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Abstract

This work provides mathematical analysis of a mathematical model describing the co-infection of Tuberculosis
and Dengue in a population where both diseases are endemic. Sub-models describing the dynamics of both
diseases separately are analysed and results from the numerical simulations of the complete model, showing the

impact of key parameters on the co-endemicitx of both diseases, are discussed.

1. INTRODUTION

Tuberculosis (TB) is an airborne disease. Mycobacterium tuberculosis , the bacterial agent that causes TB, droplets are released into the air during coughing
or sneezing by infectious individuals [1]. According to the World Health Organization (WHO), about 9 million persons were infected with TB in 2013, with
about 1.5 million deaths reported [2]. On the average, TB incidence fell to about 1.5% per year, between 2000 and 2013 [2]. More than half of the
approximately 9 million individuals infected in 2013 were in South-East Asia and Western Pacific. One quarter of these individuals are in the Africa Region,
accounting for the highest rates of TB cases and deaths relative to population [2].

A TB vaccine called BCG (Bacillus of Chalmette and Guerin) has been available for many decades. Made of a live, weakened strain of mycobacterium
Bovis (a cousin of mycobacterium tuberculosis), it remains the only vaccine available against tuberculosis till date [3]. The BCG vaccine is cheap. In
Nigeria, the BCG vaccine is usually given to children when they are born as part of the vaccination program by the Federal Government [4]. The vaccine is
essential for children who have a negative tuberculin test and who are continuously exposed and cannot be separated from adult who are untreated or
ineffectively treated for TB [3].

Dengue is a viral, vector borne disease, spread by the Aedes Aegypti mosquito [5]. It was estimated that about 50 million infections occur annually in over
100 countries [6]. There is no specific treatment for curing dengue patients [5]. Hospital treatment, in general, is given as supportive care which includes bed
rest and analgesics [5].

Dengue virus is one of the most difficult arboviruses to isolate [5]. There are four serotypes of the dengue virus; Den-1, Den-2, Den-3, Den-4, and each of
the serotypes has numerous virus strains [5]. Infection with one dengue serotypes may provide long life immunity to that serotype, but there is no complete
cross-protective immunity to other serotype [7]. Identification of the primary target cells of dengue viruses’ replication in the infected human body has
proven to be extremely difficult [5].

There are 22 Tuberculosis (TB) high burden countries worldwide, and together they account for about 80% of the world’s tuberculosis (TB) infection [8].
India accounts for over 20% of the world’s multi-drugs resistant tuberculosis (MDR-TB) cases [8]. Dengue fever risk is present throughout India, including
most metropolitan cities and towns [8]. The purpose of this work is to investigate the population dynamics of TB-Dengue coinfection in the presence of
treatment for both diseases, taking into cognisance the public health burden both diseases can have on the governmental public health plans.

2.0 Model Formulation

Let Ny(t) and Ny(t) denote the total number of humans and vectors at time t, respectively. The model sub-divides these populations into a number of
mutually-exclusive compartments, as given below.

The total population of human and vectors is divided into the following mutually exclusive epidemiological classes, namely, susceptible humans (Sy(t)),
humans with latent TB (E+(t)), humans with active TB (I+(t)), humans treated of active TB (T+(t)), humans with latent dengue (E(t)), humans with dengue
(Ii(t)), humans treated of dengue (R(t)), susceptible vectors (Sv(t)), vectors at the latent stage of dengue (Ey(t)), vectors infectious with dengue (Iv(t)),
humans with latent TB and latent dengue (E(t)), humans with latent TB and infectious dengue (Es(t)), humans with active TB and latent dengue (E4(t)),
and humans with active TB and dengue (I, (t)). Hence, we have that,

Ny (t)= S, O+ E- ()1, ()T, O+ E.()+ 1,0+ RO+ E )+ El)+E,0)+1,t)
and

Ny (t) =5, (t)+ E, (t)"' Iy (t)
Susceptible humans are recruited at a rate Ay while the susceptible vectors are recruited at a rate Ay, Susceptible humans contract TB at a rate

:lBT(IT +’7T1E4+’7T2|2)’

ya
NH

L Ba(nE+L),

DV 7N7
H

where 7, < 1 accounts for the relative infectiousness of vectors with latent dengue (Ey ) compared to vectors in the Iy class. Susceptible vectors acquire
dengue infection from infected humans at a rate
_ Buv(maEi+1Bli+1cEy tNpEs+1pEstnrlz)

Ny ’
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The modification parameters ng, ¢, 7p, and 77 account for the relative infectiousness of those in the I, E,, E5 and I, classes compared to those in the E;
and E, classes, wheren, =ng < 1.

