathcal{D}^{n} the direct sum of n copies of a locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module \mathcal{D}. Now let $\mathcal{D}=R(\mathcal{B})^{n}$, the direct sum of n copies of the locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module $R(\mathcal{B})$. Then \mathcal{D} is full. Here, $\mathcal{M}_{\mathcal{D}}=\operatorname{span}\left\{\sum_{j=1}^{n} a_{j}^{*} b_{j}: a_{j}, b_{j} \in R(\mathcal{B}), n \in\right.$ $\mathbb{N}\} \cap R(\mathcal{B}) \subset R(\mathcal{B})$. But $\mathcal{B}_{+}=\left\{\sum_{j=1}^{n} b_{j}^{*} b_{j}: b_{j} \in R(\mathcal{B}), n \in \mathbb{N}\right\} \subset\left\{\sum_{j=1}^{n} a_{j}^{*} b_{j}: a_{j}, b_{j} \in R(\mathcal{B}), n \in \mathbb{N}\right\}$. This implies that span $\mathcal{B}_{+} \bigcap R(\mathcal{B}) \subset \mathcal{M}_{\mathcal{D}}$. So, if span \mathcal{B}_{+}coincides with the partial ${ }^{*}$-algebra \mathcal{B}, then it follows that $R(\mathcal{B}) \subset \mathcal{M}_{\mathcal{D}}$. Hence $\mathcal{M}_{\mathcal{D}}$ is dense in $R(\mathcal{B})$.
Remark 6 From the preceding example, we have the following result.
Proposition 3 If the linear span of \mathcal{B}_{+}coincides with the partial ${ }^{*}$-algebra \mathcal{B}, then the locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module $R(\mathcal{B})$ is full.

5. Adjointable maps on locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-modules

We now turn to a study of some classes of maps acting on locally convex partial *-algebraic modules. Let $\left(\mathcal{X},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{X}, \mathcal{B}}\right)$ and $\left(\mathcal{Y},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{Y}, \mathcal{B}}\right)$ be complete locally convex ($\mathcal{B}, \tau_{\mathcal{B}}$)-modules and let $\left(\mathcal{D},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}}\right)$ be a dense locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-submodule of \mathcal{X}.

Definition 12 A map $t: \mathcal{X} \longrightarrow \mathcal{Y}$ is called a $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module map (or simply, a module map) if and only if $t(x . b)=(t x) . b, \forall x \in \mathcal{D}, b \in R(\mathcal{B})$. One also says that t is a $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-linear map. We denote by $\mathcal{L}_{\mathcal{B}}(\mathcal{X}, \mathcal{Y})$, the set of all linear $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module maps from \mathcal{X} to \mathcal{Y}.

Definition 13 We call a map $t: \mathcal{X} \longrightarrow \mathcal{Y}$ adjointable if there exists a map $t^{*}: \mathcal{Y} \longrightarrow \mathcal{X}$ such that

$$
\begin{equation*}
\langle t x, y\rangle_{\mathcal{Y}, \mathcal{B}}=\left\langle x, t^{*} y\right\rangle_{\mathcal{X}, \mathcal{B}}, \forall x \in \mathcal{D}, y \in \mathcal{Y} \tag{4}
\end{equation*}
$$

The map t^{*} will be called the adjoint of t.
Proposition 4 If the map $t: \mathcal{X} \longrightarrow \mathcal{Y}$ is adjointable, then $t \in \mathcal{L}_{\mathcal{B}}(\mathcal{X}, \mathcal{Y})$.
Proof. Let $t: \mathcal{X} \longrightarrow \mathcal{Y}$ be adjointable. Then $\forall x, y \in \mathcal{D}, z \in \mathcal{Y}, \alpha \in \mathbb{C}$ and $b \in R(\mathcal{B})$

$$
\begin{aligned}
\langle t[(x+\alpha y) . b], z\rangle_{\mathcal{Y}, \mathcal{B}} & =\left\langle(x+\alpha y) . b, t^{*} z\right\rangle_{\mathcal{X}, \mathcal{B}}=b^{*}\left\langle x+\alpha y, t^{*} z\right\rangle_{\mathcal{X B}} \\
& =b^{*}\left(\left\langle x, t^{*} z\right\rangle_{\mathcal{X}, \mathcal{B}}+\alpha\left\langle y, t^{*} z\right\rangle_{\mathcal{X}, \mathcal{B}}\right)=b^{*}\left\langle x, t^{*} z\right\rangle_{\mathcal{X}, \mathcal{B}}+\alpha b^{*}\left\langle y, t^{*} z\right\rangle_{\mathcal{X}, \mathcal{B}} \\
& =b^{*}\langle t x, z\rangle_{\mathcal{Y}, \mathcal{B}}+\alpha b^{*}\langle t y, z\rangle_{\mathcal{Y}, \mathcal{B}}=\langle t x . b, z\rangle_{\mathcal{Y}, \mathcal{B}}+\langle\alpha(t y) . b, z\rangle_{\mathcal{Y}, \mathcal{B}} \\
& =\langle t x . b+\alpha(t y) . b, z\rangle_{\mathcal{Y}, \mathcal{B}} .
\end{aligned}
$$

