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Abstract. Building upon the fundamental foundation laid by Ekhaguere in his pioneering work concerning
the existence and some qualitative properties of Lipschitzian quantum stochastic differential inclusions
rendered in the framework of the Hudson-Parthasarathy formulation (H-P) of quantum stochastic calculus
(QSC), this paper reviews our important results in this field. The review covers the period 1992 to the
year 2010 and it concerns both the theoretical and numerical aspects of quantum stochastic differential
equations (QSDE) and inclusions (QSDI) driven by quantum martingales and semi-martingales in the
weak and strong sense. It is well known that the H-P formulation of QSC sufficiently generalise the Ito
calculus.

Keywords: quantum stochastic differential equations, inclusions, martingales, Ito calculus.

1. Introduction

1.1 Classical Stochastic Differential Equations (SDE)

A Stochastic Differential Equation (SDE) is a generalisation of a deterministic ordinary differential
equation incorporating random phenomenon into its formulation and parameters. This makes the
equations more useful for modelling real life problems much more realistically than their determin-
istic counterparts. It also involves much more complex analysis using specially developed calculus
called stochastic calculus (e.g. Ito Calculus pioneered in 1949 by K. Ito (1915-2008), a Japanese
mathematician) as distinct from the Newtonian calculus which is applicable to deterministic equa-
tions.

This review is primarily intended to stimulate the research interest of younger generation of
mathematicians in the field and for them to appreciate the generalisation of the classical stochastic
calculus defined on finite dimensional Euclidean spaces to the recently developed non commutative
operator valued quantum stochastic calculus defined on infinite dimensional locally convex spaces
with diverse analytical and computational benefits. As shown in our works below, by a suitable
choice of parameters, Ito Stochastic differential equations can be recovered from the generalised
quantum stochastic differential equations whose solutions are operator processes.

Systems in many branches of science, engineering, industry and government are often perturbed
by various types of environmental noise arising from some uncertainties and random errors in mea-
surements. If we consider the simple population growth model:

dN

dt
(t) = a(t)N(t) (1.1)

with initial condition N(0) = N0, where N(t) is the size of the population at time t and a(t) is
the relative growth. It might happen that a(t) is not completely known or subject to some random
fluctuation so that it may be written in the form:

a(t) = r(t) + σ(t)ξ.
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Here ξ stands for the noise process. Equation (1.1) then becomes:

dN

dt
(t) = r(t)N(t) + σ(t)N(t)ξ,

which is given in integral form by:

N(t) = N0 +

∫ t

0
r(s)N(s)ds+

∫ t

0
σ(s)N(s)ξ(s)ds. (1.2)

The question is: What is the mathematical interpretation for the noise term involving ξ(t) and what
is the integration

∫ t

0
σ(s)N(s)ξ(s)ds? (1.3)

It turns out that a reasonable mathematical interpretation for the ’noise’ term ξ(t) is the so called
white noise which is formally regarded as the derivative of a Brownian motion (a Wiener process)
B(t). Hence we have ξ(t) = dB

dt (t) or ξ(t)dt = dB(t) and therefore, we have the integral that appears
in Equation (1.2) given by

∫ t

0
σ(s)N(s)ξ(s)ds =

∫ t

0
σ(s)N(s)dB(s). (1.4)

If the Brownian motion B(t) were differentiable, then the integral would have no problem at all.
Unfortunately, we know that B(t) is nowhere differentiable hence the integral cannot be defined
in the ordinary way. The stochastic nature of the Brownian motion was used by K. Ito in 1949
to establish the integral now known as Ito stochastic integral. This led to the study of a class
of stochastic differential equations driven by a Brownian motion defined on a probability space
(Ω,F , P ) of the form:

dX(t) = E(t,X(t))dt+ F (t,X(t))dB(t), X(0) = X0, t ∈ [0, T ], (1.5)

where the coefficients E, F belong to the appropriate spaces of real or vector valued stochastic
processes.

Let it be known that many generalisations and extensions of Ito integral have appeared in the
literature. These include generalisation to stochastic integrals driven by semimartingales and sev-
eral formulations of the non commutative quantum stochastic integrals driven by operator valued
processes on certain topological spaces.