21 Derivation of Model Equations
Individuals in the E;, E, and E5 classes can be exogenously re-infected at the rate o, 4, 0,1, and g3 A, respectively, where o1, o, and o3 are modification
parameters. A fraction P, (0 < Py < 1) of susceptible and treated individual’s progress faster to the I, class while a fraction (1-P,) O0<Pr,<1) of

those treated for dengue progress faster to the I, class.
Also, a fraction (1-P,) (0 < Py, < 1) of individuals in the E, class progress faster to the E, class and 1-Py,) (0 < Py, < 1) of those in the I; class

progress faster to the 1, class.

Active TB is treated at a rate r, r, and r for those in the classes I, E, and I, classes, respectively, while dengue is treated at a rate 7,7, and 7, for those
in I, E, and I, classes respectively. Singly infected individuals with latent TB progress to active TB at a rate k;.while dually infected individuals in the E,
class progress to the E, class at the rate k, . Individuals in the E, class progress to the I, class at the rate K, - Singly infected individuals with latent dengue
progress to active dengue at a rate 7 while dually infected individuals in the E, class progress to the E, class at the rate Vs Infected individuals in the E,
class progress to the I, class at a rate Vs

Natural death in humans occurs at a rate L in the classes Sy, Er, Iy, Ty, Ey, I, Ry, E,, E5, E, and I, while those in the I,,E, and I, classes undergo
an additional TB induced death at the rates drp,d;, andd,,: respectively. Individuals in the I,,E, and I, classes undergo an additional dengue induced
death, at rates 5 5 and Sos’ respectively. Treated individuals have a relative difference in susceptibility to TB after a previous infection compared to

wholly susceptible individuals (with ¢ > 0 being the modification parameter accounting for this relative difference in susceptibility). Natural vector death
occurs, at a rate uy, in the classes Sy, E,, and I, while the vectors in the I, class undergoes additional dengue induced death, at a rate &y, although this is
negligible as infected vectors are not deemed to be affected by dengue. Exposed vectors progress to the infectious stage at the rate yy,.

The above assumptions result in the following system of nonlinear ordinary differential equations:

Sy =Ap— ArSu = Uy Sy — ApySu,

Er = (1 = Pr)ArSy + (1 = Pr)edrTr — 0y ArEr — (uy + ki) Er = Apy Er + PradrRy + 4By,

I.T = PryArSy + Pri€ArTr — (uy + dpy +1)Ip + 01A7Er — Apylp + (1 — Prp)AgRy + 131, + kyEp,

TT =1y — €ArTr — uyTr — Apy Ty,

Ey = ApySu + ApyTr — (1 + k) By — ArEy + 1E,,

Ly =y1Ey = (1 + py + 8p) 1y — Arly + 1305,

1?1 =70y — pyRy — ArRy, )

Sy = Ay — ApuSy — Sy,

Ey, = ApuSy — (v + ) Ey,

Iy =yEy — (uy + Sy)ly,

Ez = ApvEr + PpiArEy — (v2 + Ky + up)E; — 0247,

E3 =y3E, + PopArly — (ks + 75 + Opg + pu) Es — 0327 Es,

Ey = (1= Po)ArEy + Apylr + ko By — (dpy + 73 + Vs + ) Ey + 0320Es,

I = (1= Ppp)Arly — (t3 + 15 + Opg + dps + up)ly + k3Es + y3Ey + 03A7E;.

Table 1 gives the description of the state variables of the model (1) and Table 2 gives the description of the parameters (and their baseline values) of the model (1).