This implies that $t[(x+\alpha y) . b]=t x . b+\alpha(t y) . b$. It follows that t (as well as $\left.t^{*}\right)$ is a linear $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)-$ module map. Hence $t \in \mathcal{L}_{\mathcal{B}}(\mathcal{X}, \mathcal{Y})$.
Notation $5.1 \operatorname{Let}\left(\mathcal{D},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}}\right)$ be a dense locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-submodule of $\left(\mathcal{X},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{X}, \mathcal{B}}\right)$. $\mathcal{L}_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$ becomes a linear space when furnished with the usual (pointwise) operations of vector addition, $t+s$ and scalar multiplication, $\lambda t, t, s \in \mathcal{L}_{\mathcal{B}}(\mathcal{D}, \mathcal{X}), \lambda \in \mathbb{C}$. Now set $\mathcal{L}_{\mathcal{B}}^{*}(\mathcal{D}, \mathcal{X}):=\{t \in$ $\mathcal{L}_{\mathcal{B}}(\mathcal{D}, \mathcal{X}):$ t is continuous and adjointable $\}$. Since \mathcal{D} is dense in \mathcal{X}, t^{*} is uniquely determined, and hence, well-defined. It follows that $\mathcal{L}_{\mathcal{B}}^{*}(\mathcal{D}, \mathcal{X})$ is a ${ }^{*}$-invariant linear subspace of $\mathcal{L}_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$. It is not
a^{*}-algebra, except $\mathcal{L}_{\mathcal{B}}^{*}(\mathcal{D}, \mathcal{X}) \equiv \mathcal{L}_{\mathcal{B}}^{*}(\mathcal{D}, \mathcal{D})=\mathcal{L}_{\mathcal{B}}^{*}(\mathcal{D}):=\left\{t \in \mathcal{L}_{\mathcal{B}}^{*}(\mathcal{D}, \mathcal{X}): t \mathcal{D} \subseteq \mathcal{D}\right.$ and $\left.t^{*} \mathcal{D} \subseteq \mathcal{D}\right\}$. However, if one sets $\mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X}):=\left\{t \in \mathcal{L}_{\mathcal{B}}^{*}(\mathcal{D}, \mathcal{X}): \operatorname{dom}\left(t^{*}\right) \supseteq \mathcal{D}\right\}$, then:

Proposition 5 The linear space $\mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ is a partial ${ }^{*}$-algebra with:
(i) involution: $t \longmapsto t^{+}:=t^{*} \upharpoonright \mathcal{D}$, for all $t \in \mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ and
(ii) partial multiplication, specified by

$$
\Gamma=\left\{(t, s) \in \mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})^{2}: s \mathcal{D} \subseteq \operatorname{dom}\left(t^{+*}\right) \text { and } t^{+} \mathcal{D} \subseteq \operatorname{dom}\left(s^{*}\right)\right\} t \circ s=t^{+*} s
$$

Definition $14 A^{+}{ }^{+}$-invariant linear subspace \mathcal{M} of $\mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ is called a partial ${ }^{*}$-subalgebra of $\mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ if $t, s \in \mathcal{M}$, with $t \in L(s)$ implies $t \circ s \in \mathcal{M}$.

Remark 7 The next result introduces a class of adjointable maps on locally convex partial *algebraic modules. In the case of Hilbert C^{*}-modules, they are operators analogous to the finite-rank operators on a Hilbert space. Let \mathcal{X} be a complete locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module. Set $\mathcal{D}=\{z \in \mathcal{X}$: $\left.\langle x, z\rangle_{\mathcal{B}} \in R(\mathcal{B}), \forall x, \in \mathcal{X}\right\}$. In what follows, we shall assume that \mathcal{D} is dense in \mathcal{X}.

Proposition 6 For $x, y \in \mathcal{X}$, define the map $\pi_{x, y}^{\mathcal{B}}: \mathcal{D} \longrightarrow \mathcal{X}$ as

$$
\begin{equation*}
\pi_{x, y}^{\mathcal{B}}(z)=x \cdot\langle y, z\rangle_{\mathcal{B}} \tag{5}
\end{equation*}
$$

Then the map $\pi_{x, y}^{\mathcal{B}}$ is continuous and adjointable with adjoint

$$
\begin{equation*}
\left(\pi_{x, y}^{\mathcal{B}}\right)^{+}:=\left(\pi_{x, y}^{\mathcal{B}}\right)^{*} \upharpoonright \mathcal{D}=\pi_{y, x}^{\mathcal{B}} \tag{6}
\end{equation*}
$$