2. Some applications of SDE to real life problems

In order to motivate and stimulate multidisciplinary research collaborations, we will proceed to
list some of the recent areas where SDE (1.5) has been applied for modelling and solving real life
problems. These are:

(a) Population dynamics, protein kinetics and genetics
The simplest deterministic model of population growth is the exponential equation

dN

dt
(t) = AN(t), A > 0. (2.1)
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Allowing the vagaries of environment, A can be modelled to vary randomly as A+σξ(t), for some zero
mean process ξ(t). Incorporating a finite supportable carrying capacity K, Equation (2.1) becomes

dN

dt
(t) = A(K −N(t))N(t) = λN(t)−N2(t) (2.2)

where AK = λ.
On randomizing the parameter λ in Equation (2.2) to λ+ σξ(t), we obtain an SDE of the form

dN(t) =
[
λN(t)−N2(t)

]
dt+ σN(t)dW (t) (2.3)

which is explicitly solvable.
A frequently studied deterministic model of multi-species interaction is the Voltera-Lotka system:

dNi

dt
(t) = Ni(t)

Ai +

d∑
j=1

bi,jNj(t)

 , i = 1, 2 · · · d

in the case of d different species. Randomising the growth parameters Ai as Ai + σiξi(t) leads to a
system of SDE with independent Wiener processes given by:

dNi(t) = Ni(t)

Ai +

d∑
j=1

bi,jNj(t)

 dt+ σiNi(t)dWi(t). (2.4)

Explicit solutions are not known for equation (2.4), so approximate solutions are usually obtained
numerically.

Protein kinetics: Stochastic counterparts of many ordinary differential equations modelling
chemical kinetics such as the Brusselor equations can be derived by randomizing coefficients. For
example, the kinetics of the proportion X of one of two possible forms of certain proteins can be
modelled by an ODE of the form

dX

dt
(t) = α−X − λX(1−X) (2.5)

where 0 ≤ X ≤ 1 and the other form has proportion Y = 1 − X. For random fluctuations of the
interaction coefficients λ of the form λ+σξ(t), with white noise ξ(t), we have the stochastic version
of (2.5) given by the Stratonovich SDE:

dX(t) = (α−X(t) + λX(t)(1−X(t))dt+ σX(t)(1−X(t))dW (t). (2.6)

The solutions of (2.6) are not known explicitly but remain in the interval [0, 1].
The Ito equation equivalent to (2.6) given by

dX(t) = AX(t)dt+ σX(t)(1−X(t))dW (t) (2.7)

has been applied to genetics with X(t) representing the proportion at time t of one of the two
possible alleles of a certain gene. A discrete time Markov process can be constructed to model the
changes from generation to generation in the alleles proportion due to natural selection.

(b) Experimental psychology and neuronal activity
The coordination of human movement particularly of periodically repeated movement has been
extensively investigated by experimental psychologists with the objective of gaining deeper under-
standing into neurological control mechanism. The neurological system is extremely complicated,
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yet in some situations, a single characteristic appears to dominate and a satisfactory phenomological
SDE model can be constructed to describe its dynamics.

Neuronal activity: Many stochastic models have been proposed to describe the sponta-
neous firing activity of a single neutron. These are usually based on jump processes and allow
arbitrary large hyperpolarisation values for the membrane potential. A model incorporating several
features of neutronal activities has been derived in the form of SDE.

(c) Investment finance and option pricing
Investment finance: SDE have been used to model share price dynamics in models of investment
finance. Merton (1973) considered an investor who chooses between two different types of invest-
ment, one risky and the other safe (riskless). At each instant of time, the investor must select the
fraction f of his wealth that he put into risky asset with the remaining fraction 1− f going into the
safe one. If his current consumption rate c ≥ 0, then his wealth X(t) satisfies the SDE

dX(t) = ({(1− f)a+ fb}X(t)− c)dt+ fβX(t)dW (t). (2.8)

If the investor has perfect information about his current wealth, Markovian feed back controls
of the form: U(t,X(t)) = (f(t,X(t)), C(t,X(t)) provides a natural way for choosing his current
investment and consumption rate.

Option pricing: Suppose that the price X(t) of a risky asset evolves according to the Ito
SDE in integral form given by:

X(t) = X0 +

∫ t

0
b(s,X(s))dW (s), t ∈ [0, T ]

an European call option with strike price K gives the right to buy the stock at time T at a fixed
price K. The resulting payoff is then given by

f(X(T )) = (X(T )−K)+.

Suppose that we apply a dynamical portfolio strategy or hedging strategy (ct, ηt) where ηt is the
amount of riskless asset of constant value 1 say, and the amount ct is the risky asset. Then the value
V (t) of the portfolio at time t is

V (t) = ctX(t) + ηt

An important problem is to determine the fair price of the option. By the Nobel prize winning
Blacks-Scholes formula, we have

V (0) = E(f(X(T )).