Table 1: Description of the state variables of the model (1)

Variable Description

Sk Susceptible human population

Er Human population with TB in latent stage (TB only)

It Human population with TB in active stage (TB only)

Tr Human population treated of TB (TB only)

E; Human population with dengue in latent stage (Dengue only)

[ Human population with dengue (Dengue only)

R1 Human population treated of dengue (Dengue only)

Sv Susceptible vectors population

Ey Exposed vectors

ly Infectious vectors

E, Dually infected humans with latent TB and latent dengue

Es Dually infected humans with dengue and latent TB

E, Dually infected human with active TB and latent dengue

I, Dually infected human with active TB and dengue
Table 2: Description of Parameters of the Model (1)
Parameter Description Values Unit Reference

Recruitment rate into the population of susceptible | 500,10000000 Year? [9]
Ay, Ay humans,vectors respectively.
sty Natural death for humans, vectors respectively. 0.02041,36.5 Year? [4]
Year?

br Effective contact rate for TB. 10 Year?! Assumed
L Effective contact rate for dengue from vectors to humans 5 Year? [9]
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Py Effective contact rate for dengue from humans to | 4 Year? [9]
vectors
P, Fraction of newly infected humans with latent TB 0.9 Year! [4]
P Fraction of newly infected humans with active TB 0.3 Year! [4]
0B Dengue treatment rate for I1,Es, .. 25,152 Ind? Year?! [9]
rorors TB treatment rate for 1E,,l,. 3,25,2.4 Ind?! Year?! [9]
Ky ko Ks Progression rate to active. TB 0.02,0.02,0.025 Year! [4]
Yu V2 V3 Progression rate to active dengue (humans) 0.3254,0.6462, Year? [9].
0.3265
Yy Progression rate to active dengue (vectors). 0.03 Year! [9]
dry,072,d73,/ Disease induced death TB/Dengue (humans) 0.365,0.365,0.375/ | Year? [4]
8p1,0p2,0p3 0.365,0.365, 0.365
Year?
Suy Disease induced death dengue (vectors) 0 Year? [9]
ky Progression rate to active dengue (vectors) 0.05 Year? [9].
Nru N1 M Modification parameters for Eq, I, Ey, Es, I1, Ea, | 0.4,1.2,05,0.6,1,0. | Year! [4]
N e Es, Eq L. 6,1.1,1,1.5,
Np,Ne NMF
G1, G2, O3 Modification parameter for exogenous re-infection. | 0.5,0.5,0.7 Year! [9]
€ Modification parameter 1.67 Year?! Assumed
Pp1 Fraction of newly infected active TB cases with | 0.6 Year?! [9]
latent dengue
Pp2 Fraction of newly infected active TB cases with | 0.5 Year?! 9]
active dengue

3.0  Analysis of sub-models

Before analyzing the complete model (1), it is instructive to gain insight into the dynamical features of the TB-only model and the dengue- only model.
3.1 TB-only model
The TB only model is derived in (1) by setting E;, =R, =S, = E, = I, = E, = E; = E, = I, = 0. Hence we have

ds
dtH =Ay = A Sy — Sy,
dE
TtT:(l’ Pl Sy + (- Pry) e 4Ty —ou 4 By —(aay + Ky )Er, @)
%: Pridr Sy +Pry € ATy = (i + 0y +10)l7 + 004 E; +KE;,
dT,
—=nli—e AT - Ty,
dt
where A; =T and Ny, = Sy + Ey + Ip + T

=
Consider the region D; = {(Sy, E7, Iy, Tr)eR%: Ny < ;ﬁ}. It can be shown that the set D; is positively invariant and a global attractor of all positive solution
H

of the system (2). We claim the following.

Lemma 1 The region D is positively invariant for the system (2).
Proof: The rate of change of the total population is give as
NH(t): SH + ET + I.'r +T‘r =Ny -y (SH +E +1; +TT)_dT1IT

NH (t):AH =ty Ny —dpl; X
Since the right-hand side of the equation above is bounded by Ay =Ny standard comparison theorem [10] can be used to show that

Ny < Ny (0)e™#nt 4 2 [1 — ghnt],
H
If N, (0)< 2—” then N (0)< 2—” . Thus, Dy is a positively invariant set under the flow described in (2). Hence, no solution path leaves through and boundary of
H H

Ds. In this region, the model (2) is said to be well posed mathematically and epidemiologically [11].

We now prove the positivity of solutions of the model (2). We claim the following.

Lemma 2. Let the initial data for the model (2) be S, (t) > 0, E;(t) > 0,17(t) > 0,and T;(t) > 0 then the solution S, (t), E;(t),I+(t), and T (t)with
positive initial data will remain positive for all time t > 0.

