In honour of Prof. Ekhaguere at 70 Some isomorphisms in K-theory

O.S. Olusa*

Department of Mathematical Sciences, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria

Abstract. Let F(n + 1) be the complete flag manifold of length n. It is shown that the topological K-group KO(F(n+1)) is isomorphic to an algebraic K - group, with a condition given for this identification. Furthermore, an isomorphism is established connecting the Grothendieck group of a commutative ring R and the first algebraic K - group of an R - algebra S.

Keywords: Grothendieck group, algebraic K- theory, topological K- theory, flag manifold, first algebraic K- theory group.

1. Introduction

The computations of K - groups, as well as the determination of relationships among them constitute an important problem in K - theory([1],[3],[4],[6],[10]). This paper investigates topological and algebraic K - groups with the objective of establishing isomorphism relationships among them. Let C be an additive category, then the set of isomorphism classes $\phi(C)$ of C is an abelian monoid. The group completion ([10],[14]) of $\phi(C)$ is called the Grothendieck group of C and is denoted by K_0C .

In algebraic K - theory, the group completion K(P(R)) of the category P(R) of finitely generated projective modules over an arbitrary ring R as objects and R-linear maps as morphisms yields the Grothendieck group K_0R of the ring R, which is sometimes called the 0th K - group of R. We also have the first and second algebraic K - groups of a ring R, defined by $K_1R = GL(R)/E(R)$ and $K_2R = ker(\phi : St(R) \longrightarrow E(R) \subset GL(R))$ respectively([10]). The study of the groups $K_iR, i =$ 0, 1, 2 constitutes the classical algebraic K - theory([10]). In topological K - theory, the group completion $K_0(\xi_{\mathbb{F}}(X))$ of the category $\xi_{\mathbb{F}}(X)$ of \mathbb{F} -vector bundles over paracompact spaces X and vector bundle morphisms gives rise to $K_0(\xi_{\mathbb{R}}(X)) = KO(X)$ and $K_0(\xi_{\mathbb{C}}(X)) = KU(X)$ when $\mathbb{F} = \mathbb{R}$ and $\mathbb{F} = \mathbb{C}$ respectively (page 38 of [6], page 89 of [14]).

In this paper, it has been proved that the topological K-group KO(F(n + 1)) of the complete flag manifold F(n + 1) of length n is isomorphic to the algebraic K - group K_0A where A is a Noetherian subring of the ring of real valued continuous functions on F(n + 1), provided that the Krull dimension of A and the length of F(n + 1) satisfy a certain condition. Thus identifying a topological K - group with an algebraic K - group. It is also proved that the ring of all $\nu \times \nu$ matrices with entries from the Grothendieck group of a commutative ring R is isomorphic to the ring of all endomorphisms on the first algebraic K - group of an R - algebra S over the Grothendieck group of R. This relates K_0R and K_1S . In the sequel, some preliminary definitions and examples are followed by some isomorphism results.

2. Preliminary definitions and examples

DEFINITION 1 Let \mathbb{F} denote the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers. Suppose n_1, \dots, n_s are fixed positive integers such that $n_1 + \dots + n_s = n$. A 'flag' or more precisely a " $(n_1 \dots n_s)$ -flag over \mathbb{F} " is a collection σ of mutually orthogonal subspaces $(\sigma_1, \dots, \sigma_s)$ in \mathbb{F}^n such

^{*}Corresponding author. Email: olusafem@hotmail.co.uk; olufemi.olusa@aaua.edu.ng

that $\dim_{\mathbb{F}} \sigma_i = n_i$. The space of all such flags forms a compact smooth manifold called the generalized real flag manifold (respectively complex flag manifold) for $\mathbb{F} = \mathbb{R}$ (respectively $\mathbb{F} = \mathbb{C}$) denoted by $G_{\mathbb{F}}(n_1, \dots, n_s)$ or simply G([9]).