The corresponding self financing hedging strategy in quite general situation leads to a perfect repli-
cation of the claim

V (T ) = f(X(T )).

Please note that the Black - Scholes equations have been applied to real option valuation of assets
and valuation of flexibility or opportunity for real investments in the energy sector such as oil and
gas, electricity as well as in the real sector.
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(d) Turbulent diffusion and radio – astronomy
SDE have long been used to model turbulent diffusion and related issues, dating back to Langevin’s
equations for Brownian motion. If X(t) ∈ R3 represents the position of a fluid particle at time t and
V (t) its velocity, a simple model for the Lagrangian dynamics of such a particle is of the form:

dX(t) = V (t)dt, dV (t) = − 1

T
V (t)dt+ σdW (t) (2.9)

where T is a large relaxation time for the process V (t). Variation of the last equations have been
considered with coloured noise. In some instances, Poisson processes have been used as the driving
processes. Other areas of research activities where SDE have found applications are:

(e) Helicopter Rotor and Satellite Orbit Stability,
(f) Biological Waste Treatment, Hydrology and Indoor Air Quality,
(g) Seismology and Structural Mechanics,
(h) Fatigue Cracking, Optical Bistability and Nemantic Liquid Crystals,
(i) Blood Clotting Dynamics and Cellular Energetics,
(j) Josephson Junctions, Communications and Stochastic Annealing.

3. Some contributions to classical stochastic differential equations

Our contributions in this field concern some qualitative and numerical aspects of classical stochastic
differential equations driven by Brownian motions. We have the following results concerning
oscillatory behaviour of solutions of stochastic delay differential equations.

1. Together with A.O. Atonuje, we published some results (Atonuje and Ayoola, 2007) con-
cerning the non-contribution to the oscillatory behaviour of solutions of stochastic delay differential
equations (SDDE) of the form:

dX(t) = −
n∑
j=1

ai(t)X(t− ri)dt+ µX(t)dB(t), t ≥ 0, X(t) = ν(t), t ∈ [t̃− ρ, 0]. (3.1)

We were able to prove that even when non-oscillatory solutions exist in the corresponding deter-
ministic delay differential equation, the presence of noise perturbation stimulates an oscillation
subject to certain conditions on the delay terms
.
2. We have also shown that in the absence of the noise term, non -oscillatory solutions can occur
for the deterministic case but with the presence of noise, all solutions of SDDE oscillate almost
certainly whenever the feedback intensity is negative (Atonuje and Ayoola, 2007, 2008a, b). De-
lay and noise play complementary roles in the oscillatory behaviour of the solution of the SDDE (3.1).

3. Finite Element Solutions of Stochastic Partial Differential Equations
In another ocassion, I. N. Njoseh and myself published some results (Njoseh and Ayoola, 2008a) on
the finite element method for a strongly damped stochastic wave equation driven by a space - time
noise of the form:

Utt + αAUt +AU = dW in Ω, t > 0, U(·, t) = 0, on δΩ, t > 0, U(0) = φ, Ut(0) = ν, in Ω
(3.2)

where Ω is a bounded domain in Rd, d ≥ 2, with smooth boundary δΩ and A = −4 self adjoint
operator, W a Wiener process. We provided some error estimates of optimal order for semi-discrete
and fully discrete finite elements schemes by using L2 - projections of the initial data as starting
values.
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4. We also carried out a finite element analysis of the stochastic Cahn- Hilliard Equation
(Njoseh and Ayoola, 2008b) of the form:

Ut −4(−4U + f(U) = a(U)Wtx on Ω

with initial condition

U(0, ·) = u0, in Ω and
∂U

∂n
=

∂

∂n
4U = 0, on ∂Ω, (3.3)

where Ω is a smooth bounded domain in Rd. The equation is a semi-linear parabolic of fourth order.
It has been used to model phase separation and coarsening phenomena in a melted alloy that is
quenched to a temperature at which only two different concentration phases can exist stably.

4. Our contributions to quantum stochastic differential equations and inclusions

Quantum stochastic calculus is a differential calculus incorporating various noises in quantum world.
The first quantum stochastic calculus was introduced by R. L. Hudson and K.R Parthasarathy
(Hudson and K.R Parthasarathy, 1984), for Boson noises. This is roughly speaking, a sort of
Ito calculus for the most fundamental noises in quantum theory. The study of stochastic calculi for
several types of noises such as Boson, Fermi, free, Boolean, monotonic, etc is still a hot topic.

