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Abstract 
 

A diagram illustrating the relationship between three (3) competing predators who also 

compete amongst themselves and two independent Preys is shown to see the nature of 

interdependence among the species. To this end, it is considered that the free 

population (without interaction) is the solution to the Logistic equation of individual 

specie. A semi analytical approach is developed for solving the dynamics of a 2-3 Prey-

Predator system in a diffusive state. The resultant solution is then analyzed to see the 

impact of predation on the population of both the Prey and Predators. It was observed 

that the growth rate in the population of the Prey is inversely proportional to the 

growth rate of population of the Predators while the impact of population is directly 

proportional to time and distance. The equilibrium state of the system is also examined. 

 

 

1. INTRODUTION 
The question of two predator species competing for one prey was brought to the fore by ecological literature written by [1-4]. A mathematical model for the 

two predator species exploiting a single prey was proposed by [2]. He found out that when the interspecific interference coefficient is small, the winner 

competes with rivals successfully. [5]studied the permanent coexistence and global\newline stability of a simple Lotka-Volterra type mathematical model of 
a living resource supporting two predators. They showed that the permanent coexistence of the system depends on the threshold of the ratio between the 

coefficients of numerical responses of the two predators/consumers. [6]proposed a Guass-type model with diffusion of which is analyzed. For the research, 

they considered a system of two predators competing with interference for a limited prey. They showed that in the absence of intraspecific interaction of the 
predator series, the interior equilibrium is unstable. 

For this research work, we propose a model of three interacting predators competing against two preys for which both preys are independent and are not 

competing against each other. To achieve this, a competitive Lotka-Volterra equation is employed. To ensure for proper analysis, some semi- analytic 
method of solution shall be employed. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig 1: Diagram Showing the 2-3 Prey-Predator Interactions 

The equations are modelled to obey the principles in [7]. 
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1y is the 1st Predator 

2y is the 2nd Predator 

3y is the 3rd Predator 

1x is the 1st Prey 

2x is the 2nd Prey 

1D , 2D , 3D , 1d  and 2d  are diffusion coefficient of the is the 1st Predator, 2nd Predator, 3rd Predator, 1st Prey and 2nd Prey respectively. 

1K , 2K , 3K , 4K  and 
5K are carrying capacities of 1st Prey, 2nd Prey, 1st Predator, 2nd Predator and 3rd Predator respectively. 

1 , 2 , 1 , 2 , 1 , 2 , 3 , 1 , 2 , 3 , 1  and 2 are interspecies interaction coefficients. 

1r and 2r are birth ratesof 1st Prey and 2nd Prey respectively. 

1u and 2u are death rates by accident of 1st Prey and 2nd Prey respectively. 

1v and 2v are death rates by old age of 1st Prey and 2nd Prey respectively. 

3s , 4s  and 5s are death rates of 1st Predator, 2nd Predator and 3rd Predator respectively. 

t is the time. 

r is the radius or the area under consideration 

The term 
2

2

r

  denotes the population density of area under consideration. 

 

3.0      Solutions to Resulting Models 

The Standard Garlekin method is to be applied to solve the above problem. The assumed basis function for Prey 1 ( 1x ) is; 
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Solving the resultant equations using the basis functions we have the following equations: 

For Prey1: 

Neglecting the terms 3c and 4c we have the equation below; 
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Divide (12) by 1k , we have; 
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 For Prey2: 

Neglecting the terms 4c and 5c we have the equation below; 
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Divide (14) by 1l , we have; 
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For Predator 1: 

Neglecting the terms 1c , 4c and 5c we have the equation below; 
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Divide (16) by 1m , we have; 
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For Predator 2: 

Neglecting the terms , 1c 2c and 3c we have the equation below; 
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Divide (18) by 1n , we have; 
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For Predator 3 

Neglecting the terms 2c and 3c we have the equation below; 
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Divide (20) by 1p , we have; 
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We assume that our equation is of the form  

0)1( =+−− sFpap
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To solve (13), (15), (17), (19) and (21) giving the solution below; 
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4.0 Numerical Applications 

A set of feasible values were assigned to the solutions (7)-(11) to arrive at the following relations; 

 
Fig 1: Population of Prey 1 against time 

 
Fig 2: Population of Prey 1 against distance r  

 
Fig 3: Population of Prey 2 against time t 
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Fig 4: Population of Prey 2 against distance r  

 
Fig 5: Population of Predator 1 against time  
 

 
Fig 6: Population of Predator 1 against distance r  

The effect of predation is noticeable in Prey 1 (Fig 1& 2) far more than Prey 2 (Fig 3 & 4) hence, fewer predators attack Prey 2 compared to Prey 1. Despite 
being the dominant Predator, the population of Predator 1 decreases because its death rate is substantially higher than its birth rate. Both Predator 2 and 3 

depends on the population of Predator 1. 

All the species (both Prey and Predator) increase with increase in distance covered hence the larger the area covered the more the population. 
 

5.0     Conclusion 

In Prey-Predator System, a Prey tends to move from Predator dominated areas to less dominated areas. Multiple Prey-Predator interactions often exhibit 
similar growth pattern among the prey and also among the predators. At equilibria points often the absence of one or two specie leads the stagnation of the 

population of other species. Hence, we note that the method of solution aided in solving the resulting modelling equation of the Prey-Predator system by 

giving us a solution for each of the species. 
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