Proof. Let $z \in \mathcal{D}$. Then $\left\|\pi_{x, y}^{\mathcal{B}}(z)\right\|_{\alpha}=\left\|x .\langle y, z\rangle_{\mathcal{B}}\right\|_{\alpha}$. Since the right $R(\mathcal{B})$-module action is continuous, it follows that there exist $\beta(\alpha)$ and a constant $K_{\alpha,\langle y, z\rangle_{\mathcal{B}}}>0$ such that $\left\|\pi_{x, y}^{\mathcal{B}}(z)\right\|_{\alpha} \leq K_{\alpha,\langle y, z\rangle_{\mathcal{B}}}\|x\|_{\beta(\alpha)}$. Let $C_{\alpha}=\sup \left\{\frac{K_{\alpha,\langle y, z\rangle_{\mathcal{B}}}}{\|y\|_{\alpha}\|z\|_{\alpha}}: y \in \mathcal{X}, z \in \mathcal{D}\right.$ with $\left.\|y\|_{\alpha} \neq 0,\|z\|_{\alpha} \neq 0\right\}$. Then $K_{\alpha,\langle y, z\rangle_{\mathcal{B}}} \leq C_{\alpha}\|y\|_{\alpha}\|z\|_{\alpha}$. So we have $\left\|\pi_{x, y}^{\mathcal{B}}(z)\right\|_{\alpha} \leq C_{\alpha}\|x\|_{\beta(\alpha)}\|y\|_{\alpha}\|z\|_{\alpha}$ i.e., $\left\|\pi_{x, y}^{\mathcal{B}}(z)\right\|_{\alpha} \leq M_{(\alpha, z, y)}\|z\|_{\gamma(\alpha)}$, where $M_{(\alpha, z, y)}=$ $C_{\alpha}\|x\|_{\beta(\alpha)}\|y\|_{\alpha}$. Hence $\pi_{x, y}^{\mathcal{B}}$ is continuous. Now let $u, z \in \mathcal{D}$. Then

$$
\begin{aligned}
* \pi_{x, y}^{\mathcal{B}}(z) u_{\mathcal{B}} & =\left\langle x \cdot\langle y, z\rangle_{\mathcal{B}}, u\right\rangle_{\mathcal{B}}=\langle z, y\rangle_{\mathcal{B}}\langle x, u\rangle_{\mathcal{B}} \\
& =\left\langle z, y \cdot\langle x, u\rangle_{\mathcal{B}}\right\rangle_{\mathcal{B}}=* z \pi_{y, x}^{\mathcal{B}}(u)_{\mathcal{B}} .
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
* \pi_{x, y}^{\mathcal{B}}(z) u_{\mathcal{B}}=* z \pi_{y, x}^{\mathcal{B}}(u)_{\mathcal{B}} . \tag{7}
\end{equation*}
$$

It follows that $\pi_{x, y}^{\mathcal{B}}$ is adjointable with adjoint $\left(\pi_{x, y}^{\mathcal{B}}\right)^{+}:=\left(\pi_{x, y}^{\mathcal{B}}\right)^{*} \upharpoonright \mathcal{D}=\pi_{y, x}^{\mathcal{B}}$. Since $\pi_{x, y}^{\mathcal{B}}$ is continuous, $\pi_{x, y}^{\mathcal{B}} \in \mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$.