Quantum stochastic differential equations (QSDE) are stochastic differential equations for operator
processes driven by quantum noises. In addition to reducing to classical SDE in special cases, they
are applied in the study of quantum information, quantum open systems, quantum measurement,
in the study of quantum Markov processes and dilations of quantum Markov semi-groups.

Quantum information theory treats any problem related to transmission of information through
quantum systems, to storing, encoding, decoding information in quantum systems. Foundations of
quantum mechanics are relevant and measurement theory is involved in modelling decoding and
error procedures, at least.

Quantum Markov semi-groups are the natural mathematical objects for modelling the irreversible
evolution of open quantum systems. This is governed by the so-called master equation whose so-
lutions are given by a Markov semi-group. These are mathematically viewed as non-commutative
generalisation of classical Markov semi-groups acting on a commutative algebra (a function space).

Quantum measurement theory is a very important topic in quantum probability. It deals with the
issues of measurements of observables inside quantum mechanics. It has applications in open system
theory, quantum optics, operator theory, quantum probability and quantum and classical stochastic
processes.

Quantum probability is a transversal subject which finds its fundamental axioms in quantum
physics and has deep connections with domains such as quantum mechanics, quantum field theory,
quantum optics and scattering theory (Attal, 1998). Sometimes, quantum probability is regarded as
part of functional analysis (C∗-algebra,, von Neumann algebra theory, non-commutative geometry,
quantum groups, etc).

Building upon the fundamental foundation laid by G.O.S. Ekhaguere in his pioneering paper
(Ekhaguere, 1992) concerning the existence and some qualitative properties of Lipschitzian quan-
tum stochastic differential inclusions of the form (4.3) below, our recent research activities in this
field concern both the theoretical and numerical aspects of quantum stochastic differential equations
(QSDE) and inclusions (QSDI) driven by quantum martingales and semi-martingales in the weak
and strong sense within the framework of the Hudson-Parthasarathy (1984) (H-P) formulations of
quantum stochastic calculus (QSC). It is well known that the H-P formulation of QSC sufficiently
generalise the Ito calculus. Quantum stochastic calculus employs the principles of quantum proba-
bility which is a non-commutative generalisation of classical theory of probability. Random variables
(or observables in the language of physics) are represented by self adjoint operators in a complex
Hilbert space and probabilities, or states are represented by unit vectors in the Hilbert spaces. Thus,
problems in classical stochastic calculus can be reformulated in quantum forms based on the fact that
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given any family S = St, t ∈ T ) of commuting self adjoint operators in a complex Hilbert space H,
which are collectively cyclic, (i.e there exists a unit vector φ ∈ H for which the set {eixStφ : x ∈ R}
is total in H), it can be shown that there exists a probability space (Ω, F P ), is a family of real
valued measurable functions (classical stochastic processes) (Xt : t ∈ T ) on Ω and a Hilbert space
isomorphism

DS : H → L2(Ω,F , P )

such that the vacuum vector (unit vector in H) is mapped to the function identically 1 and the
operator St becomes the operator of multiplication by Xt ( Hudson, 2001 ).

A quantum stochastic process consisting of commuting self - adjoint operators is completely equiv-
alent to a classical stochastic process (Attal, 1998). In general, quantum stochastic calculus concerns
non-commuting self adjoint operators thereby containing the classical theory as a special case. It
should therefore, be noted that several benefits have been achieved by interpreting classical proba-
bility in non-commutative quantum form. Such benefits include a better understanding of classical
stochastic flows and some parts of Wiener space analysis and Wiener chaos expansions where a fun-
damental chaotic representation property of the Azema martingales have been discovered (Mayer,
1993; Hudson, 2001). However, it is well known that the subject of quantum probability is far from
being reduced to a simple non commutative extension of classical probability theory. It is not exclu-
sive to finding non-commutative analogues of the classical theorems. Its connection with quantum
field theory is very deep as earlier stated.

4.1 Fundamental concepts and structures

In what follows, we employed the formulations of the Hudson-Parthasarathy quantum stochastic
calculus described briefly. Let D be an inner product space and H, the completion of D. We denote
by L+(D, H), the set

{X : D → H /X is a linear map with D ⊆ DomX∗},

where X∗ is the operator adjoint of X. We remark that L+(D, H) is a linear space under the usual
notions of addition and scalar multiplications of operators.

