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Abstract 
 

This work provides mathematical analysis of a mathematical model describing the co-infection of Tuberculosis 

and Dengue in a population where both diseases are endemic. Sub-models describing the dynamics of both 

diseases separately are analysed and results from the numerical simulations of the complete model, showing the 

impact of key parameters on the co-endemicity of both diseases, are discussed. 

 

1. INTRODUTION 
Tuberculosis (TB) is an airborne disease. Mycobacterium tuberculosis , the bacterial agent that causes TB, droplets are released into the air during coughing 
or sneezing by infectious individuals [1]. According to the World Health Organization (WHO), about 9 million persons were infected with TB in 2013, with 

about 1.5 million deaths reported [2]. On the average, TB incidence fell to about 1.5% per year, between 2000 and 2013 [2]. More than half of the 

approximately 9 million individuals infected in 2013 were in South-East Asia and Western Pacific. One quarter of these individuals are in the Africa Region, 
accounting for the highest rates of TB cases and deaths relative to population [2]. 

A TB vaccine called BCG (Bacillus of Chalmette and Guerin) has been available for many decades. Made of a live, weakened strain of mycobacterium 

Bovis (a cousin of mycobacterium tuberculosis), it remains the only vaccine available against tuberculosis till date [3]. The BCG vaccine is cheap. In 
Nigeria, the BCG vaccine is usually given to children when they are born as part of the vaccination program by the Federal Government [4]. The vaccine is 

essential for children who have a negative tuberculin test and who are continuously exposed and cannot be separated from adult who are untreated or 

ineffectively treated for TB [3].  
Dengue is a viral, vector borne disease, spread by the Aedes Aegypti mosquito [5]. It was estimated that about 50 million infections occur annually in over 

100 countries [6]. There is no specific treatment for curing dengue patients [5]. Hospital treatment, in general, is given as supportive care which includes bed 

rest and analgesics [5].  
Dengue virus is one of the most difficult arboviruses to isolate [5]. There are four serotypes of the dengue virus; Den-1, Den-2, Den-3, Den-4, and each of 

the serotypes has numerous virus strains [5]. Infection with one dengue serotypes may provide long life immunity to that serotype, but there is no complete 

cross-protective immunity to other serotype [7]. Identification of the primary target cells of dengue viruses’ replication in the infected human body has 
proven to be extremely difficult [5].  

There are 22 Tuberculosis (TB) high burden countries worldwide, and together they account for about 80% of the world’s tuberculosis (TB) infection [8]. 

India accounts for over 20% of the world’s multi-drugs resistant tuberculosis (MDR-TB) cases [8]. Dengue fever risk is present throughout India, including 
most metropolitan cities and towns [8].  The purpose of this work is to investigate the population dynamics of TB-Dengue coinfection in the presence of 

treatment for both diseases, taking into cognisance the public health burden both diseases can have on the governmental public health plans. 

 

2.0          Model Formulation 

Let NH(t) and NV(t) denote the total number of humans and vectors at time t, respectively. The model sub-divides these populations into a number of 

mutually-exclusive compartments, as given below. 
The total population of human and vectors is divided into the following mutually exclusive epidemiological classes, namely, susceptible humans (SH(t)), 

humans with latent TB (ET(t)), humans with active TB (IT(t)), humans treated of active TB  (TT(t)), humans with latent dengue  (E1(t)), humans with dengue 

(II(t)), humans treated of dengue (R1(t)), susceptible vectors (SV(t)), vectors at the latent stage of dengue (EV(t)), vectors infectious with dengue (IV(t)), 
humans with latent TB and latent dengue (E2(t)), humans with latent TB and infectious dengue (E3(t)), humans with  active TB and latent dengue (E4(t)), 

and humans with active TB and dengue (𝐼2(𝑡)). Hence, we have that, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tItEtEtEtRtItEtTtItEtStN TTTHH 2432111)( ++++++++++=  
and 

