In honour of Prof. Ekhaguere at 70 On some properties of locally convex partial *-algebraic modules

F.A. Tsav^{a*}and G.O.S. Ekhaguere^b

^aDepartment of Mathematics and Computer Science, Benue State University, Makurdi, Nigeria; ^bDepartment of Mathematics, University of Ibadan, Ibadan, Oyo State, Nigeria

Abstract. In this paper, we begin the systematic study of locally convex partial *-algebraic modules. These are generalizations of inner product modules over C*-algebras. We develop some of their properties by extending a number of results in the theory of Hilbert C*-modules to the present partial *-algebraic setting.

 $\label{eq:Keywords: Hilbert C*-modules, partial *-algebras, locally convex partial *-algebraic modules, module maps, adjointable maps.$

1. Introduction

The notion of a *locally convex partial* *-*algebraic module* was introduced by Ekhaguere [2] in his study of the representation of completely positive maps between partial *-algebras. Locally convex partial *-algebraic modules are generalizations of inner product modules over B*-algebras [9]. These inner product modules [11], now generally known as pre-Hilbert C*-modules, provide a natural generalization of the Hilbert space in which the complex field of scalars is replaced by a C*-algebra. Although the theory of Hilbert C*-modules, in the case of commutative unital C*-algebras, can be traced back to the work of Kaplansky [4], where he proved that derivations of type I AW*-algebras are inner, it was Paschke [9] who gave the general framework. Apart from being interesting on its own, the theory of Hilbert C*-modules has had several areas of applications. For example, the work of Kasparov on KK-theory [5,6], the work of Rieffel on induced representations and Morita equivalence [11,12], and the work of Woronowicz on C*-algebraic quantum group theory [14], etc. For a more detailed bibliography of the theory of Hilbert C*-modules, see [3]. In this paper, we develop some of the properties of locally convex partial *-algebraic modules by extending a number of results from the theory of Hilbert C*-modules [9,10,8,7] to a partial *-algebraic setting.

The paper is organized as follows. In section 2, we outline some of the fundamental notions used in the sequel. See [1,2,13], for more details of these notions. Section 3 outlines the basic notions of a locally convex partial *-algebraic module as introduced in [2]. We develop some basic properties of locally convex partial *-algebraic modules in section 4. In section 5, we study some properties of certain classes of linear maps acting on locally convex partial *-algebraic modules. Most importantly, we develop some properties of a class of adjointable maps which, in the case of Hilbert C*-modules, are operators analogous to the finite-rank operators on a Hilbert space. Finally, in section 6, we introduce the notion of a locally convex partial *-algebraic bimodule. Since we are working with right locally convex partial *-algebraic modules, this notion is natural.

2. Fundamental notions

A partial *-algebra is simply a complex involutive linear space \mathcal{A} with a multiplication that is defined only for certain pairs of compatible elements determined by a relation on \mathcal{A} . More precisely, there is the following definition.

^{*}Corresponding author. Email: tfaondo@gmail.com

DEFINITION 1 A partial *-algebra is a quadruple $(\mathcal{A}, \Gamma, \diamond, *)$ comprising:

- (a) a linear space \mathcal{A} over \mathbb{C} ;
- (b) a relation $\Gamma \subseteq \mathcal{A} \times \mathcal{A}$;
- (c) a partial multiplication, \diamond , such that
 - (c1) $(x,y) \in \Gamma$ if and only if $x \diamond y \in A$;
 - (c2) $(x,y), (x,z) \in \Gamma$ implies $(x, \lambda y + \mu z) \in \Gamma$ and then
 - $x \diamond (\lambda y + \mu z) = \lambda(x \diamond y) + \mu(x \diamond z), \forall \lambda, \mu \in \mathbb{C}; and$
- (d) an involution $(x \mapsto x^*)$ such that
 - (d1) $(x + \lambda y)^* = x^* + \overline{\lambda} y^*, \forall x, y \in \mathcal{A}, \lambda \in \mathbb{C} \text{ and } x^{**} = x, \forall x \in \mathcal{A};$ (d2) $(x, y) \in \Gamma$ if and only if $(y^*, x^*) \in \Gamma$ and then $(x \diamond y)^* = y^* \diamond x^*.$

DEFINITION 2 An element e of a partial *-algebra \mathcal{B} is called a unit, and \mathcal{B} is said to be unital, if $(e, x), (x, e) \in \Gamma$, and then $e^* = e$, and $e \diamond x = x \diamond e = x$, for every $x \in \mathcal{B}$. \mathcal{B} is said to be abelian if, for all $x, y \in \mathcal{B}, (x, y), (y, x) \in \Gamma$, and then $x \diamond y = y \diamond x$.

Remark 1 Partial *-algebras are studied by means of their spaces of multipliers.

DEFINITION 3 Let $(\mathcal{A}, \Gamma, \diamond, *)$ be a partial *-algebra, $\mathcal{M} \subset \mathcal{A}$ and $x \in \mathcal{A}$. Put $L(x) = \{y \in \mathcal{A} : (y, x) \in \Gamma\}$ (resp., $R(x) = \{y \in \mathcal{A} : (x, y) \in \Gamma\}$, $L(\mathcal{M}) = \bigcap_{x \in \mathcal{M}} L(x) \equiv \{y \in \mathcal{A} : y \in L(x), \forall x \in \mathcal{M}\}$, $R(\mathcal{M}) = \bigcap_{x \in \mathcal{M}} R(x) \equiv \{y \in \mathcal{A} : y \in R(x), \forall x \in \mathcal{M}\}$). Then L(x) (resp., $R(x), L(\mathcal{M}), R(\mathcal{M})$) is called the space of left multipliers of x (resp., right multipliers of x, left multipliers of \mathcal{M} , right multipliers of \mathcal{M}). In particular, elements of $L(\mathcal{A})$ (resp., $R(\mathcal{A})$) are called universal left (resp., universal right) multipliers. $M(\mathcal{A}) \equiv L(\mathcal{A}) \cap R(\mathcal{A})$ is the so-called universal multipliers of \mathcal{A} .

DEFINITION 4 A partial *-algebra \mathcal{B} is said to be semi-associative if $y \in R(x)$ implies $y \diamond z \in R(x)$ for every $z \in R(\mathcal{B})$ and $(x \diamond y) \diamond z = x \diamond (y \diamond z)$.

Remark 2 If a partial *-algebra \mathcal{B} is semi-associative, then $L(\mathcal{B})$ and $R(\mathcal{B})$ are algebras, while $M(\mathcal{B})$ is a *-algebra.

DEFINITION 5 The positive cone of a partial *-algebra \mathcal{A} is the set \mathcal{A}_+ given by $\mathcal{A}_+ := \{\sum_{j=1}^n x_j^* \diamond x_j : x_j \in R(\mathcal{A}), n \in \mathbb{N}\}$. We say that $x \in \mathcal{A}$ is positive if $x \in \mathcal{A}_+$ and write $x \ge 0$.

DEFINITION 6 Given a Hausdorff locally convex topology τ on \mathcal{A} , we call the pair (\mathcal{A}, τ) a locally convex partial *-algebra if and only if:

- (i) (\mathcal{A}_0, τ) is a Hausdorff locally convex space, where \mathcal{A}_0 is the underlying linear space of \mathcal{A} ,
- (ii) the map $x \in \mathcal{A} \mapsto x^* \in \mathcal{A}$ is τ -continuous,
- (iii) the map $x \in \mathcal{A} \mapsto a \diamond x \in \mathcal{A}$ is τ -continuous, for all $a \in L(\mathcal{A})$ and
- (iv) the map $x \in \mathcal{A} \mapsto x \diamond b \in \mathcal{A}$ is τ -continuous, for all $b \in R(\mathcal{A})$.