If H is a Hilbert space, then the Boson Fock space Γ(H) determined by H is the Hilbert space
direct sum given by :

Γ(H) =

∞⊕
n=0

H(n)

where H(0) = C. For n ≥ 1, H(n) is the subspace of the n-fold Hilbert space tensor product of H
with itself comprising all symmetric tensors:

H(n) = (H ⊗ · · · ⊗H)sym

For each f ∈ H, an element of the form:

e(f) =

∞⊕
n=0

(n!)−
1

2

n⊗
f

is called an exponential or coherent vectors in Γ(H). Here
⊗0 f = 1 and

⊗n f is the n-fold tensor
product of f with itself for n ≥ 1. The element e(0) in Γ(H) is called the vacuum vector.

It is well established that the exponential vectors enjoy a number of properties. Its linear span is
dense in the Fock space, the set of exponential vectors is linearly independent among other properties.
These properties aid the use of exponential vectors for the development of the H-P QSC calculus.
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For an arbitrary inner product space and its completion R, and γ some fixed Hilbert space we
write

A = L+(⊗,R⊗ Γ(L2
γ(R+))),

where L2
γ(R+) is the Hilbert space of square integrable, γ-valued maps on R+ and ⊗ denotes the

algebraic tensor product. Many other relevant spaces are similarly defined and employed. Motivated
by the first and second fundamental formula of H-P (Hudson and Parthasarathy, 1984), Ekhaguere
(1992) equipped the linear spaceA with a locally convex topology generated by a family of seminorms

{x→ ‖x‖ηξ = | < η, xξ > |, x ∈ A, η, ξ ∈ ⊗.}

The space A is similarly equipped with another locally convex topology generated by the family of
semi norms:

{x→ ‖x‖ξ = ‖xξ‖, ξ ∈ ⊗}

following the second fundamental formula of H-P. The completions of these spaces are employed in
our research activities in this field. Thus, we define a quantum stochastic process as an Ã valued
map on some intervals contained in the positive segment of the real number line.

For the coefficients of the QSDE ( resp. QSDI) E, F, G, H : [0, T ]× Ã → Ã (resp.E, F, G, H :

[0, T ] × Ã → 2Ã) belonging to appropriate spaces and with the solutions X(t) enjoying suitable
properties, the following is a brief account of our contributions.

4.2 Our research contributions

(1) Numerical schemes for solving quantum stochastic differential equations. We pro-
posed, developed and multi-step schemes for solving numerically Lipschitzian quantum stochastic
differential equation (LQSDE) (Ayoola, 2000a) of the form:

dX(t) = E(t,X(t))dΛπ(t) + F (t,X(t))dA+
f (t) +G(t,X(t))dAg(t) +H(t,X(t))dt (4.1)

in an interval [t0, T ] with initial condition X(t0) = X0. The driving processes Λπ, A
+
f , Ag are the