Proof: Let t; = sup{t > 0:S,(t) > 0, Ex(t) > 0,1(t) > 0,T;(t) > 0} > 0. The first equation in (2) is given by

Sy = Ay — (Ar + uy)Sy,

which, when solved, leads to

Su(ty) = Su(Oexp {—pyt, = [} 2r@d@} + [exp {~puts = [} @@} [;* Aulexpluny + [} 2@ d@}]dy > 0.

Hence, Sy, is positive for all time, t.

Similarly, we can show that E(t) > 0, I (t) > 0, and T(¢t) > 0 for all time, t.

3.1.1  Local Stability of Disease-Free Equilibrium (DFE) of the TB-only model
The model (2) has a disease-free equilibrium obtained by setting the right hand side of the model to zero, and this is given by

A
o x gx x| —000
§1=(SH'ET’IT'TT)=[ﬂH )
The linear stability of ¢, is established using the next generation operator method on the system (2) [12]. Using the notation in [12], the matrices F and V,

for the new infection terms and the remaining transfer terms respectively, are given by
_ (0 (A1=Pr)B _(91 0
F= (0 Prllrf'r T)' and V= (—k1 92)'
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It follows that the effective reproduction number of the model (2), denoted by Ry, is given by R, = p(FV™") = g (g,P,, +k,(1—P;,)).

9,9,
where p(FV~1) is the spectral radius of the matrix FV ~1.The next result follows from Theorem 2 in [12].
Lemma 3 The DFE, &,, of the model (2) is locally asymptotically stable (LAS) if R, <1. and unstable if R, >1"

The threshold quantity, Ry, is the effective reproduction number for the TB sub-model. It represents the average number of secondary TB infections
generated by a typical infected individual in a completely susceptible population where treatment for TB is available. Epidemiologically speaking, Lemma 3
implies that TB can be eliminated from the population when R, < 1 if the initial sizes of the sub-population of the sub-model are in the basin of attraction
of &;. Hence, a small influx of TB-infected individuals into the community will not generate large TB outbreaks, and the disease will die out with time.

3.1.2 Existence and Local Stability of Endemic Equilibrium Point (EEP) of the TB-Only Model.
Let the EEP of model (2) be denoted by & ry = (S", E7", I", Tr"). The equations in (2) are solved in terms of the force of infection, at steady state, and
the components of the EEP are given as
. Ay
! A7+ ,
e (=P A (€ 25+ gt Ny + 1+ p4y)
(s xdn(e Xty Xk1 + Oty )* Hy (k1(r1+ e Xy )* (E X+ ﬂu)
(‘71‘: + Hy )*’ r1((o-1 +L-Py) e + )) ,
= A A€ AT+ 0 Moy + A7 + Prygsy )
N ( 7 an(e A+ gy Xk1 + oAy + ey )+ Hu (k1(r1Jr e AT + )+
(e A+ gy X°_1ﬂ: Ay )+ rl((o-1+ e @ =P DA + 44, )))

—— Ao Ry
(& + . Nl 2 Moo+ 0025+ )+ )
(kl(r1+ € a7 + )+(€ Xy Xo—lj: +Hy )* ‘1((0'1 +(L=PRy) A+ )) .

Since Nj* = Sy + E+* + I3 + T7*, we then have

Q=P AT A (dry + 1, + 1 )(E A7+ )+ﬂ:AH (E’fr* +FH)

(kl +ou A + P‘r1)+ 77 Ay (k1 +oy A + PT1)+AH

llaw € 25 + g2 € 25y + ity + iy
- (Glﬂ: + Uy, +k1)+(17 PTl)eﬂ:rluH]
! (g + 27 Wt € 27 + 102+ € 27 dry + 1ty + a2, )

(0_12: + gt k1)+ (1_ PTl)E N ]

Now, since . B (at the endemic equilibrium point), substituting N/ and I7"into 4" gives the following polynomial (in terms of 7):
-

AL+ AL AL + A, =0

where

A =co, >0

A, = (=P )e(dry + 1+ 0 )+ Ky € +Prpay € +p,00 + oy + oy, +0y €dyy = froy <,

A3 = (17 PTl)luH (dTl + rl +:”H )+ klluH + F’Tl#HZ + rlkl + PTI#H rl +IuH 20’1 + O-lrlluH

+ o’ldTlﬂH + Uy : €+e dTL“H + klluH € +k1 € dTl *(17 Pn)e Npy 7ﬂT € k1 7ﬂT PTl/‘H € 70'1:”HﬂT )

and

Ay =y (dn +h 4y )(/JH + kl)[17 Ry ]

Since A >0 , the number of positive roots of the polynomial (which then determines the number of endemic equilibria of the model (2)) is determined by
the signs of the coefficients Ao, Asand Ay Hence, we claim the following.