EXAMPLE 1 Examples of flag manifolds are the following

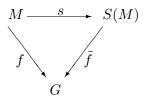
- (i) The flag manifold $G_{\mathbb{R}}(n_1, n_2)$ is called the Grassmannian of n_1 planes in Euclidean $n_1 + n_2$ space and is denoted by $G_{n_1}(\mathbb{R}^{n_1+n_2})$.
- (ii) The flag manifold $G_{\mathbb{R}}(1, n_2)$ is called the projective space in Euclidean $n_2 + 1$ space and is denoted by $\mathbb{R}P^{n_2} = G_1(\mathbb{R}^{n_2+1})$.
- (iii) Let E be a complex vector space of dimension n. A flag in E is a sequence of subspaces $0 = E_0 \subset E_1 \subset \cdots \subset E_n = E$, where dim $E_i = i$. The set of all such flags is called a complete flag manifold of length n and is denoted by F(E), $W(0, 1, \cdots, n)$ or F(n+1).
- (iv) Given integers q_1, q_2, \dots, q_m such that $0 \le q_1 \le q_2 \le \dots \le q_m$, a (q_1, \dots, q_m) -flag is defined as a nested system

$$S: S_{q_1} \subset S_{q_2} \subset \cdots \subset S_{q_m}, dim S_{q_i} = q_i,$$

of subspaces of S_n , the complex n-projective space. The set of all such flags is called an incomplete flag manifold in S_n and is denoted by $W(q_1, \dots, q_m)$, where q_1, \dots, q_m are called the flag dimensions of $W(q_1, \dots, q_m)$.

(v) $G_{\mathbb{F}}(\underbrace{1,1,\cdots,1}_{rtimes},n-r)$ is called the incomplete flag manifold of length r.

DEFINITION 2 Let M be an abelian monoid, there is associated with M an abelian group S(M)and a homomorphism of the underlying monoids $s : M \longrightarrow S(M)$, having the following universal property: For any abelian group G, and any homomorphism of the underlying monoids $f : M \longrightarrow G$, there is a unique group homomorphism $\tilde{f} : S(M) \longrightarrow G$ such that the following diagram



is commutative. The group S(M) is called the group completion of M (See page 52 of [8]).

Let C be an additive category. Suppose $E \in ob(C)$, \dot{E} the isomorphism class of E, then the set of all such isomorphism classes \dot{E} denoted by $\phi(C)$ constitute an abelian monoid. The group completion of this monoid $\phi(C)$ is called the Grothendieck group of C, and is denoted by K(C) (see page 54 of [8]).

- EXAMPLE 2 (i) Let A be an arbitrary ring with identity, and let P(A) be the category with finitely generated projective A - modules as objects and the A-linear maps as morphisms. The Grothendieck group K(P(A)) of P(A) is denoted by K(A). A problem in "algebraic K-theory" is to compute K(A) for interesting rings A.
- (ii) Let $\xi(X)$ be the category of vector bundles over a compact space X. We denote the Grothendieck group $K(\xi(X))$ of $\xi(X)$ by K(X). If the basic field \mathbb{F} is \mathbb{R} (respectively \mathbb{C}) we write $K_{\mathbb{R}} = KO(X)$ (respectively $K_{\mathbb{C}} = KU(X)$) for the group K(X). A problem in "topological K theory" is to compute K(X) for interesting spaces X. It is in this way that topological K theory arises as a special case of algebraic K theory.
- DEFINITION 3 (i) The quotient group GL(R)/E(R) is called the first algebraic K theory group of the ring R with identity and is denoted by K_1R (See page 27 of [10]).
 - (ii) The second algebraic K theory group of a ring R is defined as the kernel of an epimorphism $\phi: St(R) \longrightarrow E(R) \subset GL(R)$ (See page 29 of [10]).
- 51 Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018)

3. Isomorphism theorems

We prove the following isomorphism theorems.

THEOREM 1 Let A be a Noetherian subring of the ring $C^0(F(n+1);\mathbb{R})$ of continuous functions $f: F(n+1) \longrightarrow \mathbb{R}$ and $K_0(A)$ the Grothendieck group of A. If A is of Krull dimension N, then there is an isomorphism $KO(F(n+1)) \cong K_0(A)$ provided $n = \frac{-1+\sqrt{8N+1}}{2}$.