( ) ( ) ( ) ( )tItEtStN VVVV ++=  
Susceptible humans are recruited at a rate H while the susceptible vectors are recruited at a rate V. Susceptible humans contract TB at a rate
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where  𝜂𝑣 < 1 accounts for the relative infectiousness of vectors with latent dengue (EV ) compared to vectors in the IV class. Susceptible vectors acquire 

dengue infection from infected humans at a rate 

=
𝛽𝐻𝑉(𝜂𝐴𝐸1+𝜂𝐵𝐼1+𝜂𝐶𝐸2+𝜂𝐷𝐸3+𝜂𝐸𝐸4+𝜂𝐹𝐼2)

𝑁𝐻
. 
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The modification parameters 𝜂𝐵, 𝜂𝐶 , 𝜂𝐷, and 
F   account for the relative infectiousness of those in the  𝐼1,  𝐸2, 𝐸3  and  𝐼2 classes compared to those in the 𝐸1 

and 𝐸4 classes, where 𝜂𝐴 = 𝜂𝐸 < 1.
  

2.1       Derivation of Model Equations 

Individuals in the 𝐸𝑇 , 𝐸2 and 𝐸3 classes can be exogenously re-infected at the rate 𝜎1𝜆𝑇, 𝜎2𝜆𝑇 and 𝜎3𝜆𝑇, respectively, where 1, 2 and 3 are modification 

parameters. A fraction 
1TP  (0 ≤ 𝑃𝑇1 ≤ 1) of susceptible and treated individual’s progress faster to the 

TI  class while a fraction ( )21 TP−  (0 ≤ 𝑃𝑇2 ≤ 1)  of 

those treated for dengue progress faster to the 
TI  class.

 
Also, a fraction ( )11 DP−  (0 ≤ 𝑃𝐷1 ≤ 1)  of individuals in the 

1E  class progress faster to the 
4E  class and ( )21 DP−  (0 ≤ 𝑃𝐷2 ≤ 1)  of  those in the 𝐼1 class 

progress faster to the   𝐼2 class. 

 

Active TB is treated at a rate 𝑟1, 𝑟2 and 
3r  for those in the classes 

TI , 
4E  and 𝐼2 classes, respectively, while dengue is treated at a rate 

1 2,   and
3
 for those 

in  𝐼1, 
3E  and  𝐼2 classes respectively. Singly infected individuals with latent TB progress to active TB at a rate k1;while dually infected individuals in the 

2E  

class progress to the 
4E  class at the rate 

2k . Individuals in the 
3E  class progress to the 𝐼2 class at the rate 

3k . Singly infected individuals with latent dengue 

progress to active dengue at a rate 
1  while dually infected individuals in the 

2E  class progress to the 
3E  class at the rate 

2 . Infected individuals  in the 
4E  

class progress to the 𝐼2 class at a rate
3 . 

Natural death in humans occurs at a rate 
H

 in the classes 𝑆𝐻 ,  𝐸𝑇, 𝐼𝑇 , 𝑇𝑇, 𝐸1, 𝐼1, 𝑅1, 𝐸2, 𝐸3, 𝐸4  𝑎𝑛𝑑 𝐼2 while those in the 
4 2, andTI E I  classes undergo 

an additional TB induced death at the rates 
1 2 3, andT T Td d d , respectively. Individuals in the  

1 3 2, andI E I  classes undergo an additional dengue induced 

death, at rates 
1 2 3, andD D D   , respectively. Treated individuals have a relative difference in susceptibility to TB after a previous infection compared to 

wholly susceptible individuals (with 0  being the modification parameter accounting for this relative difference in susceptibility). Natural vector death 

occurs, at a rate 𝜇𝑉, in the classes 𝑆𝑉 , 𝐸𝑉  𝑎𝑛𝑑 𝐼𝑉, while the vectors in the 𝐼𝑉 class undergoes additional dengue induced death, at a rate 𝛿𝐻𝑉, although this is 

negligible as infected vectors are not deemed to be affected by dengue. Exposed vectors progress to the infectious stage at the rate 𝛾𝑉.  