Lemma 4 The number of endemic equilibria of model (2) is summarized as follows:

If A >0<>Rr <1 then there are two endemic equilibria if “2 @9 A are of opposite signs or they are both negative

If As >0 Ry <1 ng A2 @Nd As o ot positive, then there are no endemic equilibrium for this case.

If A <0< Rr >1 4hen 3 unique endemic equilibrium is possible.

Item (1) shows the possibility of a backward bifurcation in model (2), whereby there exist an endemic equilibrium coexisting with the DFE when
this case, the reproduction number becomes only a necessary (but not sufficient) condition for disease eradication. In particular, if o, = e= 0, we observe
that the third degree polynomial reduces to a linear equation, and for this case, there is no endemic equilibrium when Rr <1 However, there is a unique
endemic equilibrium when Ry >1

3.1.3 Global Stability of the DFE

Considering the model (2) where there is no exogenous reinfection and there are no reinfection of treated individuals i.e., when g, = e= 0. We claim the
following

Theorem 1: The DFE of the system (2), with o; = €= 0, is globally asymptotically stable in D; whenever Rr< 1.
Proof: Consider the following linear Lyapunov function:

V =kE; +(/uH +k1)|T ’

Clearly, V>0 except at the DFE. Differentiating V with respect to time, we have

V= kiEp + (uy + ko)lr ) )

Substituting the expression for g ang . into v yields
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p 1;S
v :’HTN#[ki(l_ PT1)+ glpTl]_ IT [9192]
H
OonD;,Sy <Ny < ’;—” Hence,f]—” < 1, so that we now have
H H
V< I'rg1gz|:(glpn + k1(l_ PTl))ﬂT 71:|’
9.9,

V <g,0,1-[R; -1 with the equality only at the DFE.

For Ry < 1, we have that V < 0. Therefore, V is a Lyapunov function in D, and it follows from the LaSalle’s Invariance Principle [13]that every solution to

the equation in (2) with g, = € = 0, and initial conditions in D,, converges to &; as t—c. This means that

(Er (), I+ (t), Ty (t))— (0,0, 0) as t —oo. Substituting Er = I+ = Tt = 0 into the system (2) gives(t)Sy — % as t - o, so that (Sy, Er, I, Tr) = (%, 0,0,0)
H H

as t = o for Ry < 1. Hence, the DFE &; is GAS in D, for 6, = € = 0.

The epidemiological significance of this is that in the absence of the exogenous reinfection and the case where there are no reinfection of TB treated
individuals, tuberculosis can be eliminated from the population if Rr< 1, regardless of the initial conditions.

3.1.4 Global Stability of EEP of TB-only model.

Consider a special case of model (2) where <= o,=0d;,=0 i.e., there are no incidences of exogenous reinfection, there are no reinfection of treated
individuals and no cases of disease-induced death. Let

Do :{(SH'ET'IT TT)E D, :E =1, =T; =O}

be the stable manifold of the DFE (¢,). We claim the following.

Theorem 2.The unique endemic equilibrium &, 7, of the model (3.2), with e= &, = d,, = 0, is GAS in D\D, whenever Rr> 1.

Proof: Consider the model (2) with e= &, =d,, =0and Rr> 1, so that the associated unique endemic equilibrium exists. Also, consider the following non-

linear Lyapunov function (of the Goh-Volterra type) :

Fos, —S7_S"In ip(a _ET_E" I i:]+ﬁ(h RN L:]'
Su E; Hy +h I

Taking the derivative of F yields

g Sug o fe JEg L ASL(; M)

F=3, 5 Sy +[ET e ETJWHW[IT 3 ITJ

It should be noted that setting d., =0 in (2) results in N . Let A, - Also, let _mpB SO that =Rl Substituting the