Proof. Since A is an affine ring of dimension N ([7]) and F(n+1) is a finite CW-complex ([5]); it follows that $KO(F(n+1)) \cong K_0(A)$ provided

Krull $\dim(A) = \operatorname{topl} \dim(F(n+1))$

(see corollaries 1 and 2 in section 3 of [12] and proposition 2.2 of [11]). It is known that F(n + 1) is of dimension $\frac{1}{2}n(n+1)$ ([13]). It follows that the desired result is obtained if $n = \frac{-1+\sqrt{8N+1}}{2}$. For $\frac{1}{2}(\frac{-1+\sqrt{8N+1}}{2})(\frac{-1+\sqrt{8N+1}}{2}+1) = N$.

THEOREM 2 Let R be a commutative ring and S an R - algebra. Suppose that K_1R is a free module of rank ν . Then $End_{K_0R}(K_1S) \cong M_{\nu}(K_0R)$.

Proof. It is known that there is a natural external product operation $K_0R \otimes K_1S \longrightarrow K_1(R \otimes S)$, and since R is commutative with S an R - algebra, there is a natural product operation $K_0(R) \otimes K_1(S) \longrightarrow K_1(S)$, making $K_1(S)$ into a module over the ring $K_0(R)$ (see Corollary 1.6.1 on page 204 of [14]). Since $K_1(S)$ is a free module of rank ν , it follows by Theorem 8.1.1 on page 310 of [2] that $End_{K_0(R)}(K_1S)$ is isomorphic to the ring of all row-finite $\nu \times \nu$ matrices over $K_0(R)$.

References

- D.W. Anderson, Relationship among K theories, In: H. Bass, (Ed.) Higher K -Theories, Lecture Notes in Mathematics, vol 341, 57-72, Springer-verlag, Berlin, 1973
- [2] P.M. Cohn, Further Algebra and Applications, Springer, London, 2003.
- [3] G. Cortinas, Algebraic v. Topological K Theory: A Friendly Match, In J-M. Morel, F. Takens, B. Teissien (Eds), Topics in Algebraic and Topological K - Theory, Lecture Notes in Mathematics 2008, 103-163, Springer-verlag, Berlin, 2011.
- [4] J. Duflot, The algebraic K theory of a diagram of rings, Homotopy, Homology and Applications 10(2) (2008), 13–58.
- [5] H. H. Glover and W. D. Homer, Self-maps of flag manifolds, Trans. Amer. Math. Soc. 267 (1981), 423–434.
- [6] A. Hatcher, Vector bundles and K Theory, Version 2.1, May 2009. http://www.cornell.edu/~hatcher/
- [7] W. Heinzer, Locally affine ring extensions of a noetherian domain, Proc. Amer. Math. Soc. 35 (1972), 277–380.
- [8] M. Karoubi, K Theory An introduction, Berlin: Springer-Verlag, 1978.
- K. Y. Lam, A formula for the tangent bundle of flag manifolds and related manifolds, Trans. Amer. Math. Soc. 213 (1975), 305–314.
- [10] E. Lluis-Puebla, Introduction to Algebraic K Theory, In: A. Dold, B.Eckmann and F. Takens (Eds), Proceedings of the first seminar on algebraic K-theory at the Universidad Nacional Autonoma de Mexico in 1985, 1-30. Berlin, 1992.
- [11] K. Lonsted, An algebrization of vector bundles on compact manifolds, Journal of Pure and Applied Algebra 2 (1972), 193-207.
- [12] K. Lonsted, Vector bundles over finite CW complexes are algebraic, Proc. Amer. Math. Soc. 38(1) (1973), 27–31.
- [13] D. Monk, The geometry of flag manifolds, Proc. Lond. Math. Soc. 9 (1959), 253–286.
- [14] C. Weibel, *The K book: an introduction to Algebraic K theory*, Graduate Studies in Math. Vol. 145, AMS, 2013.