stochastic integrators in the Boson Fock space quantum stochastic calculus. Convergence of the
discrete schemes to the exact solutions and error estimates were obtained for explicit scheme of class
A in the locally convex space of solutions. Results in (Ayoola, 2000a) contain the Euler-Maruyama
schemes for Ito stochastic differential equations as a special case and numerical examples were
given. Explicit and exact solutions of LQSDE (7.61) are rarely available, making the search for
approximate solutions a necessary and worthwhile endeavour. Prior to the publication of Ayoola
(2000a), very little, if any at all, was known about the features of numerical solutions of LQSDE
(4.1). As the LQSDE is a non-commutative generalisation of the classical Ito stochastic differential
equation (Ito SDE), driven by Brownian motion, the implementation of the multi-step schemes and
other discrete schemes developed in my subsequent works completely eliminated the need for the
computation of random increments by random number generators as obtained in the implemen-
tation of stochastic Taylor schemes for simulation of sample paths and functional of solutions of
classical Ito SDE. This paper, (Ayoola, 2000a) has opened further research directions concerning
the refinement of the schemes in several ways, as well as the study of numerical stability associated
with the multi-step schemes. The convergence and stability of a general multi-step scheme for
(4.1) was considered in (Ayoola, 2000b). For the Mathematical Reviews database published by the
American Mathematical Society (AMS), the reviews of the articles (Ayoola, 2000a,b) were respec-
tively written in the years 2001 and 2004. The first was written by one of the founding fathers of
quantum stochastic calculus, Emeritus Professor K. R. Parthasarathy of the Indian Statistical
Institute, and the other written by Professor Henri Schurz of Southern Illinois University, Car-
bondale, USA. The assigned review numbers are respectively:: MR 2001e:81065 and MR: 2004:81072.
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(2) One step Schemes for solving quantum stochastic differential equations (QSDE)
The paper: Ayoola (2000a) was concerned with the development, analysis and applications of
several one-step schemes for computing weak solutions of LQSDE (4.1). The work was accomplished
in the framework of Hudson and Parthasarathy formulation of quantum stochastic calculus and
subject to the matrix elements of solution being sufficiently differentiable. The results here concern
non-commutative generalisation of the usual Euler scheme, Runge-Kutta schemes and an integral
scheme for computing solutions of the LQSDE. The paper contains results for the Ito SDE as
a special case with Ito processes as multiplication valued operators in a simple Fock space. The
schemes exhibit important implementation benefits as in Ayoola (2000a,b). The article in Ayoola
(2001) is 40 page long and contains the main existence results of Ayoola (1998b) as appendix, as
well as some numerical experiments to illustrate the main features of the different schemes and
their error estimates. The one step schemes here also generalise discrete schemes reported in Ayoola
(1999a) and Ayoola (1999b). Extension of the results here to the case of continuous time Euler
approximation scheme and a computational scheme under Caratheodory conditions was undertaken
in Ayoola (2002b). The findings in Ayoola (2001a) has created further research questions involving
extensions to LQSDE (4.1) of various improvements already established for classical discrete
schemes in the finite dimensional setting. The mathematical review of my article, Ayoola (2001a)
was written by Professor Rolando Rebolledo Berroe of Zentralblatt Mathematics Database,
Germany with review number: Zbl 0998.60056 and the Abstract is listed in the AMS Mathematical
Review with number MR 2002f:65017.

(3)Kurzweil equations associated with QSDE. In Ayoola (2001b), we introduced and
studied Kurzweil equations associated with LQSDE (4.1) and I established the non-commutative
quantum extensions of classical Kurzweil integrals and some technical results. In addition, we
proved the interesting equivalence between LQSDE (4.1) in integral form and the Kurzweil equation
of the form:

d

dτ
< η,X(τ)ξ >= DΦ(X(τ), t)(η, ξ)

on [t0, T ] and for t ∈ [t0, T ], for a suitable map Φ and η, ξ belonging to an appropriate class.
Investigation of approximate solutions of LQSDE (4.1) by utilising established results on Kurzweil
integrals and equations was afforded by the equivalence results. It was shown in the paper that
the associated Kurzweil equation may be used to obtain reasonably high accurate solutions of the
LQSDE. This paper extends established relationship between Lebesgue and Kurzweil integrals to
quantum stochastic integrals. This particular study generalised some numerical results in Ayoola
(2000a,b) since the results in Ayoola (2001b) hold under pure Caratheodory conditions where the
matrix elements of solutions need not be differentiable more than once. The results also generalised
several analogous results for classical initial value problems to the non commutative quantum
setting involving unbounded linear operators on a Hilbert space. Further research problems have
thus been opened by the paper of Ayoola (2001b) concerning the issue of variational stability of
LQSDE (4.1). The review of the article Ayoola (2001b) was written in the year 2002 by Professor
Debashish Goswami of Indian Statistical Institute for the AMS Mathematical Reviews with
review number MR 2002g: 81078.

(4) Construction of approximate attainability set for QSDI We presented similarly, a
numerical method for constructing with a specified accuracy, attainability set R(T )(x0)(η, ξ)
(Ayoola (2001c) defined by

R(T )(x0)(η, ξ) = {< η,Φ(T )ξ >: Φ(·) ∈ S(T )(x0)} (4.2)
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for the Lipschitzian quantum stochastic differential inclusion (LQSDI) in integral form:

X(t) ∈ x0 +

∫ t

t0

(E(s,X(s))dλπ(s) + F (s,X(s))dAf (s)

+ G(s,X(s))dA+
g (s) +H(s,X(s)

)
ds, t ∈ [t0, T ]. (4.3)

where S(T )(x0) is the set of solutions to LQSDI (4.3).
An algorithm is described for numerically approximating the attainability set within any

prescribed accuracy. Results in this paper generalised an analogous classical result of Komarov and
Pevchikh to non-commutative quantum stochastic differential inclusion (4.3). Attainability sets are
important for several characterisation of the set of trajectories of LQSDI (4.3). In (Ayoola (2008b),
I established the existence of solutions of QSDI (4.3) satisfying a general Lipschitz condition. The
Lipschitz condition of Ayoola (2001c) is a special case and extension of the numerical algorithm
of this paper to general case is still open. The AMS review of (Ayoola (2001c) was written
by Professor Volker Wihstutz of North Carolina State University, Charlotte for the AMS
Mathematical Reviews with review number MR 2002f:65018.