DEFINITION 7 Let \mathcal{B} be a complex linear space and \mathcal{B}_0 a *-algebra contained in \mathcal{B} . \mathcal{B} is said to be a quasi *-algebra with distinguised *-algebra \mathcal{B}_0 if

- (i) \mathcal{B} is a bimodule over \mathcal{B}_0 for which the module action extends the multiplication of \mathcal{B}_0 such that x.(y.b) = (x.y).b and x.(b.y) = (x.b).y, for all $b \in \mathcal{B}$ and $x, y \in \mathcal{B}_0$;
- (ii) the involution * on \mathcal{B} extends the involution of \mathcal{B}_0 such that $(x.b)^* = b^*.x^*$ and $(b.x)^* = x^*.b^*$, for all $b \in \mathcal{B}$ and $x \in \mathcal{B}_0$.

If \mathcal{B} is a locally convex space with a locally convex topology τ such that

- (i) \mathcal{B}_0 is τ -dense in \mathcal{B} ;
- (ii) the involution * is τ -continuous;
- (iii) the left and right module actions are separately τ -continuous,

then $(\mathcal{B}, \mathcal{B}_0)$ is said to be a locally convex quasi *-algebra.

Remark 3 Every quasi *-algebra is a semi-associative partial *-algebra

3. Locally convex partial *-algebraic modules

As in [2], let $(\mathcal{B}, \tau_{\mathcal{B}})$ be a locally convex partial *-algebra, with involution * and partial multiplication written as juxtaposition. Let $\tau_{\mathcal{B}}$ be generated by a family $\{|\cdot|_{\alpha} : \alpha \in \Delta\}$ of seminorms. In what follows, we assume, without loss of generality, that the family $\{|\cdot|_{\alpha} : \alpha \in \Delta\}$ of seminorms is directed. Let \mathcal{D} be a linear space which is also a right $R(\mathcal{B})$ -module in the sense that $x.a + y.b \in \mathcal{D}$, whenever $x, y \in \mathcal{D}$ and $a, b \in R(\mathcal{B})$, where the action of $R(\mathcal{B})$ on \mathcal{D} is written as z.c for $z \in \mathcal{D}$, $c \in R(\mathcal{B})$. Locally convex partial *-algebraic modules were introduced in [2] as follows.

DEFINITION 8 A \mathcal{B} -valued inner product on \mathcal{D} is a conjugate-bilinear map $\langle \cdot, \cdot \rangle_{\mathcal{B}} : \mathcal{D} \times \mathcal{D} \longrightarrow \mathcal{B}$ satisfying the following:

- (i) $\langle x, x \rangle_{\mathcal{B}} \in \mathcal{B}_+, \forall x \in \mathcal{D} \text{ and } \langle x, x \rangle_{\mathcal{B}} = 0 \text{ only if } x = 0,$
- (*ii*) $\langle x, y \rangle_{\mathcal{B}} = \langle y, x \rangle_{\mathcal{B}}^*, \forall x, y \in \mathcal{D},$
- (*iii*) $\langle x, y.b \rangle_{\mathcal{B}} = \langle x, y \rangle_{\mathcal{B}} b, \forall x, y \in \mathcal{D}, b \in R(\mathcal{B})$

LEMMA 1 Let $\langle \cdot, \cdot \rangle_{\mathcal{B}}$ be a \mathcal{B} -valued inner product on \mathcal{D} . Define $\|\cdot\|_{\alpha} : \mathcal{D} \longrightarrow [0, \infty)$ by

$$\|x\|_{\alpha} = |\langle x, x \rangle_{\mathcal{B}}|_{\alpha}^{1/2}, x \in \mathcal{D}, \alpha \in \Delta.$$
(1)

Then, the following inequality holds:

$$\frac{1}{2}(|\langle x, y \rangle_{\mathcal{B}}|_{\alpha} + |\langle y, x \rangle_{\mathcal{B}}|_{\alpha}) \le ||x||_{\alpha} ||y||_{\alpha}, \forall x, y \in \mathcal{D}, \alpha \in \Delta.$$
(2)

Moreover, if $|\cdot|_{\alpha}$ is *-ivariant, i.e., if $|a^*|_{\alpha} = |a|_{\alpha}, \forall a \in \mathcal{B}, \alpha \in \Delta$, then the inequality (2) reduces to

$$|\langle x, y \rangle_{\mathcal{B}}|_{\alpha} \le ||x||_{\alpha} ||y||_{\alpha}, \forall x, y \in \mathcal{D}, \alpha \in \Delta.$$
(3)

COROLLARY 1 If $\|\cdot\|_{\alpha} : \mathcal{D} \longrightarrow [0,\infty)$ is defined as in Equation (1), then $\|\cdot\|_{\alpha}$ is a seminorm on \mathcal{D} for each $\alpha \in \Delta$.

Remark 4 We observe that the family $\{ \| \cdot \|_{\alpha} : \alpha \in \Delta \}$ of seminorms is directed.

DEFINITION 9 A locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -module is a triple $(\mathcal{D}, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}})$ comprising:

- (a) a linear space \mathcal{D} which is also a right $R(\mathcal{B})$ -module;
- (b) a \mathcal{B} -valued inner product $\langle \cdot, \cdot \rangle_{\mathcal{B}} : \mathcal{D} \times \mathcal{D} \longrightarrow \mathcal{B}$; and
- (c) a locally convex topology $\tau_{\mathcal{D},\mathcal{B}}$ on \mathcal{D} generated by the family $\{\|\cdot\|_{\alpha} : \alpha \in \Delta\}$ of seminorms given by (1) and, with respect to this topology, the map $l_R(b) : \mathcal{D} \longrightarrow \mathcal{D}$ given by $l_R(b)x = x.b, \forall x \in \mathcal{D}$, is continuous for each $b \in R(\mathcal{B})$; i.e., for each $\alpha \in \Delta, \exists \ a \ \beta(\alpha) \in \Delta$ and $K_{\alpha,b} > 0$ such that $\|l_R(b)x\|_{\alpha} \leq K_{\alpha,b}\|x\|_{\beta(\alpha)}$

PROPOSITION 1 Let $(\mathcal{D}, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}})$ be a locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -module. Then the \mathcal{B} -valued inner product $\langle \cdot, \cdot \rangle_{\mathcal{B}}$ on \mathcal{D} is $\tau_{\mathcal{B}}$ -continuous.

Proof. Let (x_{λ}) and (y_{μ}) be nets in \mathcal{D} such that $x_{\lambda} \longrightarrow x$ and $y_{\mu} \longrightarrow y$. Then

$$\begin{split} |\langle x_{\lambda}, y_{\mu} \rangle_{\mathcal{B}} - \langle x, y \rangle_{\mathcal{B}} |_{\alpha} &= |\langle x_{\lambda} - x, y \rangle_{\mathcal{B}} - \langle x_{\lambda}, y \rangle_{\mathcal{B}} + \langle x_{\lambda}, y_{\mu} \rangle_{\mathcal{B}} |_{\alpha} \\ &= |\langle x_{\lambda} - x, y \rangle_{\mathcal{B}} - \langle x_{\lambda}, y - y_{\mu} \rangle_{\mathcal{B}} |_{\alpha} \\ &\leq |\langle x_{\lambda} - x, y \rangle_{\mathcal{B}} + \langle x_{\lambda}, y_{\mu} - y \rangle_{\mathcal{B}} |_{\alpha} \\ &\leq |\langle x_{\lambda} - x, y \rangle_{\mathcal{B}} |_{\alpha} + |\langle x_{\lambda}, y_{\mu} - y \rangle_{\mathcal{B}} |_{\alpha} \\ &\leq (|\langle x_{\lambda} - x, y \rangle_{\mathcal{B}} |_{\alpha} + |\langle y, x_{\lambda} - x \rangle_{\mathcal{B}} |_{\alpha}) + (|\langle x_{\lambda}, y_{\mu} - y \rangle_{\mathcal{B}} |_{\alpha} + |\langle y_{\mu} - y, x_{\lambda} \rangle_{\mathcal{B}} |_{\alpha}) \\ &\leq 2(||x_{\lambda} - x||_{\alpha} ||y||_{\alpha} + ||x_{\lambda}||_{\alpha} ||y_{\mu} - y||_{\alpha}) \\ &\leq 2[||x_{\lambda} - x||_{\alpha} ||y||_{\alpha} + (||x_{\lambda} - x||_{\alpha} + ||x||_{\alpha}) ||y_{\mu} - y||_{\alpha}] \\ &= 2(||x_{\lambda} - x||_{\alpha} ||y||_{\alpha} + ||x_{\lambda} - x||_{\alpha} ||y_{\mu} - y||_{\alpha} + ||x||_{\alpha} ||y_{\mu} - y||_{\alpha}) \longrightarrow 0. \end{split}$$

Hence $\langle x_{\lambda}, y_{\mu} \rangle_{\mathcal{B}} \longrightarrow \langle x, y \rangle_{\mathcal{B}}$. This completes the proof.