Miast o’ N, (=20 ]
Hy Hy Ay

expressions on the right hand side of model (2) into g gives
. Sy - -
F=Ay =4Sy =Sy — Ay + A4S+ 1,8y +4:Sy

Sy
’(:”H Jrkl)ET ’M+(/JH +k1)E:+ brSn ki Er - FrSu (IUH Jrrl)l'r
E; Hy 1 Hy 1
B.Sn KE N BiSh -
_ ﬂTSH 1T ﬂTSH (/UHJrrl)IT'
g tn g Hy 1

It can be shown from (2) that at steady state,
Aw =S5 +BATST,

BT ISy KE; -
Er

Hy k= Tyt =—%

IT
Using the above relations, and after several algebraic calculations, we have that
.y Su SH) 4 emroa SuErle EflY
¢ msi{e-ge- 55 o2
Since the arithmetic mean exceeds the geometric mean, the following inequalities hold:

[2-5%-£jso, [3— SHE,E'L - EL':jso'

Sy S, ESily Efl,

Thus, we have that F < 0 for Ry > 1. Since the relevant variables in the equations for Sy, Er, Irand Tr are at the endemic steady state, it follows that these
can be substituted into the equations for Sy, Er, I+ and T+ so that

(S, Er(), 1+(®), Tr () > (Si', Ex", 1", Tr") as t > oo,

Hence, F is a Lyapunov function in D;\Dy

3.2 Dengue-only model

The dengue only model is derived from system (1) by setting E; = I, = T; = E, = E; = E, = I, = 0. This leads to the following sub-model:
ds

7H:AH _#HSH _ﬂ'DVSH‘
dt

d
B S+ E.

dl
d*tl:}ﬁEl’(Tl*/‘H +5D1)I1’
(©)
TR;:TlIli:uHRl’
dSv
F:Av — Ao Sy — Sy
d
TE::%DHSV =0+ By,
dl
7:27va _(;uv +§H\/)IV’
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with
_ Buv(maE1+npli+ncEz+npE3+ngEstnFlz)
ﬁ/H(’]va+lv>’lDH_ Ny v Ny =S, +E +1,+R, and N, =S, +E, +1y-

NH
Consider the region D, = {(SH, Ey, Iy, Ry Sy, By, Iy )eR: Ny < 2—: Ny < %} Using the approaches used in Section 3.1, it can be shown that the set D, is positively
invariant and an attractor of all positive solution of the system (3). Hence, we claim the following
Lemma 5.The region D is positively invariant for the system (3).
Lemma 6. Let the initial data for the model (3) be S, (t) >0, E;(t) > 0,1,(t) > 0,R,(t) > 0,S,(t) > 0,E,(t) and I,,(t) > 0 then the solution Sy (t), E;(t),I(t),
R1(1), Sy (1), Ey(t), and I, (t)with positive initial data will remain positive for all time t > 0.
3.2.1 Local Stability of Disease-Free Equilibrium (DFE) of the Dengue-only Model
The model (3) has a disease-free equilibrium, obtained by setting the right hand side of the model to zero, given by
ffz:(5;fo~|fofoJxEJv|J):(A7H000ﬁ00]

H v

Aoy =

The stability of &, is established using the next generation operator method on the system (3) [12]. Following the procedure, as implemented in Section
3.1.1, we have that the effective reproduction number of the model (3) is given by

R, = AvBuvBvrin(9ana+yinp) v +3env)
b Ang39adsgsty '

Where, g = 1 49,0, =1, + 1y + 00y, 0s =y + 44,05 = 4y +3,, - 1NE NEXt result follows from Theorem 2 in [12].

Lemma 7. The DFE of the system (3) is locally asymptotically stable if Rp< 1 and unstable if Rp> 1.

The threshold quantity Rp is the effective or control reproduction number for the Dengue only sub-model. The implication of Lemma 7 is that Dengue can be
eliminated from the population when Rp < 1 if the initial sizes of the subpopulations of the sub-model are in the region of attraction of &,.