Remark 8 From the preceding, we note that, since $\mathcal{D} \subseteq \operatorname{dom}\left(\left(\pi_{x, y}^{\mathcal{B}}\right)^{*}\right)$ we have, for $n \in \mathbb{N}$, $\operatorname{dom}\left(\left(\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}}\right)^{*}\right) \supseteq \operatorname{dom}\left(\left(\pi_{x_{1}, y_{1}}^{\mathcal{B}}\right)^{*}\right) \bigcap \operatorname{dom}\left(\left(\pi_{x_{2}, y_{2}}^{\mathcal{B}}\right)^{*}\right) \bigcap \cdots \bigcap \operatorname{dom}\left(\left(\pi_{x_{n}, y_{n}}^{\mathcal{B}}\right)^{*}\right) \supseteq \mathcal{D}$. It follows that $\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}} \in \mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$. Also, for $\alpha \in \mathbb{C}$ and $\pi_{x, y}^{\mathcal{B}} \in \mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$, it is clear that $\alpha \pi_{x, y}^{\mathcal{B}} \in \mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$. So we introduce the linear subspace $\mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})=\operatorname{span}\left\{\pi_{x, y}^{\mathcal{B}} \in \mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X}): x, y \in \mathcal{X}\right\}$ of $\mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$.
Proposition $7 \quad \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ is a partial ${ }^{*}$-subalgebra and an ideal of $\mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$.
Proof. We first show that $\mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ is ${ }^{+}$-invariant, i.e., for $T \in \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X}), T^{+} \in \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$, where $T^{+}:=T^{*} \upharpoonright \mathcal{D}$. Indeed, if $T \in \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$, then T may be expressed as $T=\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}}, \forall x_{j}, y_{j} \in \mathcal{X}$ and $n \in \mathbb{N}$. Applying (6), we have $T^{+}=\left(\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}}\right)^{+}=\sum_{j=1}^{n}\left(\pi_{x_{j}, y_{j}}^{\mathcal{B}}\right)^{+}=\sum_{j=1}^{n}\left(\pi_{x_{j}, y_{j}}^{\mathcal{B}}\right)^{*} \upharpoonright \mathcal{D}=$
$\sum_{j=1}^{n} \pi_{y_{j}, x_{j}}^{\mathcal{B}} \in \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$. Next, we show that $\mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ is a partial ${ }^{*}$-subalgebra of $\mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$. To this end, let $T, S \in \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$, with $T=\sum_{j=1}^{m} \pi_{x_{j}, y_{j}}^{\mathcal{B}}$ and $S=\sum_{k=1}^{n} \pi_{u_{k}, v_{k}}^{\mathcal{B}}, \forall u_{k}, v_{k}, x_{j}, y_{j} \in \mathcal{X}$ and $m, n \in \mathbb{N}$. Then we claim that $T \circ S \in \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ whenever $u_{k} y_{j \mathcal{B}} \in M(\mathcal{B}), j=1, \cdots m, k=1, \cdots n$. This is seen as follows. For $w, z \in \mathcal{D}$,

$$
\begin{aligned}
& *(T \circ S)(z) w_{\mathcal{B}}=*\left[\left(\sum_{j=1}^{m} \pi_{x_{j}, y_{j}}^{\mathcal{B}}\right) \circ\left(\sum_{k=1}^{n} \pi_{u_{k}, v_{k}}^{\mathcal{B}}\right)\right](z) w_{\mathcal{B}} \\
&=*\left(\sum_{j=1}^{m} \pi_{x_{j}, y_{j}}^{\mathcal{B}}\right)^{+*}\left(\sum_{k=1}^{n} \pi_{u_{k}, v_{k}}^{\mathcal{B}}\right)(z) w_{\mathcal{B}} \\
&=*\left(\sum_{k=1}^{n} \pi_{u_{k}, v_{k}}^{\mathcal{B}}\right)(z)\left(\sum_{j=1}^{m} \pi_{x_{j}, y_{j}}^{\mathcal{B}}\right)^{+}(w) \\
&=*\left(\sum_{k=1}^{n} \pi_{u_{k}, v_{k}}^{\mathcal{B}}\right)(z)\left(\sum_{j=1}^{m} \pi_{y_{j}, x_{j}}^{\mathcal{B}}\right)(w) \\
&=* \sum_{k=1}^{n} \pi_{u_{k}, v_{k}}^{\mathcal{B}}(z) \sum_{j=1}^{m} \pi_{y_{j}, x_{j}}^{\mathcal{B}}(w) \\
&=* \sum_{k=1}^{n}\left(u_{k} \cdot v_{k} z_{\mathcal{B}}\right) \sum_{j=1}^{m}\left(y_{j} \cdot x_{j} w_{\mathcal{B}}\right) \\
&=\sum_{\mathcal{B}} * u_{k} . v_{k} z_{\mathcal{B}} y_{j} \cdot x_{j} w_{\mathcal{B}} \\
& \begin{array}{l}
1 \leq j \leq m \\
\\
\end{array} \\
&=\sum_{k \leq n} z v_{k \mathcal{B}}\left(* u_{k} y_{j} \cdot x_{j} w_{\mathcal{B}}\right) \\
&\left.=\sum_{\mathcal{B}}\right) \\
& 1 \leq j \leq n \\
& 1 \leq k \leq n
\end{aligned}
$$

Hence, whenever $* u_{k} y_{\mathcal{B}_{\mathcal{B}}} \in M(\mathcal{B}), j=1, \cdots m, k=1, \cdots n$, we have that

$$
\begin{aligned}
*(T \circ S)(z) w_{\mathcal{B}} & =\sum_{\substack{1 \leq j \leq m \\
1 \leq k \leq n}} z v_{k \mathcal{B}}\left(* u_{k} y_{j \mathcal{B}} x_{j} w_{\mathcal{B}}\right)=\sum_{\substack{1 \leq j \leq m \\
1 \leq k \leq n}} z v_{k \mathcal{B}} x_{j} \cdot * y_{j} u_{k \mathcal{B}} w_{\mathcal{B}} \\
& =\sum_{\substack{1 \leq j \leq m \\
1 \leq k \leq n}} x_{j} * y_{j} u_{k \mathcal{B}} v_{k} z_{\mathcal{B}} w_{\mathcal{B}}=\sum_{\substack{1 \leq j \leq m \\
1 \leq k \leq n}} * \pi_{x_{j} \cdot y_{j} u_{k \mathcal{B}}, v_{k}}^{\mathcal{B}}(z) w_{\mathcal{B}}
\end{aligned}
$$