Remark 5 The lemma above implies that the \mathcal{B} -valued inner product $\langle \cdot, \cdot \rangle_{\mathcal{B}}$ on \mathcal{D} can be extended to a \mathcal{B} -valued inner product on the $\tau_{\mathcal{D},\mathcal{B}}$ -completion of \mathcal{D} . We shall always denote also by $\langle \cdot, \cdot \rangle_{\mathcal{B}}$, the \mathcal{B} -valued inner product on the $\tau_{\mathcal{D},\mathcal{B}}$ -completion of \mathcal{D} .

EXAMPLE 1 Let $(\mathcal{B}, \tau_{\mathcal{B}})$ be a semi-associative locally convex partial *-algebra whose topology is generated by the family $\{|\cdot|_{\alpha} : \alpha \in \Delta\}$ of seminorms. If we take \mathcal{D} as $R(\mathcal{B})$ and define $\langle \cdot, \cdot \rangle_{\mathcal{B}} : \mathcal{D} \times \mathcal{D} \longrightarrow \mathcal{B}$ by $\langle x, y \rangle_{\mathcal{B}} = x^* y, \forall x, y \in \mathcal{D}$, then $(\mathcal{D}, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}})$ is a locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -module, where we take $\tau_{\mathcal{D}, \mathcal{B}}$ to be the locally convex topology on \mathcal{D} generated by $||x||_{\alpha} = |\langle x, x \rangle_{\mathcal{B}}|_{\alpha}^{1/2}$. Indeed:

- (b) (i) $\langle x, x \rangle_{\mathcal{B}} = x^* x \in \mathcal{B}_+, \forall x \in R(\mathcal{B}) \text{ and if } x = 0, \text{ then } \langle x, x \rangle_{\mathcal{B}} = x^* x = 0;$ (ii) $\langle y, x \rangle_{\mathcal{B}}^* = (y^* x)^* = x^* y = \langle x, y \rangle_{\mathcal{B}}, \forall x, y \in R(\mathcal{B}),$
 - (iii) $\langle x, y, b \rangle_{\mathcal{B}} = x^*(y, b) = (x^*y)b = \langle x, y \rangle_{\mathcal{B}}b, \forall x, y \in R(\mathcal{B}), b \in R(\mathcal{B});$ and
- (c) The continuity of the map $x \in R(\mathcal{B}) \mapsto l_R(b)x = x.b \in R(\mathcal{B})$ follows from the assumption that $(\mathcal{B}, \tau_{\mathcal{B}})$ is a locally convex partial *-algebra.

4. Some basic properties of locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -modules

DEFINITION 10 Let \mathcal{A} be a partial *-algebra and \mathcal{B} a linear subspace of \mathcal{A} . Then \mathcal{B} is said to be a left (resp., right) ideal in \mathcal{A} , if $a \in L(\mathcal{A})$ and $b \in \mathcal{B}$ (resp., $a \in R(\mathcal{A})$ and $b \in \mathcal{B}$) implies $ab \in \mathcal{B}$ (resp., $ba \in \mathcal{B}$). If \mathcal{B} is both a left and a right ideal in \mathcal{A} , then \mathcal{B} is called a two-sided ideal, or simply, an ideal in \mathcal{A} .

PROPOSITION 2 Let $(\mathcal{D}, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}})$ be a locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -module. Define the linear subspace, $\mathcal{M}_{\mathcal{D}}$ of \mathcal{B} by

$$\mathcal{M}_{\mathcal{D}} = \operatorname{span}\{\langle x, y \rangle_{\mathcal{B}} : x, y \in \mathcal{D}\} \bigcap R(\mathcal{B}).$$

Then $\mathcal{M}_{\mathcal{D}}$ is an ideal in \mathcal{B} .

Proof. Take an element m in $\mathcal{M}_{\mathcal{D}}$. Then m may be expressed as $m = \sum_{j=1}^{n} \lambda_j \langle x_j, y_j \rangle_{\mathcal{B}}, \forall \lambda_j \in \mathbb{C}, \forall x_j, y_j \in \mathcal{D}, n \in \mathbb{N}$. So if $b \in R(\mathcal{B})$, then $mb = (\sum_{j=1}^{n} \lambda_j \langle x_j, y_j \rangle_{\mathcal{B}})b = \sum_{j=1}^{n} \lambda_j \langle x_j, y_j \rangle_{\mathcal{B}}b = \sum_{j=1}^{n} \lambda_j \langle x_j, y_j \rangle_{\mathcal{B}}b$, by Condition (iii) of Definition 8. It follows that $mb \in \mathcal{M}_{\mathcal{D}}$, i.e., $\mathcal{M}_{\mathcal{D}}$ is a right ideal in \mathcal{B} , by Definition 10.

To show that $\mathcal{M}_{\mathcal{D}}$ is also a left ideal in \mathcal{B} , we first note that conditions (ii) and (iii) of Definition ?? imply $\langle x.b, y \rangle_{\mathcal{B}} = b^* \langle x, y \rangle_{\mathcal{B}}$, $\forall b \in R(\mathcal{B})$. It now follows from this that, if $m \in \mathcal{M}_{\mathcal{D}}$ and $a \in L(\mathcal{B})$, then $am \in \mathcal{M}_{\mathcal{D}}$, i.e., $\mathcal{M}_{\mathcal{D}}$ is a left ideal in \mathcal{B} , by Definition 10. Hence $\mathcal{M}_{\mathcal{D}}$ is, indeed, an ideal in \mathcal{B} .

DEFINITION 11 Let $(\mathcal{D}, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}})$ be a locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -module. Then \mathcal{D} will be called full

if $\mathcal{M}_{\mathcal{D}}$ is dense in $R(\mathcal{B})$.