(5)Lagrangian quadrature for computing solutions of QSDE
Investigations in Ayoola (2002a) concerned the analysis of the Lagrangian quadrature schemes
for computing weak solutions of LQSDE (1.1) with matrix elements that are sufficiently smooth.
Results concerning the convergence of Lagrangian schemes to exact solutions were obtained. Precise
estimates for an error term were given in the case when the nodes of approximations are chosen
to be roots of the Chebyshev polynomials. Some important features of the quadrature schemes
are the conversion of LQSDE (4.1) to solvable algebraic equations in term of the nodal values
and that the nodes need not be equally spaced. This paper established the possibility of applying
numerous results in linear and computer algebra for investigating numerical solutions to LQSDE
(4.1). Numerical experiments were performed by solving associated linear systems taking into
consideration, computational complexity of the algorithm and round off errors.
The AMS review of this paper was written by Professor Vassili N. Kolokoltsov of Warwick
University, UK, for the AMS Mathematical Reviews with review number MR 2003e:60121.

(6) Topological properties of solution sets of QSDI In Ayoola (2008c), we established
a continuous mapping of the space of the matrix elements of an arbitrary nonempty set of quasi
solutions of Lipschitzian QSDI (4.3) into the space of the matrix elements of its solutions. As a
corollary, we furnished a generalisation of my previous selection result in Ayoola (2004b). In partic-
ular, when the coefficients of the inclusion are integrally bounded, it was shown that the space of
the matrix elements of solutions is an absolute retract, contractible, locally and integrally connected
in an arbitrary dimension. As usual, we employ the Hudson and Parthasarathy formulation of
quantum stochastic calculus. The AMS review of this paper was written by Professor Vassili N.
Kolokoltsov of Warwick University, UK for the AMS Mathematics Reviews with assigned number
MR 2008k: 81174.

(7) Existence of strong solutions of LQSDE. In Ayoola (2002c), the existence, unique-
ness and stability of strong solutions of LQSDE (4.1) were established. The locally convex
topology on the space of quantum stochastic processes in this case is generated by a family of
semi-norms induced by the norm of the Fock space. The second fundamental formula of Hudson and
Parthasarathy concerning the estimate of the square of the norm of the values of stochastic processes
on exponential vectors facilitates the existence results by method of successive approximations.
Results here generalise analogous results concerning classical SDE driven by Brownian motion.
Convergence in the sense of this paper generalise the root mean square convergence of successive
approximation in the case of classical Ito process considered as quantum stochastic process in a
simple Fock space. The study of Ayoola and Gbolagade (2005) happened to be a continuation of
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Ayoola (2002c) concerning the existence and stability of solutions of QSDE satisfying a general
Lipschitz condition in the strong topology. Ayoola and Gbolagade (2005) established a class of
Lipschitzian QSDE where the coefficients are merely continuous on the locally convex space of the
quantum observables.

The AMS Mathematical Reviews of paper Ayoola (2002c) and Ayoola and Gbolagade (2005)
were written respectively by Professor Vassili N. Kolokoltsov of Warwick University, UK
and Professor Debashism Goswami of Indian Statistical Institute for the AMS Mathematical
Reviews with review numbers respectively given by MR 2003b: 60081 and MR 2005m: 81179.

(8) Exponential formula for the reachable set of QSDI. Ayoola (2003a) was my sec-
ond major work on quantum stochastic differential inclusions (QSDI) (4.3). The paper was a
continuation of my previous work Ayoola (2001c) concerning the QSDI, where the coefficients are
assumed to have suitable regularity properties. The basic set-up of the paper is that of multi-valued
functions with appropriately defined multi-valued stochastic integrals. By endowing the family of
closed subsets of the locally convex space of quantum observables with a Hausdorff topology, the
paper established the following exponential formula:

R(T )(x0) = lim
N→∞

(
I +

T

N
P

)N
(x0) (4.4)

where R(T )(x0) is the reachable set of QSDI (3), I is the identity multifunction.
Repeated composition of multi-functions is understood in some sense and the limit in Equation

(4.4) is interpreted as the Kuratowski limit of sets. Equation (4.4) has a direct consequence for
the convergence, to the exact value, of discrete approximations to the reachable set. The basic
motivation for considering QSDI (4.3) concerns the need to develop a reasonable numerical scheme
for solving QSDE (4.1) with discontinuous coefficients since many of such interesting QSDE can be
reformulated as QSDI with regular coefficients.