It follows that $T \circ S$ lies in $\mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ with $T \circ S=\sum_{\substack{1 \leq j \leq m \\ 1 \leq k \leq n}} \pi_{x_{j} y_{j} u_{k \mathcal{B}}, v_{k}}^{\mathcal{B}}$, whenever $* u_{k} y_{j \mathcal{B}} \in M(\mathcal{B})$, $j=1, \cdots m, k=1, \cdots n$. Finally, we show that $\mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ is an ideal of $\mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$. Let $\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}} \in$ 59 Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018)
$\mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ and $t \in \mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$. For any $u, z \in \mathcal{D}$, we have

$$
\begin{aligned}
\left(t \circ \sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}}\right)(u) z_{\mathcal{B}} & = t^{+*}\left(\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}}\right)(u) z_{\mathcal{B}}=* \sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}}(u) t^{+} z_{\mathcal{B}} \\
& =\sum_{j=1}^{n} * \pi_{x_{j}, y_{j}}^{\mathcal{B}}(u) t^{+}(z)_{\mathcal{B}}=\sum_{j=1}^{n} * x_{j} . y_{j} u_{\mathcal{B}} t^{+}(z)_{\mathcal{B}} \\
& =\sum_{j=1}^{n} * t^{+*}\left(x_{j}\right) . y_{j} u_{\mathcal{B}} z_{\mathcal{B}}=\sum_{j=1}^{n} * \pi_{t^{+*}\left(x_{j}\right), y_{j}}^{\mathcal{B}}(u) z_{\mathcal{B}} \\
& =* \sum_{j=1}^{n} \pi_{t^{+*}\left(x_{j}\right), y_{j}}^{\mathcal{B}}(u) z_{\mathcal{B}}=*\left(\sum_{j=1}^{n} \pi_{t^{+*}\left(x_{j}\right), y_{j}}^{\mathcal{B}}\right)(u) z_{\mathcal{B}}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
t \circ \sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}}=\sum_{j=1}^{n} \pi_{t^{+*}\left(x_{j}\right), y_{j}}^{\mathcal{B}} \in \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X}) \tag{8}
\end{equation*}
$$

Thus $\mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ is a left ideal of $\mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$. On the other hand, let $\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}} \in \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ and $s \in \mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$. For any $u, z \in \mathcal{D}$, we have

$$
\begin{aligned}
\left[\left(\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}}\right) \circ s\right](u) z_{\mathcal{B}} & =\left(\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}}\right)^{+*} s(u) z_{\mathcal{B}}=* s(u)\left(\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}}\right)^{+}(z) \\
& =* s(u) \sum_{j=1}^{n} \pi_{y_{j}, x_{j}}^{\mathcal{B}}(z)=\sum_{j=1}^{n} * s(u) \pi_{y_{j}, x_{j}}^{\mathcal{B}}(z)_{\mathcal{B}} \\
& =\sum_{j=1}^{n} * u s^{*} \pi_{y_{j}, x_{j}}^{\mathcal{B}}(z)_{\mathcal{B}}=\sum_{j=1}^{n} * u \pi_{s^{+}\left(y_{j}\right), x_{j}}^{\mathcal{B}}(z)_{\mathcal{B}} \\
& =\sum_{j=1}^{n} * u\left(\pi_{x_{j}, s^{+}\left(y_{j}\right)}^{\mathcal{B}}\right)^{+}{ }_{(z)_{\mathcal{B}}}=*\left(\sum_{j=1}^{n} \pi_{x_{j}, s^{+}\left(y_{j}\right)}^{\mathcal{B}}\right)(u) z_{\mathcal{B}}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\left(\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}}\right) \circ s=\sum_{j=1}^{n} \pi_{x_{j}, s^{+}\left(y_{j}\right)}^{\mathcal{B}} \in \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X}) \tag{9}
\end{equation*}
$$

Thus $\mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$ is a right ideal of $\mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D}, \mathcal{X})$. This completes the proof.