3.3.2. Existence of Endemic Equilibrium Point (EEP) of Dengue-only model

Let the EEP of model (3) be denoted by, py = (Si', Ei™, 1", Ri", Sy°, Ey", I;"). The equations in (3) are solved in terms of the force of infection at steady
state and they are given as

si=—lu
i + Aoy
S L R,
(/’H +Apy i}/l+#H)
_ Yoy A
(HH +ISVX71+/‘H XTI+ﬂH +§m)'
R1M= - 7171)“;vAH ,
(,“H +Apy X71+/4H )(T1 +Hy +5Dl)iuH
S, = Ay
Y (/‘v +Aon j‘
S,
(#v +on KYV +/1V)
- _ o Aoy
(/”v +’1:HX7V +/”v)(/’v +5HV)’
Aty (72 + iy Xow g + 80 )+ A5y Ay (71 + a1y + S, Jy +
N™ = _ 7iAoy Aty +Ti7}/1;\/AH
" My (/UH + Aoy X71+/UH XT1+/1H +}’+bm)
Now,

- :ﬁHv('/AEI'HIBII')and - B (6 +17) (at steady state). Substituting the expressions for ES 17 N and E), 1) Ny into A7, and Py leads to
DH N«* DV 3

H H
= Pty (gA']A + 77 )[Dkv
oH = =
Hr 9304 +(/1H 94t 7ikty +7171)’10v
and
- P Ay Hy (77\/ Js + v )9394(FH + Aoy )j'DH

DV

A H 929959644, + (At 9,95 Qs + (A ratty +770A )35ty Vi

+(AH Hr 93949596 +(AH/‘H 9,959s + (A risy +77Ay, )gsgs)ﬂvgv )ISH
Substituting the expression for 7= into ;~ , we now have the following polynomial in 3= :

Adgy + A g, + Ay =0
where

A = (,UH 9, + 7yt lel)AH #5 949596 + g5ge,uv(/1H 94t 714y t+ 7171)(AH Vily T T Ay )

+ﬂHv,U|24 (9477A + 7178 )AH 049596 + BuHn (9477A + 7178 )gsgs(AH Vily T T Ay ) >0

Ay = (G + 7it + 707001 929496T6 24, + Ay £0,79:950596 +

1929495644, (Awratn + 70 )+ Byt (94714 + 7110 A

9294959 — BB A 19394 (1,95 + 7, X914 + 71776 ),

A, = Ay 039205960 (Ro )]
where O3 =ty +71,9s =T+ 4y + 00,05 =1 + 44, and g = 4, + Sy,
As we cansee, A > 0. Hence, the number of positive roots of the polynomial will depend on the signs of A and A, - Therefore, we claim the following.
Theorem 3The number of endemic equilibria of model (2) is summarized as follows:
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1L If A, >0< R, <1, thenthere are two endemic equilibria ifand only if A, <0.

2. If A >0 R, <1 and A, >0, then there are no endemic equilibria in this case

3. If A, <0< Ry >1 then regardless of the sign of A, the model (3) will have a unique endemic equilibrium.
4.0  Analysis of complete model (1)
Consider the region
D= {(SH- Er I, Tr By I, R1,Svn Ey, Iy, E, E3,E4,12)61R1L4: Ny < ;ﬂ, Ny, < %

H 14
Using the approaches in Section 3.1, it can be shown that the set D is positively invariant and an attractor of all positive solution of the system (1). Hence,
we claim the following.
Lemma 8. The region D is positively invariant for the system (1).
Lemma 9. Let the initial data for the model (1) be S4(t) > 0,E;(t) > 0,I:(t) > 0,T;(t) >0, E;(t) > 0,1,(t) > 0,R,(t) > 0,5,(¢t) > 0,E,(¢t) >
0,1,(t) > 0,E,(t) > 0,E5(t) > 0,E,(t) > 0,and I,(t) > 0 then the solution Sy (®),Ex- (), I+ (t), Ty (t), E; ()1, (¢),
R, (1), Sy (1), Ey (1), I,(t), E;(t), E5(t), E4(t), and I,(t) with positive initial data will remain positive for all time t > 0.
4.1 Local Stability of disease-free equilibrium (DFE) of TB-Dengue Model
The model (1) has a disease-free equilibrium obtained by setting the right hand side of the model to zero given by
& = (Sh, Ef I3, T4, Ef I, RY, Sy E I, ES L ES B I3) = (%,0,0,0,0,0,0,%,0,0,0,0,0,0).
H 14

The linear stability of &, is established using the next generation operator method on the system (1) [12]. Following a similar procedure in Section 3.1.1, the
effective reproduction number of the TB-Dengue model (1) is obtained as R, =MaX (R Ry} where R - B:(9,Py, +k,1-P,))