The above assumptions result in the following system of nonlinear ordinary differential equations: 

𝑆̇𝐻 = Λ𝐻 − 𝜆𝑇𝑆𝐻 − 𝜇𝐻𝑆𝐻 − 𝜆𝐷𝑉𝑆𝐻 , 
𝐸̇𝑇 = (1 − 𝑃𝑇1)𝜆𝑇𝑆𝐻 + (1 − 𝑃𝑇1)𝜖𝜆𝑇𝑇𝑇 − 𝜎1𝜆𝑇𝐸𝑇 − (𝜇𝐻 + 𝑘1)𝐸𝑇 − 𝜆𝐷𝑉𝐸𝑇 + 𝑃𝑇2𝜆𝑇𝑅1 + 𝜏1𝐸2, 
𝐼𝑇̇ = 𝑃𝑇1𝜆𝑇𝑆𝐻 + 𝑃𝑇1𝜖𝜆𝑇𝑇𝑇 − (𝜇𝐻 + 𝑑𝑇1 + 𝑟1)𝐼𝑇 + 𝜎1𝜆𝑇𝐸𝑇 − 𝜆𝐷𝑉𝐼𝑇 + (1 − 𝑃𝑇2)𝜆𝑇𝑅1 + 𝜏3𝐼2 + 𝑘1𝐸𝑇, 
𝑇̇𝑇 = 𝑟1𝐼𝑇 − 𝜖𝜆𝑇𝑇𝑇 − 𝜇𝐻𝑇𝑇 − 𝜆𝐷𝑉𝑇𝑇, 
𝐸̇1 = 𝜆𝐷𝑉𝑆𝐻 + 𝜆𝐷𝑉𝑇𝑇 − (𝛾1 + 𝜇𝐻)𝐸1 − 𝜆𝑇𝐸1 + 𝑟2𝐸4, 
𝐼1̇ = 𝛾1𝐸1 − (𝜏1 + 𝜇𝐻 + 𝛿𝐷1)𝐼1 − 𝜆𝑇𝐼1 + 𝑟3𝐼2, 
𝑅̇1 = 𝜏1𝐼1 − 𝜇𝐻𝑅1 − 𝜆𝑇𝑅1,                                                                                              (1) 

𝑆̇𝑉 = Λ𝑉 − 𝜆𝐷𝐻𝑆𝑉 − 𝜇𝑉𝑆𝑉, 
𝐸̇𝑉 = 𝜆𝐷𝐻𝑆𝑉 − (𝛾𝑉 + 𝜇𝑉)𝐸𝑉, 
𝐼𝑉̇ = 𝛾𝑉𝐸𝑉 − (𝜇𝑉 + 𝛿𝐻𝑉)𝐼𝑉, 
𝐸̇2 = 𝜆𝐷𝑉𝐸𝑇 + 𝑃𝐷1𝜆𝑇𝐸1 − (𝛾2 + 𝑘2 + 𝜇𝐻)𝐸2 − 𝜎2𝜆𝑇𝐸2,                                       

𝐸̇3 = 𝛾2𝐸2 + 𝑃𝐷2𝜆𝑇𝐼1 − (𝑘3 + 𝜏2 + 𝛿𝐷2 + 𝜇𝐻)𝐸3 − 𝜎3𝜆𝑇𝐸3, 

𝐸̇4 = (1 − 𝑃𝐷1)𝜆𝑇𝐸1 + 𝜆𝐷𝑉𝐼𝑇 + 𝑘2𝐸2 − (𝑑𝑇2 + 𝑟2 + 𝛾3 + 𝜇𝐻)𝐸4 + 𝜎2𝜆𝑇𝐸2, 
𝐼2̇ = (1 − 𝑃𝐷2)𝜆𝑇𝐼1 − (𝜏3 + 𝑟3 + 𝛿𝐷3 + 𝑑𝑇3 + 𝜇𝐻)𝐼2 + 𝑘3𝐸3 + 𝛾3𝐸4 + 𝜎3𝜆𝑇𝐸3. 
Table 1 gives the description of the state variables of the model (1) and Table 2 gives the description of the parameters (and their baseline values) of the model (1).