6. Locally convex partial *-algebraic bimodules

Definition 15 Let $\left(\mathcal{A}, \tau_{\mathcal{A}}\right)$ and $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$ be two locally convex, semi-associative partial ${ }^{*}$-algebras, and let ${ }_{\mathcal{A}} \mathcal{D} \equiv\left(\mathcal{D},{ }_{\mathcal{A}}\langle\cdot, \cdot\rangle, \tau_{\mathcal{D}, \mathcal{A}}\right)$ be a (left) locally convex $\left(\mathcal{A}, \tau_{\mathcal{A}}\right)$-module and $\mathcal{D}_{\mathcal{B}} \equiv\left(\mathcal{D},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}}\right)$ a (right) locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module. Then \mathcal{D} is said to be a locally convex $\left(\mathcal{A}, \tau_{\mathcal{A}}\right)-\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-bimodule if the following properties are satisfied:
(i) ${ }_{\mathcal{A}}\langle x, y\rangle . z=x .\langle y, z\rangle_{\mathcal{B}}, \forall x, y, z \in \mathcal{D}$ such that ${ }_{\mathcal{A}}\langle x, y\rangle \in L(\mathcal{A}),\langle y, z\rangle_{\mathcal{B}} \in R(\mathcal{B})$;
(ii) for each $b \in R(\mathcal{B})$, the map $x \in \mathcal{D}_{\mathcal{B}} \longmapsto x . b \in \mathcal{D}_{\mathcal{B}}$ is $\tau_{\mathcal{D}, \mathcal{A}}$-continuous; i.e., for each $\alpha \in \Delta$, $\exists \beta(\alpha) \in \Delta$ and a constant $K_{\alpha, b}>0$ such that $\|x . b\|_{\alpha} \leq K_{\alpha, b}\|x\|_{\beta(\alpha)}$;
(iii) for each $a \in L(\mathcal{A})$, the map $x \in{ }_{\mathcal{A}} \mathcal{D} \longmapsto a . x \in{ }_{\mathcal{A}} \mathcal{D}$ is $\tau_{\mathcal{D}, \mathcal{B}}$-continuous; i.e., for each $\gamma \in \Lambda$, $\exists \zeta(\gamma) \in \Lambda$ and a constant $K_{\gamma, a}>0$ such that $\|a . x\|_{\gamma} \leq K_{\gamma, a}\|x\|_{\zeta(\gamma)}$.

Remark 9 Suppose $a={ }_{\mathcal{A}}\langle x, x\rangle \in L(\mathcal{A})$ and $b=\langle x, x\rangle_{\mathcal{B}} \in R(\mathcal{B})$. Then, by Property (i) of Definition 15, a. $x=x . b, \forall x \in \mathcal{D}$. It now follows from Properties (ii) and (iii) of Definition 15 that the topologies $\tau_{\mathcal{D}, \mathcal{A}}$ and $\tau_{\mathcal{D}, \mathcal{B}}$ are generated by the same family of seminorms $\|x\|_{\alpha}=\left.\left.\right|_{\mathcal{A}}\langle x, x\rangle\right|_{\alpha} ^{1 / 2}=$ $\left|\langle x, x\rangle_{\mathcal{B}}\right|_{\beta}^{1 / 2}=\|x\|_{\beta}$.

Definition $16 \quad A \tau_{\mathcal{D}, \mathcal{B}}$-complete locally convex $\left(\mathcal{A}, \tau_{\mathcal{A}}\right)-\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-bimodule \mathcal{D} will be called an $\left(\mathcal{A}, \tau_{\mathcal{A}}\right)$ $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-imprimitivity bimodule if it is full both as a left and as a right locally convex partial*-algebraic module.

Lemma 2 Let $\left(\mathcal{A}, \tau_{\mathcal{A}}\right)$ and $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$ be two locally convex, semi-associative partial ${ }^{*}$-algebras. If \mathcal{D} is an $\left(\mathcal{A}, \tau_{\mathcal{A}}\right)-\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-imprimitivity bimodule, then the following hold:

$$
\begin{equation*}
\langle a . x, y\rangle_{\mathcal{B}}=\left\langle x, a^{*} \cdot y\right\rangle_{\mathcal{B}} \text { and } \mathcal{A}_{\mathcal{A}}\langle x . b, y\rangle={ }_{\mathcal{A}}\left\langle x, y . b^{*}\right\rangle, \forall x, y \in \mathcal{D}, a \in L(\mathcal{A}), b \in R(\mathcal{B}) . \tag{10}
\end{equation*}
$$

Proof. Since ${ }_{\mathcal{A}} \mathcal{D}$ is full, we may set an $a \in L(\mathcal{A})$ as $a=\sum_{j=1}^{n} \mathcal{A}\left\langle u_{j}, v_{j}\right\rangle$, for some $u_{j}, v_{j} \in{ }_{\mathcal{A}} \mathcal{D}, n \in \mathbb{N}$. It follows that