9.9,

R, :\/AvﬂHvﬁleuH (9477A + 7 )(7\/ + ge’?v) »and
Ay 959,959644,
Oy =y + K, Gy =gty +0r + 1,05 =71+ 0y Qu =Ty + 1y + 00,05 =7y + My, 06 =y + 0y
Q7 =72+ Ky + 1y, g =Ky + 7, + 0y + 1y Qg =0y + 1, + 75+ 4y, 050 =75 + 15+ 0p + Uy + 14,
Ny, =A—”, and S, A
Hy Hy

The control reproduction number, associated with the DFE (¢;) of the model (1), denoted by R.- The following result follows from Theorem 2 in [12].

Lemma 10. The DFE, &; of the model (1) is locally asymptotically stable (LAS) if R. <1 and unstable if Re >1.

5.0 Numerical Simulations
Model (1) is now simulated, using the parameter estimates in Table 2 to gain insight into some of its quantitative features.

Figure 3: Numerical simulation of model (1) showing cumulative new cases of dengue from human to vectors when we vary Pr;.
Figure 3 shows the cummulative new cases of dengue from human to vectors, when we vary the fraction of newly infectedhumans with active TB (fast
progression)Pr, . We observe that the cummulative new cases from human to vectors is increasing significantly as the fraction P, increases.

Figure 4: Numerical simulation of model (1) showing the cumulative new TB cases, with varied values of Py,
Figure 4 shows that the cummulative number of new TB cases increases as the fraction Py, increase, as expected.

Figure 5: Numerical simulation of model (1) showing the cumulative new cases of dengue from vectors to human while varying Pr;.
In Figure 5, we observe that the cummulative number of new cases of dengue from vectors to humans was marginal as we vary P, compared to when we
had the cases where the dengue was spread from humans to vectors.

Figure 6: Numerical simulation of (1)'aepicting theEy, Iy, E4 and I, classes while varying Pp;.
Figure 6 is showing the number of individuals in the E;,I;, E; and I, classes as we varyP,,, , the fraction of individuals with dengue and in the latent stage of
TB. Observe that there is a marginal change in the number of infected individuals in all four classes as Pp, increases, in the long run.
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Figure 7: Numerical simulation of model (1) showing the dually infected classes E, I3, E4 and I,while varying Pp,.

Figure 7 is showing the number of individuals in the dually infected classes E,, E5, E,and I, classes while varyingP,,. Observe that that there is no
significant change in the number of individuals in the E;and I, classes, in the long run, compared to persons in the E,and E, classes, as we increase the value
ofPp,.

Figure 8: Numerical simulation of (1) depicting the number of individuals in the E;,I, E; and I, classes while varying z,.

In figure 8, we observe that the number of infected individuals in the E; I, E; and I, classes was decreasing with increase in the treatment rate for
dengue(t,), except in theE; class (as this could be to the fact that there are now more susceptibles available for reinfection). Figure 9 is depicting the number
of individuals in the singly infected classesEr,I;, E; and I; classes as we vary r;, the treatment rate for TB. As expected, increases in r; results in a
corresponding decrease in the number of infected individuals in the classes shown therein.

Figure 9: Nufnmerical simulation of modéi (1) showing the number of infected individuals in the E; Iy, E; and I, classes while varying r;.

6.0 Discussions

In this work, a mathematical model for the population dynamics of TB and Dengue coinfection (where treatment is available for both diseases) is proposed
and analyzed. The mathematical analysis herein shows that the disease free equilibrium (DFE) of the TB-only model is globally asymptotically stable when
there are insignificant levels of exogenous reinfection and reinfection of treated individuals. Also, it was shown that the endemic equilibrium point (EEP) of
the TB-only model also seen to be globally asymptotically stable when R, >1 and when there are insignificant levels of exogenous reinfection, reinfection

of treated individuals and disease-induced death in humans. Furthermore, the analyses showed that the dengue-only model has a unique endemic equilibrium
point whenever the associated reproduction number is greater than unity.

Numerical simulations of the model show that effective treatment for either Tb or dengue will result in a reduction in the disease burden of either diseases or
its coinfection. Also, the simulations reveal that the fraction of fast progressions to active TB can impact on the number of new cases of dengue (on both the
vectors and humans alike).
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