 Table 1: Description of the state variables of the model (1) 

Variable Description 

SH Susceptible human population  

ET Human population with TB in latent stage (TB only) 

IT Human population with TB in active stage (TB only) 

TT Human population treated of TB (TB only) 

E1 Human population with dengue in latent stage (Dengue only) 

I1 Human population with dengue (Dengue only) 

R1 Human population treated of dengue (Dengue only) 

SV Susceptible vectors population  

EV Exposed vectors  

IV Infectious vectors  

E2 Dually infected humans with latent TB and latent dengue  

E3 Dually infected humans with dengue and latent TB 

E4 Dually infected human with active TB and latent dengue 

I2 Dually infected human with active TB and dengue  

 

Table 2: Description of Parameters of the Model (1) 

Parameter Description Values Unit Reference 

 

Λ𝐻,Λ𝑉 

Recruitment rate into the population of susceptible 

humans,vectors respectively. 

500,10000000 Year-1 

 

[9] 

H,v Natural death for humans, vectors respectively. 0.02041,36.5 Year-1 

Year-1 

[4] 

T Effective contact rate for TB. 10 Year-1 Assumed 

VH Effective contact rate for dengue from vectors to humans  5 Year-1 [9] 
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HV Effective contact rate for dengue from humans  to 

vectors  

4 Year-1 [9] 

PT2 Fraction of newly infected humans with latent TB 0.9 Year-1 [4] 

PT1 Fraction of newly infected humans with active TB 0.3 Year-1 [4] 

1,2,3 Dengue treatment rate for I1,E3,I2. 2.5,1.5,2 Ind-1 Year-1 [9] 

r1,r2,r3 TB treatment rate for ITE4,I2. 3,2.5,2.4 Ind-1 Year-1 [9] 

k1,k2,k3 Progression rate to active. TB  0.02,0.02,0.025 Year-1 [4] 

𝛾1, 𝛾2. 𝛾3 Progression rate to active dengue (humans) 0.3254,0.6462, 
0.3265 

Year-1 [9]. 

𝛾𝑉 Progression rate to active dengue (vectors). 0.03 Year-1 [9] 

dT1,dT2,dT3, 

𝛿𝐷1, 𝛿𝐷2, 𝛿𝐷3 

Disease induced death TB/Dengue (humans)  0.365,0.365,0.375/
0.365,0.365, 0.365 

 

Year-1 

 

Year-1 

[4] 

𝛿𝐻𝑉 Disease induced death dengue (vectors) 0 Year-1 [9] 

𝑘𝑉 Progression rate to active dengue (vectors) 0.05 Year-1 [9]. 

𝜂𝑇1, 𝜂𝑇2, 𝜂𝑉, 
𝜂𝐴, 𝜂𝐵, 𝜂𝐶 , 
𝜂𝐷, 𝜂𝐸 , 𝜂𝐹 

Modification parameters for E4, I2, Ev, E1, I1, E2, 

E3, E4, I2. 

0.4,1.2,0.5,0.6,1,0.

6,1.1,1,1.5, 

Year-1 [4] 

 

1, 2, 3 Modification parameter for exogenous re-infection. 0.5,0.5,0.7 Year-1 [9] 

 Modification parameter 1.67 Year-1 Assumed 

PD1 Fraction of newly infected active TB cases with 

latent dengue 

0.6 Year-1 [9] 

PD2 Fraction of newly infected active TB cases with 
active dengue 

0.5 Year-1 [9] 

 

3.0      Analysis of sub-models 

Before analyzing the complete model (1), it is instructive to gain insight into the dynamical features of the TB-only model  and the dengue- only model. 
3.1      TB-only model 

The TB only model is derived in (1) by setting  𝐸1 = 𝑅1 = 𝑆𝑉 = 𝐸𝑉 = 𝐼𝑉 = 𝐸2 = 𝐸3 = 𝐸4 = 𝐼2 = 0. Hence we have 

,HHHTH
H SS

dt

dS
 −−=

 

( ) ( ) ( ) ,11 1111 THTTTTTHTT
T EkETPSP

dt

dE
+−−−+−= 

    (2) 

( ) ,111111 TTTTTHTTTHTT
T EkEIrdTPSP

dt

dI
++++−+= 

 

,1 THTTT
T TTIr

dt

dT
 −−=

 where  𝜆𝑇 =
𝛽𝑇𝐼𝑇

𝑁𝐻
 and 𝑁𝐻 = 𝑆𝐻 + 𝐸𝑇 + 𝐼𝑇 + 𝑇𝑇. 