$$
\begin{aligned}
\langle a . x, y\rangle_{\mathcal{B}} & =[] \sum_{j=1}^{n}{ }_{\mathcal{A}}\left\langle u_{j} v_{j}\right\rangle \cdot x, y_{\mathcal{B}}=[] u_{j} \cdot \sum_{j=1}^{n}\left\langle v_{j}, x\right\rangle_{\mathcal{B}} y_{\mathcal{B}}=\sum_{j=1}^{n}\left\langle x, v_{j}\right\rangle_{\mathcal{B}}\left\langle u_{j}, y\right\rangle_{\mathcal{B}} \\
& =\sum_{j=1}^{n}\left\langle x, v_{j} \cdot\left\langle u_{j}, y\right\rangle_{\mathcal{B}}\right\rangle_{\mathcal{B}}=\sum_{j=1}^{n}\left\langle x,{ }_{\mathcal{A}}\left\langle v_{j}, u_{j}\right\rangle \cdot y\right\rangle_{\mathcal{B}}=[] x \sum_{j=1}^{n}{ }_{\mathcal{A}}\left\langle v_{j}, u_{j}\right\rangle \cdot y=\left\langle x, a^{*} \cdot y\right\rangle_{\mathcal{B}} \\
& \text { i.e., }\langle a . x, y\rangle_{\mathcal{B}}=\left\langle x, a^{*} \cdot y\right\rangle_{\mathcal{B}} .
\end{aligned}
$$

Similarly, $\mathcal{D}_{\mathcal{B}}$ is full, so we may set an element $b \in R(\mathcal{B})$ as $b=\sum_{j=1}^{n}\left\langle v_{j}, w_{j}\right\rangle_{\mathcal{B}}$, for some $v_{j}, w_{j} \in \mathcal{D}_{\mathcal{B}}$, $n \in \mathbb{N}$. Then we have that

$$
\begin{aligned}
\mathcal{A}\langle x . b, y\rangle & \left.={ }_{\mathcal{A}}[] x \cdot \sum_{j=1}^{n}\left\langle v_{j}, w_{j}\right\rangle_{\mathcal{B}} y=\mathcal{A}\right]\left[\sum_{j=1}^{n}{ }_{\mathcal{A}}\left\langle x, v_{j}\right\rangle \cdot w_{j} y=\sum_{j=1}^{n}{ }_{\mathcal{A}}\left\langle x, v_{j}\right\rangle_{\mathcal{A}}\left\langle w_{j}, y\right\rangle\right. \\
& \left.=\sum_{j=1}^{n}{ }_{\mathcal{A}}\left\langle x,{ }_{\mathcal{A}}\left\langle y, w_{j}\right\rangle \cdot v_{j}\right\rangle=\sum_{j=1}^{n}{ }_{\mathcal{A}}\left\langle x, y \cdot\left\langle w_{j}, v_{j}\right\rangle_{\mathcal{B}}\right\rangle=\mathcal{A}_{\mathcal{A}}\right] x y \cdot \sum_{j=1}^{n}\left\langle w_{j}, v_{j}\right\rangle_{\mathcal{B}}={ }_{\mathcal{A}}\left\langle x, y \cdot b^{*}\right\rangle . \\
& \text { i.e., }{ }_{\mathcal{A}}\langle x . b, y\rangle={ }_{\mathcal{A}}\left\langle x, y . b^{*}\right\rangle .
\end{aligned}
$$

Remark 10 Equation (4) and Lemma 2 imply that the elements of $L(\mathcal{A})$ act as adjointable maps on $\mathcal{D}_{\mathcal{B}}$ and the elements of $R(\mathcal{B})$ act as adjointable maps on ${ }_{\mathcal{A}} \mathcal{D}$.

Lemma 3 Let $\left(\mathcal{A}, \tau_{\mathcal{A}}\right)$ and $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$ be two locally convex, semi-associative partial ${ }^{*}$-algebras and let \mathcal{D} be both $\mathcal{A}_{\mathcal{D}} \mathcal{D}$ and $\mathcal{D}_{\mathcal{B}}$. If \mathcal{D} satisfies (10) of Lemma 2, then \mathcal{D} satisfies Properties (ii) and (iii) of Definition 15.

Proof. Suppose (10) holds for all $x, y \in \mathcal{D}, a \in L(\mathcal{A}), b \in R(\mathcal{B})$. Then the elements of $L(\mathcal{A})$ act as adjointable maps on ($\mathcal{D},\langle\cdot, \cdot\rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}}$), by Remark 10. Similarly, the elements of $R(\mathcal{B})$ act as adjointable maps on $\left(\mathcal{D}, \mathcal{A}\langle\cdot \cdot \cdot\rangle, \tau_{\mathcal{D}, \mathcal{A}}\right)$. The required result now follows, since the left and right module actions are continuous.

Corollary 2 Let \mathcal{D} be both a full (left) locally convex $\left(\mathcal{A}, \tau_{\mathcal{A}}\right)$-module and a full (right) locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module satisfying Property (i) of Definition 15. Then \mathcal{D} is an $\left(\mathcal{A}, \tau_{\mathcal{A}}\right)-\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$ imprimitivity bimodule if and only if \mathcal{D} satisfies (10) of Lemma 2.