EXAMPLE 2 Let $\{\mathcal{D}_j\} := \{(\mathcal{D}_j, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{D}_j, \mathcal{B}})\}$ be a finite collection of locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ modules. Let \mathcal{D} be the set of *n*-tuples $x = (x_1, \ldots, x_n)$ where $x_j \in \mathcal{D}_j$ $(j = 1, \ldots, n)$, and define the following (componentwise) operations: $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$ and $(x_1, \ldots, x_n).b = (x_1.b, \ldots, x_n.b), b \in R(\mathcal{B})$. Then \mathcal{D} is the direct sum of the $R(\mathcal{B})$ -modules $\{\mathcal{D}_j\}$, i.e., $\mathcal{D} := \bigoplus_{j=1}^n \mathcal{D}_j$. \mathcal{D} is also a right $R(\mathcal{B})$ -module under these operations. If we define the \mathcal{B} -valued inner product on \mathcal{D} by $\langle x, y \rangle_{\mathcal{B}} := \sum_{j=1}^n \langle x_j, y_j \rangle_{\mathcal{B}}$, where $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathcal{D}$, then $(\mathcal{D}, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}})$ is a locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -module. We shall denote by \mathcal{D}^n the direct sum of *n* copies of a locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -module \mathcal{D} . Now let $\mathcal{D} = R(\mathcal{B})^n$, the direct sum of *n* copies of the locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -module $R(\mathcal{B})$. Then \mathcal{D} is full. Here, $\mathcal{M}_{\mathcal{D}} = \operatorname{span}\{\sum_{j=1}^n a_j^* b_j : a_j, b_j \in R(\mathcal{B}), n \in \mathbb{N}\}$. $\mathbb{N} \cap R(\mathcal{B}) \subset R(\mathcal{B})$. But $\mathcal{B}_+ = \{\sum_{j=1}^n b_j^* b_j : b_j \in R(\mathcal{B}), n \in \mathbb{N}\} \subset \{\sum_{j=1}^n a_j^* b_j : a_j, b_j \in R(\mathcal{B}), n \in \mathbb{N}\}$. This implies that span $\mathcal{B}_+ \cap R(\mathcal{B}) \subset \mathcal{M}_{\mathcal{D}}$. So, if span \mathcal{B}_+ coincides with the partial *-algebra \mathcal{B} , then it follows that $R(\mathcal{B}) \subset \mathcal{M}_{\mathcal{D}}$. Hence $\mathcal{M}_{\mathcal{D}}$ is dense in $R(\mathcal{B})$.

Remark 6 From the preceding example, we have the following result.

PROPOSITION 3 If the linear span of \mathcal{B}_+ coincides with the partial *-algebra \mathcal{B} , then the locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -module $R(\mathcal{B})$ is full.

5. Adjointable maps on locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -modules

We now turn to a study of some classes of maps acting on locally convex partial *-algebraic modules. Let $(\mathcal{X}, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{X}, \mathcal{B}})$ and $(\mathcal{Y}, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{Y}, \mathcal{B}})$ be complete locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -modules and let $(\mathcal{D}, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}})$ be a dense locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -submodule of \mathcal{X} .

DEFINITION 12 A map $t : \mathcal{X} \longrightarrow \mathcal{Y}$ is called a $(\mathcal{B}, \tau_{\mathcal{B}})$ -module map (or simply, a module map) if and only if $t(x.b) = (tx).b, \forall x \in \mathcal{D}, b \in R(\mathcal{B})$. One also says that t is a $(\mathcal{B}, \tau_{\mathcal{B}})$ -linear map. We denote by $\mathcal{L}_{\mathcal{B}}(\mathcal{X}, \mathcal{Y})$, the set of all linear $(\mathcal{B}, \tau_{\mathcal{B}})$ -module maps from \mathcal{X} to \mathcal{Y} .

DEFINITION 13 We call a map $t : \mathcal{X} \longrightarrow \mathcal{Y}$ adjointable if there exists a map $t^* : \mathcal{Y} \longrightarrow \mathcal{X}$ such that

$$\langle tx, y \rangle_{\mathcal{Y},\mathcal{B}} = \langle x, t^*y \rangle_{\mathcal{X},\mathcal{B}}, \ \forall x \in \mathcal{D}, \ y \in \mathcal{Y}$$
 (4)

The map t^* will be called the adjoint of t.

PROPOSITION 4 If the map $t : \mathcal{X} \longrightarrow \mathcal{Y}$ is adjointable, then $t \in \mathcal{L}_{\mathcal{B}}(\mathcal{X}, \mathcal{Y})$.

Proof. Let $t: \mathcal{X} \longrightarrow \mathcal{Y}$ be adjointable. Then $\forall x, y \in \mathcal{D}, z \in \mathcal{Y}, \alpha \in \mathbb{C}$ and $b \in R(\mathcal{B})$

$$\begin{aligned} \langle t[(x+\alpha y).b], z \rangle_{\mathcal{Y},\mathcal{B}} &= \langle (x+\alpha y).b, t^*z \rangle_{\mathcal{X},\mathcal{B}} = b^* \langle x+\alpha y, t^*z \rangle_{\mathcal{X}\mathcal{B}} \\ &= b^* (\langle x, t^*z \rangle_{\mathcal{X},\mathcal{B}} + \alpha \langle y, t^*z \rangle_{\mathcal{X},\mathcal{B}}) = b^* \langle x, t^*z \rangle_{\mathcal{X},\mathcal{B}} + \alpha b^* \langle y, t^*z \rangle_{\mathcal{X},\mathcal{B}} \\ &= b^* \langle tx, z \rangle_{\mathcal{Y},\mathcal{B}} + \alpha b^* \langle ty, z \rangle_{\mathcal{Y},\mathcal{B}} = \langle tx.b, z \rangle_{\mathcal{Y},\mathcal{B}} + \langle \alpha(ty).b, z \rangle_{\mathcal{Y},\mathcal{B}} \\ &= \langle tx.b + \alpha(ty).b, z \rangle_{\mathcal{Y},\mathcal{B}}. \end{aligned}$$

This implies that $t[(x + \alpha y).b] = tx.b + \alpha(ty).b$. It follows that t (as well as t^*) is a linear $(\mathcal{B}, \tau_{\mathcal{B}})$ -module map. Hence $t \in \mathcal{L}_{\mathcal{B}}(\mathcal{X}, \mathcal{Y})$.

NOTATION 5.1 Let $(\mathcal{D}, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}})$ be a dense locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -submodule of $(\mathcal{X}, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{X}, \mathcal{B}})$. $\mathcal{L}_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$ becomes a linear space when furnished with the usual (pointwise) operations of vector addition, t + s and scalar multiplication, $\lambda t, t, s \in \mathcal{L}_{\mathcal{B}}(\mathcal{D}, \mathcal{X}), \lambda \in \mathbb{C}$. Now set $\mathcal{L}_{\mathcal{B}}^*(\mathcal{D}, \mathcal{X}) := \{t \in \mathcal{L}_{\mathcal{B}}(\mathcal{D}, \mathcal{X}) : t \text{ is continuous and adjointable}\}$. Since \mathcal{D} is dense in \mathcal{X}, t^* is uniquely determined, and hence, well-defined. It follows that $\mathcal{L}_{\mathcal{B}}^*(\mathcal{D}, \mathcal{X})$ is a *-invariant linear subspace of $\mathcal{L}_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$. It is not

a *-algebra, except $\mathcal{L}^*_{\mathcal{B}}(\mathcal{D}, \mathcal{X}) \equiv \mathcal{L}^*_{\mathcal{B}}(\mathcal{D}, \mathcal{D}) = \mathcal{L}^*_{\mathcal{B}}(\mathcal{D}) := \{t \in \mathcal{L}^*_{\mathcal{B}}(\mathcal{D}, \mathcal{X}) : t\mathcal{D} \subseteq \mathcal{D} \text{ and } t^*\mathcal{D} \subseteq \mathcal{D}\}.$ However, if one sets $\mathcal{L}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X}) := \{t \in \mathcal{L}^*_{\mathcal{B}}(\mathcal{D}, \mathcal{X}) : dom(t^*) \supseteq \mathcal{D}\}, then:$

PROPOSITION 5 The linear space $\mathcal{L}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$ is a partial *-algebra with:

(i) involution: $t \mapsto t^+ := t^* \upharpoonright \mathcal{D}$, for all $t \in \mathcal{L}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$ and

(ii) partial multiplication, specified by

 $\Gamma = \{(t,s) \in \mathcal{L}^+_{\mathcal{B}}(\mathcal{D},\mathcal{X})^2 : s\mathcal{D} \subseteq \operatorname{dom}(t^{+*}) \text{ and } t^+\mathcal{D} \subseteq \operatorname{dom}(s^*)\} t \circ s = t^{+*}s.$

DEFINITION 14 A ⁺-invariant linear subspace \mathcal{M} of $\mathcal{L}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$ is called a partial *-subalgebra of $\mathcal{L}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$ if $t, s \in \mathcal{M}$, with $t \in L(s)$ implies $t \circ s \in \mathcal{M}$.