The AMS review of Ayoola (2003a) was written by Professor Debashish Goswami of Indian
Statistical for the AMS Mathematical Reviews with review number MR 2004e:81073.

(9) Discrete approximation of solutions of QSDI. Ayoola (2003b) was a continuation
of my study of discrete approximation of QSDI (4.3). This paper is concerned with the error
estimates involved in the solution of a discrete version of QSDI (4.3). The main results relied on
some properties of the averaged modulus of continuity for multi-valued sesquilinear forms associated
with QSDI (4.3). The paper established a sharp estimate for the Hausdorff distance between the
set of solutions of QSDI (4.3) and the set of solutions of its discrete approximations. This paper
however, extended the result of Dontchev and Farkhi (1989) concerning classical differential
inclusions to the present non-commutative quantum setting involving inclusions in certain locally
convex spaces.
The AMS review of this paper was written by Professor Habib Querdiane of the University
of Tunis El Manar, Tunisia for the AMS Mathematics Reviews with review number MR 2005a: 60109.

(10) Existence of continuous selections of solution and reachable sets. Ayoola (2004b)
established the existence of continuous selections of solution set of Lipschitzian QSDI (4.3). The
paper precisely proved that if

S(T )(a)(η, ξ) =: {t→< η,X(t)ξ >, X ∈ S(T )(a)}

is a set of absolutely continuous complex valued functions associated with the set of solutions
S(T )(a) of QSDI (4.3), then the multifunction < η, aξ >→ S(T )(a)(η, ξ) admits a continuous
selection for all a ∈ A given that the set of matrix elements A(η, ξ) of A is compact in the field of
complex numbers. As corollaries to the main result, we proved that the solutions set map, as well as
the reachable sets of QSDI (4.3) admitted some continuous representations. A search in the AMS
Mathematical Reviews and the ISI Web of Science databases showed that Ayoola (2004a) was the

Trans. of the Nigerian Association of Mathematical Physics, Vol. 6 (Jan., 2018) 20



... stochastic differential equations Ayoola Trans. of NAMP

first known selection result concerning QSDI (4.3) in the framework of the Hudson -Parthasarathy
formulation of quantum stochastic calculus. Consequently, the paper opened further research
questions in respect of the refinement, generalisation and applications of the selection results in
parallel with the classical cases of differential inclusions in finite dimensional Euclidian spaces.
Ayoola (2008a) was a follow up publication, where I showed that a continuous selection from the
set of solutions exists directly defined on the space of stochastic processes with values in the space
of adapted weakly absolutely continuous solutions. As a corollary, the reachable set multifunction
admits a continuous selection. Ayoola and Adeyeye (2007) also extended the selection results in
Ayoola (2004a) as an interpolation to cover a finite number of trajectories. The AMS Mathematical
reviews of Ayoola (2004a), Ayoola and Adeyeye (2007) and Ayoola (2008a) were written by
Professor C. R. Belton of Mathematics Department, Lancaster University, UK and Professor
Vitonofrio Crismale of Muhammad Ibn University Saudi Arabia, for the AMS Mathematical
Reviews with review numbers MR 2005i: 81076, MR 2008m:65012 and MR 2011d:81177 respectively.

(11) Mayer problem for quantum stochastic control. In the framework of Ekhaguere’s
formulation of the multi-valued analog of H-P quantum stochastic calculus, Ogundiran and Ayoola
(2010), concerns some results on quantum stochastic control. In particular, we studied the regularity
properties of the value function inherited from the multi-valued quantum stochastic processes
involved. We showed that under the assumption of directional differentiability of the value function,
the associated Mayer problem had at least one optimal solution. Our theory covered earlier work
on quantum stochastic control by Belavkin and by Andreas Boukas. The AMS Review of this paper
was written by Professor Andreas Boukas of Southern Illinois University, Carbondale, USA,
with Review number 2011d:81180.
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