Proof. This follows from Lemmas 2 and 3.
ExAMPLE 3 Let $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$ be a complete locally convex semi-associative partial ${ }^{*}$-algebra and let $\mathcal{D}=M(\mathcal{B})$ such that $M(\mathcal{B})$ is an ideal of \mathcal{B}. Then \mathcal{D} is both a left $L(\mathcal{B})$ - and a right $R(\mathcal{B})$-module. \mathcal{D} is also a $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)-\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-imprimitivity bimodule with the \mathcal{B}-valued inner products $\mathcal{B}\langle a, b\rangle=a b^{*}$, $\forall a, b \in{ }_{\mathcal{B}} \mathcal{D}$ and $\langle a, b\rangle_{\mathcal{B}}=a^{*} b, \forall a, b \in \mathcal{D}_{\mathcal{B}}$. To see this, it suffices by Corollary 2 , to show that
(i) \mathcal{D} satisfies Property (i) of Definition 15;
(ii) \mathcal{D} satisfies (10) of Lemma 2;
(iii) \mathcal{D} is full both as a (left) locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-module and as a (right) locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$ module. Indeed:
(i) For all $a, b, c \in \mathcal{D},{ }_{\mathcal{B}}\langle a, b\rangle c=\left(a b^{*}\right) c=a\left(b^{*} c\right)=a\langle b, c\rangle_{\mathcal{B}}$
(ii) For all $a^{\prime} \in L(\mathcal{B}), a, b \in \mathcal{D},\left\langle a^{\prime} a, b\right\rangle_{\mathcal{B}}=\left(a^{\prime} a\right)^{*} b=\left(a^{*} a^{*}\right) b=a^{*}\left(a^{*} b\right)=\left\langle a, a^{* *} b\right\rangle_{\mathcal{B}}$. Also, for all $b^{\prime} \in R(\mathcal{B}), a, b \in \mathcal{D}, \mathcal{B}\left\langle a b^{\prime}, b\right\rangle=\left(a b^{\prime}\right) b^{*}=a\left(b^{\prime} b^{*}\right)=a\left(b b^{*}\right)^{*}=\mathcal{B}\left\langle a, b b^{*}\right\rangle$
(iii) The locally convex $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$-modules $L(\mathcal{B})$ and $R(\mathcal{B})$ are both full, by Proposition 3 .

References

[1] J.-P. Antoine, A. Inoue, C. Trapani: Partial*-Algebras and their Operator Realizations, Kluwer, Dordrecht (2002).
[2] G. O. S. Ekhaguere: Representation of Completely Positive Maps Between Partial ${ }^{*}$-Algebras, Internat. J. Theoret. Phys, 35, 1571-1580 (1996).
[3] M. Frank: Hilbert C ${ }^{*}$-modules and Related Subjects- a Guided Reference Overview, Leipzig University (2017).
[4] I. Kaplansky: Modules over Operator Algebras, Amer. J. Math., 75, 839-858 (1953)
[5] G. G. Kasparov: Hilbert C^{*}-modules:Theorems of Stinespring and Voiculescu, J. OperatorTheory, 4, 133-150 (1980).
[6] G. G. Kasparov: The Operator K-functor and Extensions of C^{*}-algebras, Izv. Akad. Nauk SSSR Ser. Mat., 44, 571-636 (1980); English Transl. Math. USSR-Izv., 16, 513-572 (1981).
[7] N. P. Landsmann: Lecture Notes on C^{*}-algebras, Hilbert C^{*}-modules and Quantum Mechanics, Preprint mathph/9807030, xxx.lanl.gov /http://remote.science.uva.nl/npl/ck.html, (1998/2004).
[8] V. M. Manuilov, E. V. Troitsky: Hilbert C^{*}-modules, Transl. Math. Monogr, 226, Amer. Math. Soc., Providence, R.I., USA, (2005).
[9] W. L. Paschke: Inner product Modules Over B^{*}-algebras, Transactions of the American Mathematical Society, 182, 443-468 (1973).
[10] I. Raeburn, D. P. Williams: Morita Equivalence and Continuous-trace C C^{*}-algebras, Math. Surveys and Monogr., 60, Amer. Math. Soc., Providence, R. I. USA, (1998).
[11] M. A. Rieffel: Induced Representations of C^{*}-algebras, Adv.in Math. 13, 176-257 (1974).
[12] M. A. Rieffel: Morita Equivalence for Operator Algebras, in Operator Algebras and Applications (ed. R. V. Kadison), Proc. Sympos. Pure Math., 38(1), 285-298 (Amer.Math. Soc., 1982).
[13] C. Trapani: Locally Convex Quasi *-Algebras of Operators, Complex Anal. Oper. Theory, 6, 719-728 (2012).
[14] S. L. Woronowicz: Unbounded Elements Affiliated with C^{*}-algebras and Non-compact Quantum Groups, Commun. math. Phys., 136, 399-432 (1991).

[^0]: *Corresponding author. Email: tfaondo@gmail.com