Remark 7 The next result introduces a class of adjointable maps on locally convex partial *algebraic modules. In the case of Hilbert C*-modules, they are operators analogous to the finite-rank operators on a Hilbert space. Let \mathcal{X} be a complete locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -module. Set $\mathcal{D} = \{z \in \mathcal{X} : \langle x, z \rangle_{\mathcal{B}} \in R(\mathcal{B}), \forall x, \in \mathcal{X}\}$. In what follows, we shall assume that \mathcal{D} is dense in \mathcal{X} .

PROPOSITION 6 For $x, y \in \mathcal{X}$, define the map $\pi_{x,y}^{\mathcal{B}} : \mathcal{D} \longrightarrow \mathcal{X}$ as

$$\pi_{x,y}^{\mathcal{B}}(z) = x.\langle y, z \rangle_{\mathcal{B}}.$$
(5)

Then the map $\pi^{\mathcal{B}}_{x,y}$ is continuous and adjointable with adjoint

$$\left(\pi_{x,y}^{\mathcal{B}}\right)^{+} := \left(\pi_{x,y}^{\mathcal{B}}\right)^{*} \upharpoonright \mathcal{D} = \pi_{y,x}^{\mathcal{B}} \tag{6}$$

Proof. Let $z \in \mathcal{D}$. Then $\|\pi_{x,y}^{\mathcal{B}}(z)\|_{\alpha} = \|x.\langle y, z\rangle_{\mathcal{B}}\|_{\alpha}$. Since the right $R(\mathcal{B})$ -module action is continuous, it follows that there exist $\beta(\alpha)$ and a constant $K_{\alpha,\langle y,z\rangle_{\mathcal{B}}} > 0$ such that $\|\pi_{x,y}^{\mathcal{B}}(z)\|_{\alpha} \leq K_{\alpha,\langle y,z\rangle_{\mathcal{B}}}\|x\|_{\beta(\alpha)}$. Let $C_{\alpha} = \sup\left\{\frac{K_{\alpha,\langle y,z\rangle_{\mathcal{B}}}}{\|y\|_{\alpha}\|z\|_{\alpha}} : y \in \mathcal{X}, z \in \mathcal{D}$ with $\|y\|_{\alpha} \neq 0, \|z\|_{\alpha} \neq 0\right\}$. Then $K_{\alpha,\langle y,z\rangle_{\mathcal{B}}} \leq C_{\alpha}\|y\|_{\alpha}\|z\|_{\alpha}$. So we have $\|\pi_{x,y}^{\mathcal{B}}(z)\|_{\alpha} \leq C_{\alpha}\|x\|_{\beta(\alpha)}\|y\|_{\alpha}\|z\|_{\alpha}$ i.e., $\|\pi_{x,y}^{\mathcal{B}}(z)\|_{\alpha} \leq M_{(\alpha,z,y)}\|z\|_{\gamma(\alpha)}$, where $M_{(\alpha,z,y)} = C_{\alpha}\|x\|_{\beta(\alpha)}\|y\|_{\alpha}$. Hence $\pi_{x,y}^{\mathcal{B}}$ is continuous. Now let $u, z \in \mathcal{D}$. Then

$$*\pi_{x,y}^{\mathcal{B}}(z)u_{\mathcal{B}} = \langle x.\langle y, z \rangle_{\mathcal{B}}, u \rangle_{\mathcal{B}} = \langle z, y \rangle_{\mathcal{B}} \langle x, u \rangle_{\mathcal{B}}$$
$$= \langle z, y.\langle x, u \rangle_{\mathcal{B}} \rangle_{\mathcal{B}} = *z\pi_{y,x}^{\mathcal{B}}(u)_{\mathcal{B}}.$$

i.e.,

$$*\pi^{\mathcal{B}}_{x,y}(z)u_{\mathcal{B}} = *z\pi^{\mathcal{B}}_{y,x}(u)_{\mathcal{B}}.$$
(7)

It follows that $\pi_{x,y}^{\mathcal{B}}$ is adjointable with adjoint $(\pi_{x,y}^{\mathcal{B}})^+ := (\pi_{x,y}^{\mathcal{B}})^* \upharpoonright \mathcal{D} = \pi_{y,x}^{\mathcal{B}}$. Since $\pi_{x,y}^{\mathcal{B}}$ is continuous, $\pi_{x,y}^{\mathcal{B}} \in \mathcal{L}_{\mathcal{B}}^+(\mathcal{D}, \mathcal{X})$.

Remark 8 From the preceding, we note that, since $\mathcal{D} \subseteq \operatorname{dom}((\pi_{x,y}^{\mathcal{B}})^*)$ we have, for $n \in \mathbb{N}$, $\operatorname{dom}((\sum_{j=1}^n \pi_{x_j,y_j}^{\mathcal{B}})^*) \supseteq \operatorname{dom}((\pi_{x_1,y_1}^{\mathcal{B}})^*) \bigcap \operatorname{dom}((\pi_{x_2,y_2}^{\mathcal{B}})^*) \bigcap \cdots \bigcap \operatorname{dom}((\pi_{x_n,y_n}^{\mathcal{B}})^*) \supseteq \mathcal{D}$. It follows that $\sum_{j=1}^n \pi_{x_j,y_j}^{\mathcal{B}} \in \mathcal{L}^+_{\mathcal{B}}(\mathcal{D},\mathcal{X})$. Also, for $\alpha \in \mathbb{C}$ and $\pi_{x,y}^{\mathcal{B}} \in \mathcal{L}^+_{\mathcal{B}}(\mathcal{D},\mathcal{X})$, it is clear that $\alpha \pi_{x,y}^{\mathcal{B}} \in \mathcal{L}^+_{\mathcal{B}}(\mathcal{D},\mathcal{X})$. So we introduce the linear subspace $\mathcal{K}^+_{\mathcal{B}}(\mathcal{D},\mathcal{X}) = \operatorname{span}\{\pi_{x,y}^{\mathcal{B}} \in \mathcal{L}^+_{\mathcal{B}}(\mathcal{D},\mathcal{X}): x, y \in \mathcal{X}\}$ of $\mathcal{L}^+_{\mathcal{B}}(\mathcal{D},\mathcal{X})$.

PROPOSITION 7 $\mathcal{K}^+_{\mathcal{B}}(\mathcal{D},\mathcal{X})$ is a partial *-subalgebra and an ideal of $\mathcal{L}^+_{\mathcal{B}}(\mathcal{D},\mathcal{X})$.

Proof. We first show that $\mathcal{K}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$ is ⁺-invariant, i.e., for $T \in \mathcal{K}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$, $T^+ \in \mathcal{K}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$, where $T^+ := T^* \upharpoonright \mathcal{D}$. Indeed, if $T \in \mathcal{K}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$, then T may be expressed as $T = \sum_{j=1}^n \pi^{\mathcal{B}}_{x_j, y_j}, \forall x_j, y_j \in \mathcal{X}$ and $n \in \mathbb{N}$. Applying (6), we have $T^+ = (\sum_{j=1}^n \pi^{\mathcal{B}}_{x_j, y_j})^+ = \sum_{j=1}^n (\pi^{\mathcal{B}}_{x_j, y_j})^+ = \sum_{j=1}^n (\pi^{\mathcal{B}}_{x_j, y_j})^* \upharpoonright \mathcal{D} =$

... *-algebraic modules

Tsav & Ekhaguere

Trans. of NAMP

 $\sum_{j=1}^{n} \pi_{y_{j},x_{j}}^{\mathcal{B}} \in \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D},\mathcal{X}). \text{ Next, we show that } \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D},\mathcal{X}) \text{ is a partial *-subalgebra of } \mathcal{L}_{\mathcal{B}}^{+}(\mathcal{D},\mathcal{X}). \text{ To this end, let } T, S \in \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D},\mathcal{X}), \text{ with } T = \sum_{j=1}^{m} \pi_{x_{j},y_{j}}^{\mathcal{B}} \text{ and } S = \sum_{k=1}^{n} \pi_{u_{k},v_{k}}^{\mathcal{B}}, \forall u_{k}, v_{k}, x_{j}, y_{j} \in \mathcal{X} \text{ and } m, n \in \mathbb{N}. \text{ Then we claim that } T \circ S \in \mathcal{K}_{\mathcal{B}}^{+}(\mathcal{D},\mathcal{X}) \text{ whenever } u_{k}y_{j} \in \mathcal{M}(\mathcal{B}), j = 1, \cdots, k = 1, \cdots n. \text{ This is seen as follows. For } w, z \in \mathcal{D},$

$$*(T \circ S)(z)w_{\mathcal{B}} = * \left[\left(\sum_{j=1}^{m} \pi_{x_{j},y_{j}}^{\mathcal{B}} \right) \circ \left(\sum_{k=1}^{n} \pi_{u_{k},v_{k}}^{\mathcal{B}} \right) \right] (z)w_{\mathcal{B}}$$

$$= * \left(\sum_{j=1}^{n} \pi_{x_{j},y_{j}}^{\mathcal{B}} \right)^{+*} \left(\sum_{k=1}^{n} \pi_{u_{k},v_{k}}^{\mathcal{B}} \right) (z)w_{\mathcal{B}}$$

$$= * \left(\sum_{k=1}^{n} \pi_{u_{k},v_{k}}^{\mathcal{B}} \right) (z) \left(\sum_{j=1}^{m} \pi_{x_{j},y_{j}}^{\mathcal{B}} \right)^{+} (w) \right)_{\mathcal{B}}$$

$$= * \left(\sum_{k=1}^{n} \pi_{u_{k},v_{k}}^{\mathcal{B}} \right) (z) \left(\sum_{j=1}^{m} \pi_{y_{j},x_{j}}^{\mathcal{B}} \right) (w) \right)_{\mathcal{B}}$$

$$= * \sum_{k=1}^{n} \pi_{u_{k},v_{k}}^{\mathcal{B}} (z) \sum_{j=1}^{m} \pi_{y_{j},x_{j}}^{\mathcal{B}} (w) \right)_{\mathcal{B}}$$

$$= * \sum_{k=1}^{n} (u_{k}.v_{k}z_{\mathcal{B}}) \sum_{j=1}^{m} (y_{j}.x_{j}w_{\mathcal{B}})$$

$$= \sum_{\substack{1 \le j \le m \\ 1 \le k \le n}} zv_{k\mathcal{B}} (*u_{k}y_{j}.x_{j}w_{\mathcal{B}})$$

$$= \sum_{\substack{1 \le j \le m \\ 1 \le k \le n}} zv_{k\mathcal{B}} (*u_{k}y_{j\mathcal{B}}x_{j}w_{\mathcal{B}})$$

Hence, whenever $*u_k y_{j_{\mathcal{B}}} \in M(\mathcal{B}), j = 1, \dots, m, k = 1, \dots, m$, we have that

$$*(T \circ S)(z)w_{\mathcal{B}} = \sum_{\substack{1 \le j \le m \\ 1 \le k \le n}} zv_{k\mathcal{B}} \left(*u_{k}y_{j\mathcal{B}}x_{j}w_{\mathcal{B}} \right) = \sum_{\substack{1 \le j \le m \\ 1 \le k \le n}} zv_{k\mathcal{B}}x_{j} \cdot *y_{j}u_{k\mathcal{B}}w_{\mathcal{B}} = \sum_{\substack{1 \le j \le m \\ 1 \le k \le n}} x_{j} \cdot *y_{j}u_{k\mathcal{B}}v_{k}z_{\mathcal{B}}w_{\mathcal{B}} = \sum_{\substack{1 \le j \le m \\ 1 \le k \le n}} *\pi_{x_{j} \cdot y_{j}u_{k\mathcal{B}},v_{k}}^{\mathcal{B}}(z)w_{\mathcal{B}}$$

It follows that $T \circ S$ lies in $\mathcal{K}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$ with $T \circ S = \sum_{\substack{1 \leq j \leq m \\ 1 \leq k \leq n}} \pi^{\mathcal{B}}_{x_j, y_j u_{k\mathcal{B}}, v_k}$, whenever $*u_k y_{j\mathcal{B}} \in M(\mathcal{B})$, $j = 1, \cdots m, k = 1, \cdots n$. Finally, we show that $\mathcal{K}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$ is an ideal of $\mathcal{L}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$. Let $\sum_{j=1}^n \pi^{\mathcal{B}}_{x_j, y_j} \in S$ 59 Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018)

 $\mathcal{K}^+_{\mathcal{B}}(\mathcal{D},\mathcal{X})$ and $t \in \mathcal{L}^+_{\mathcal{B}}(\mathcal{D},\mathcal{X})$. For any $u, z \in \mathcal{D}$, we have

$$* \left(t \circ \sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}} \right) (u) z_{\mathcal{B}} = *t^{+*} \left(\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}} \right) (u) z_{\mathcal{B}} = *\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}} (u) t^{+} z_{\mathcal{B}}$$

$$= \sum_{j=1}^{n} *\pi_{x_{j}, y_{j}}^{\mathcal{B}} (u) t^{+} (z)_{\mathcal{B}} = \sum_{j=1}^{n} *x_{j} \cdot y_{j} u_{\mathcal{B}} t^{+} (z)_{\mathcal{B}}$$

$$= \sum_{j=1}^{n} *t^{+*} (x_{j}) \cdot y_{j} u_{\mathcal{B}} z_{\mathcal{B}} = \sum_{j=1}^{n} *\pi_{t^{+*} (x_{j}), y_{j}}^{\mathcal{B}} (u) z_{\mathcal{B}}$$

$$= *\sum_{j=1}^{n} \pi_{t^{+*} (x_{j}), y_{j}}^{\mathcal{B}} (u) z_{\mathcal{B}} = * \left(\sum_{j=1}^{n} \pi_{t^{+*} (x_{j}), y_{j}}^{\mathcal{B}} (u) z_{\mathcal{B}} \right) (u) z_{\mathcal{B}}$$

It follows that

$$t \circ \sum_{j=1}^{n} \pi_{x_j, y_j}^{\mathcal{B}} = \sum_{j=1}^{n} \pi_{t^{+*}(x_j), y_j}^{\mathcal{B}} \in \mathcal{K}_{\mathcal{B}}^+(\mathcal{D}, \mathcal{X})$$

$$(8)$$

Thus $\mathcal{K}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$ is a left ideal of $\mathcal{L}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$. On the other hand, let $\sum_{j=1}^n \pi^{\mathcal{B}}_{x_j, y_j} \in \mathcal{K}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$ and $s \in \mathcal{L}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$. For any $u, z \in \mathcal{D}$, we have

$$* \left[\left(\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}} \right) \circ s \right] (u) z_{\mathcal{B}} = * \left(\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}} \right)^{+*} s(u) z_{\mathcal{B}} = * s(u) \left(\sum_{j=1}^{n} \pi_{x_{j}, y_{j}}^{\mathcal{B}} \right)^{+} (z)$$

$$= * s(u) \sum_{j=1}^{n} \pi_{y_{j}, x_{j}}^{\mathcal{B}} (z) = \sum_{j=1}^{n} * s(u) \pi_{y_{j}, x_{j}}^{\mathcal{B}} (z)_{\mathcal{B}}$$

$$= \sum_{j=1}^{n} * us^{*} \pi_{y_{j}, x_{j}}^{\mathcal{B}} (z)_{\mathcal{B}} = \sum_{j=1}^{n} * u\pi_{s^{+}(y_{j}), x_{j}}^{\mathcal{B}} (z)_{\mathcal{B}}$$

$$= \sum_{j=1}^{n} * u \left(\pi_{x_{j}, s^{+}(y_{j})}^{\mathcal{B}} \right)^{+} (z)_{\mathcal{B}} = * \left(\sum_{j=1}^{n} \pi_{x_{j}, s^{+}(y_{j})}^{\mathcal{B}} \right) (u) z_{\mathcal{B}}$$

It follows that

$$\left(\sum_{j=1}^{n} \pi_{x_j, y_j}^{\mathcal{B}}\right) \circ s = \sum_{j=1}^{n} \pi_{x_j, s^+(y_j)}^{\mathcal{B}} \in \mathcal{K}_{\mathcal{B}}^+(\mathcal{D}, \mathcal{X}).$$
(9)

Thus $\mathcal{K}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$ is a right ideal of $\mathcal{L}^+_{\mathcal{B}}(\mathcal{D}, \mathcal{X})$. This completes the proof.

6. Locally convex partial *-algebraic bimodules

DEFINITION 15 Let $(\mathcal{A}, \tau_{\mathcal{A}})$ and $(\mathcal{B}, \tau_{\mathcal{B}})$ be two locally convex, semi-associative partial *-algebras, and let $_{\mathcal{A}}\mathcal{D} \equiv (\mathcal{D}, _{\mathcal{A}}\langle \cdot, \cdot \rangle, \tau_{\mathcal{D}, \mathcal{A}})$ be a (left) locally convex $(\mathcal{A}, \tau_{\mathcal{A}})$ -module and $\mathcal{D}_{\mathcal{B}} \equiv (\mathcal{D}, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}})$ a (right) locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -module. Then \mathcal{D} is said to be a locally convex $(\mathcal{A}, \tau_{\mathcal{A}})$ - $(\mathcal{B}, \tau_{\mathcal{B}})$ -bimodule if the following properties are satisfied:

- (i) $_{\mathcal{A}}\langle x, y \rangle . z = x . \langle y, z \rangle_{\mathcal{B}}, \forall x, y, z \in \mathcal{D} \text{ such that } _{\mathcal{A}}\langle x, y \rangle \in L(\mathcal{A}), \langle y, z \rangle_{\mathcal{B}} \in R(\mathcal{B});$
- (ii) for each $b \in R(\mathcal{B})$, the map $x \in \mathcal{D}_{\mathcal{B}} \mapsto x.b \in \mathcal{D}_{\mathcal{B}}$ is $\tau_{\mathcal{D},\mathcal{A}}$ -continuous; i.e., for each $\alpha \in \Delta$, $\exists \beta(\alpha) \in \Delta \text{ and a constant } K_{\alpha,b} > 0 \text{ such that } \|x.b\|_{\alpha} \leq K_{\alpha,b} \|x\|_{\beta(\alpha)}$;
- (iii) for each $a \in L(\mathcal{A})$, the map $x \in \mathcal{AD} \longrightarrow a.x \in \mathcal{AD}$ is $\tau_{\mathcal{D},\mathcal{B}}$ -continuous; i.e., for each $\gamma \in \Lambda$, $\exists \zeta(\gamma) \in \Lambda$ and a constant $K_{\gamma,a} > 0$ such that $||a.x||_{\gamma} \leq K_{\gamma,a} ||x||_{\zeta(\gamma)}$.

Remark 9 Suppose $a = {}_{\mathcal{A}}\langle x, x \rangle \in L(\mathcal{A})$ and $b = \langle x, x \rangle_{\mathcal{B}} \in R(\mathcal{B})$. Then, by Property (i) of Definition 15, $a.x = x.b, \forall x \in \mathcal{D}$. It now follows from Properties (ii) and (iii) of Definition 15 that the topologies $\tau_{\mathcal{D},\mathcal{A}}$ and $\tau_{\mathcal{D},\mathcal{B}}$ are generated by the same family of seminorms $||x||_{\alpha} = |_{\mathcal{A}}\langle x, x \rangle|_{\alpha}^{1/2} = |\langle x, x \rangle_{\mathcal{B}}|_{\beta}^{1/2} = ||x||_{\beta}$.

DEFINITION 16 A $\tau_{\mathcal{D},\mathcal{B}}$ -complete locally convex $(\mathcal{A}, \tau_{\mathcal{A}})$ - $(\mathcal{B}, \tau_{\mathcal{B}})$ -bimodule \mathcal{D} will be called an $(\mathcal{A}, \tau_{\mathcal{A}})$ - $(\mathcal{B}, \tau_{\mathcal{B}})$ -imprimitivity bimodule if it is full both as a left and as a right locally convex partial *-algebraic module.

LEMMA 2 Let $(\mathcal{A}, \tau_{\mathcal{A}})$ and $(\mathcal{B}, \tau_{\mathcal{B}})$ be two locally convex, semi-associative partial *-algebras. If \mathcal{D} is an $(\mathcal{A}, \tau_{\mathcal{A}})$ - $(\mathcal{B}, \tau_{\mathcal{B}})$ -imprimitivity bimodule, then the following hold:

$$\langle a.x, y \rangle_{\mathcal{B}} = \langle x, a^*.y \rangle_{\mathcal{B}} \text{ and }_{\mathcal{A}} \langle x.b, y \rangle = {}_{\mathcal{A}} \langle x, y.b^* \rangle, \forall x, y \in \mathcal{D}, a \in L(\mathcal{A}), b \in R(\mathcal{B}).$$
(10)

Proof. Since $_{\mathcal{A}}\mathcal{D}$ is full, we may set an $a \in L(\mathcal{A})$ as $a = \sum_{j=1}^{n} _{\mathcal{A}} \langle u_j, v_j \rangle$, for some $u_j, v_j \in _{\mathcal{A}}\mathcal{D}$, $n \in \mathbb{N}$. It follows that

$$\begin{split} \langle a.x, y \rangle_{\mathcal{B}} &= [\left] \sum_{j=1}^{n} {}_{\mathcal{A}} \langle u_{j} v_{j} \rangle . x, y_{\mathcal{B}} = [\right] u_{j} . \sum_{j=1}^{n} \langle v_{j}, x \rangle_{\mathcal{B}} y_{\mathcal{B}} = \sum_{j=1}^{n} \langle x, v_{j} \rangle_{\mathcal{B}} \langle u_{j}, y \rangle_{\mathcal{B}} \\ &= \sum_{j=1}^{n} \langle x, v_{j} . \langle u_{j}, y \rangle_{\mathcal{B}} \rangle_{\mathcal{B}} = \sum_{j=1}^{n} \langle x, {}_{\mathcal{A}} \langle v_{j}, u_{j} \rangle . y \rangle_{\mathcal{B}} = [\right] x \sum_{j=1}^{n} {}_{\mathcal{A}} \langle v_{j}, u_{j} \rangle . y \\ &= [\left] x \sum_{j=1}^{n} {}_{\mathcal{A}} \langle v_{j}, u_{j} \rangle . y \right]_{\mathcal{B}} = \langle x, a^{*}. y \rangle_{\mathcal{B}} . \end{split}$$

Similarly, $\mathcal{D}_{\mathcal{B}}$ is full, so we may set an element $b \in R(\mathcal{B})$ as $b = \sum_{j=1}^{n} \langle v_j, w_j \rangle_{\mathcal{B}}$, for some $v_j, w_j \in \mathcal{D}_{\mathcal{B}}$, $n \in \mathbb{N}$. Then we have that

$$\begin{split} {}_{\mathcal{A}}\langle x.b,y\rangle &= {}_{\mathcal{A}}[\Big]x.\sum_{j=1}^{n} \langle v_j,w_j\rangle_{\mathcal{B}}y = {}_{\mathcal{A}}[\Big]\sum_{j=1}^{n} {}_{\mathcal{A}}\langle x,v_j\rangle.w_jy = \sum_{j=1}^{n} {}_{\mathcal{A}}\langle x,v_j\rangle_{\mathcal{A}}\langle w_j,y\rangle \\ &= \sum_{j=1}^{n} {}_{\mathcal{A}}\langle x,{}_{\mathcal{A}}\langle y,w_j\rangle.v_j\rangle = \sum_{j=1}^{n} {}_{\mathcal{A}}\langle x,y.\langle w_j,v_j\rangle_{\mathcal{B}}\rangle = {}_{\mathcal{A}}[\Big]xy.\sum_{j=1}^{n} \langle w_j,v_j\rangle_{\mathcal{B}} = {}_{\mathcal{A}}\langle x,y.b^*\rangle. \\ &\text{i.e., }_{\mathcal{A}}\langle x.b,y\rangle = {}_{\mathcal{A}}\langle x,y.b^*\rangle. \end{split}$$

Remark 10 Equation (4) and Lemma 2 imply that the elements of $L(\mathcal{A})$ act as adjointable maps on $\mathcal{D}_{\mathcal{B}}$ and the elements of $R(\mathcal{B})$ act as adjointable maps on $_{\mathcal{A}}\mathcal{D}$.

LEMMA 3 Let $(\mathcal{A}, \tau_{\mathcal{A}})$ and $(\mathcal{B}, \tau_{\mathcal{B}})$ be two locally convex, semi-associative partial *-algebras and let \mathcal{D} be both $_{\mathcal{A}}\mathcal{D}$ and $\mathcal{D}_{\mathcal{B}}$. If \mathcal{D} satisfies (10) of Lemma 2, then \mathcal{D} satisfies Properties (ii) and (iii) of Definition 15.

Proof. Suppose (10) holds for all $x, y \in \mathcal{D}$, $a \in L(\mathcal{A})$, $b \in R(\mathcal{B})$. Then the elements of $L(\mathcal{A})$ act as adjointable maps on $(\mathcal{D}, \langle \cdot, \cdot \rangle_{\mathcal{B}}, \tau_{\mathcal{D}, \mathcal{B}})$, by Remark 10. Similarly, the elements of $R(\mathcal{B})$ act as adjointable maps on $(\mathcal{D}, \mathcal{A} \langle \cdot, \cdot \rangle, \tau_{\mathcal{D}, \mathcal{A}})$. The required result now follows, since the left and right module actions are continuous.

COROLLARY 2 Let \mathcal{D} be both a full (left) locally convex $(\mathcal{A}, \tau_{\mathcal{A}})$ -module and a full (right) locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -module satisfying Property (i) of Definition 15. Then \mathcal{D} is an $(\mathcal{A}, \tau_{\mathcal{A}})$ - $(\mathcal{B}, \tau_{\mathcal{B}})$ imprimitivity bimodule if and only if \mathcal{D} satisfies (10) of Lemma 2.

Proof. This follows from Lemmas 2 and 3.

EXAMPLE 3 Let $(\mathcal{B}, \tau_{\mathcal{B}})$ be a complete locally convex semi-associative partial *-algebra and let $\mathcal{D} = M(\mathcal{B})$ such that $M(\mathcal{B})$ is an ideal of \mathcal{B} . Then \mathcal{D} is both a left $L(\mathcal{B})$ - and a right $R(\mathcal{B})$ -module. \mathcal{D} is also a $(\mathcal{B}, \tau_{\mathcal{B}}) - (\mathcal{B}, \tau_{\mathcal{B}})$ -imprimitivity bimodule with the \mathcal{B} -valued inner products $_{\mathcal{B}}\langle a, b \rangle = ab^*$, $\forall a, b \in _{\mathcal{B}}\mathcal{D}$ and $\langle a, b \rangle_{\mathcal{B}} = a^*b, \forall a, b \in \mathcal{D}_{\mathcal{B}}$. To see this, it suffices by Corollary 2, to show that

- (i) \mathcal{D} satisfies Property (i) of Definition 15;
- (ii) \mathcal{D} satisfies (10) of Lemma 2;
- (iii) \mathcal{D} is full both as a (left) locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -module and as a (right) locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ module. Indeed:
 - (i) For all $a, b, c \in \mathcal{D}$, $\mathcal{B}(a, b)c = (ab^*)c = a(b^*c) = a\langle b, c \rangle_{\mathcal{B}}$
 - (ii) For all $a' \in L(\mathcal{B})$, $a, b \in \mathcal{D}$, $\langle a'a, b \rangle_{\mathcal{B}} = (a'a)^*b = (a^*a'^*)b = a^*(a'^*b) = \langle a, a'^*b \rangle_{\mathcal{B}}$. Also, for all $b' \in R(\mathcal{B})$, $a, b \in \mathcal{D}$, ${}_{\mathcal{B}}\langle ab', b \rangle = (ab')b^* = a(b'b^*) = a(bb'^*)^* = {}_{\mathcal{B}}\langle a, bb'^* \rangle$
 - (iii) The locally convex $(\mathcal{B}, \tau_{\mathcal{B}})$ -modules $L(\mathcal{B})$ and $R(\mathcal{B})$ are both full, by Proposition 3.

References

- [1] J.-P. Antoine, A. Inoue, C. Trapani: Partial*-Algebras and their Operator Realizations, Kluwer, Dordrecht (2002).
- [2] G. O. S. Ekhaguere: Representation of Completely Positive Maps Between Partial *-Algebras, Internat. J. Theoret. Phys, 35, 1571–1580 (1996).
- [3] M. Frank: Hilbert C^{*}-modules and Related Subjects- a Guided Reference Overview, Leipzig University (2017).
- [4] I. Kaplansky: Modules over Operator Algebras, Amer. J. Math., 75, 839–858 (1953)
- [5] G. G. Kasparov: Hilbert C^{*}-modules: Theorems of Stinespring and Voiculescu, J. Operator Theory, 4, 133–150 (1980).
- [6] G. G. Kasparov: The Operator K-functor and Extensions of C^{*}-algebras, Izv. Akad. Nauk SSSR Ser. Mat., 44, 571–636 (1980); English Transl. Math. USSR-Izv., 16, 513-572 (1981).
- [7] N. P. Landsmann: Lecture Notes on C^{*}-algebras, Hilbert C^{*}-modules and Quantum Mechanics, Preprint mathph/9807030, xxx.lanl.gov /http://remote.science.uva.nl/npl/ck.html, (1998/2004).
- [8] V. M. Manuilov, E. V. Troitsky: *Hilbert C^{*}-modules*, Transl. Math. Monogr, 226, Amer. Math. Soc., Providence, R.I., USA, (2005).
- W. L. Paschke: Inner product Modules Over B*-algebras, Transactions of the American Mathematical Society, 182, 443–468 (1973).
- [10] I. Raeburn, D. P. Williams: Morita Equivalence and Continuous-trace C*-algebras, Math. Surveys and Monogr., 60, Amer. Math. Soc., Providence, R. I. USA, (1998).
- [11] M. A. Rieffel: Induced Representations of C*-algebras, Adv.in Math. 13, 176–257 (1974).
- [12] M. A. Rieffel: Morita Equivalence for Operator Algebras, in Operator Algebras and Applications (ed. R. V. Kadison), Proc. Sympos. Pure Math., 38(1), 285–298 (Amer.Math. Soc., 1982).
- [13] C. Trapani: Locally Convex Quasi *-Algebras of Operators, Complex Anal. Oper. Theory, 6, 719–728 (2012).
- [14] S. L. Woronowicz: Unbounded Elements Affiliated with C*-algebras and Non-compact Quantum Groups, Commun. math. Phys., 136, 399–432 (1991).