Consider the region 𝐷1 = {(𝑆𝐻 , 𝐸𝑇 , 𝐼𝑇 , 𝑇𝑇)𝜖ℝ+
4 : 𝑁𝐻 ≤

Λ𝐻

𝜇𝐻
}. It can be shown that the set D1 is positively invariant and a global attractor of all positive solution 

of the system (2). We claim the following. 
Lemma 1 The region D1 is positively invariant for the system (2). 

Proof: The rate of change of the total population is give as  

( ) ( ) TTTTTHHHTTTHH IdTIESTIEStN 1−+++−=+++= 

    ( ) TTHHHH IdNtN 1−−= 
. 

Since the right-hand side of the equation above is bounded by 
HHH N− , standard comparison theorem [10] can be used to show that    

𝑁𝐻 ≤ 𝑁𝐻(0)𝑒−𝜇𝐻𝑡 +
Λ𝐻

𝜇𝐻
[1 − 𝑒−𝜇𝐻𝑡]. 

If 𝑁𝐻(0)≤ 
Λ𝐻

𝜇𝐻
  then 𝑁𝐻(0)≤ 

Λ𝐻

𝜇𝐻
 . Thus, D1 is a positively invariant set under the flow described in (2). Hence, no solution path leaves through and boundary of 

D1. In this region, the model (2) is said to be well posed mathematically and epidemiologically [11]. 
We now prove the positivity of solutions of the model (2). We claim the following. 

Lemma 2. Let the initial data for the model (2) be 𝑆𝐻(𝑡) > 0, 𝐸𝑇(𝑡) > 0, 𝐼𝑇(𝑡) > 0, and 𝑇𝑇(𝑡) > 0 then the solution 𝑆𝐻(𝑡), 𝐸𝑇(𝑡),𝐼𝑇(𝑡), and 𝑇𝑇(𝑡)with 

positive initial data will remain positive for all time t > 0. 

Proof: Let 𝑡1 = 𝑠𝑢𝑝{𝑡 > 0: 𝑆𝐻(𝑡) > 0, 𝐸𝑇(𝑡) > 0, 𝐼𝑇(𝑡) > 0, 𝑇𝑇(𝑡) > 0 } > 0. The first equation in (2) is given by 

𝑆̇𝐻 = Λ𝐻 − (𝜆𝑇 + 𝜇𝐻)𝑆𝐻, 

which, when solved, leads to 

𝑆𝐻(𝑡1) = 𝑆𝐻(0)𝑒𝑥𝑝 {−𝜇𝐻𝑡1 − ∫ 𝜆𝑇(𝜏)𝑑(𝜏)
𝑡1

0
} + [𝑒𝑥𝑝 {−𝜇𝐻𝑡1 − ∫ 𝜆𝑇(𝜏)𝑑(𝜏)

𝑡1

0
}] ∫ Λ𝐻[𝑒𝑥𝑝{𝜇𝐻𝑦 + ∫ 𝜆𝑇(𝜏)𝑑(𝜏)

𝑦

0
}]𝑑𝑦 > 0

𝑡1

0
. 

Hence, 𝑆𝐻 is positive for all time, t. 

Similarly, we can show that 𝐸𝑇(𝑡) > 0, 𝐼𝑇(𝑡) > 0, and 𝑇𝑇(𝑡) > 0 for all time, t. 
 

3.1.1      Local Stability of Disease-Free Equilibrium (DFE) of the TB-only model 

The model (2) has a disease-free equilibrium obtained by setting the right hand side of the model to zero, and this is given by  

( )== ****

1 ,,, TTTH TIES 






 
0,0,0,

H

H


. 

The linear stability of  𝜉1 is established using the next generation operator method on the system (2) [12]. Using the notation in [12], the matrices F and V, 

for the new infection terms and the remaining transfer terms respectively, are given by 

𝐹 = (
0 (1 − 𝑃𝑇1)𝛽𝑇

0 𝑃𝑇1𝛽𝑇
),  and   𝑉 = (

𝑔1 0
−𝑘1 𝑔2

). 
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It follows that the effective reproduction number of the model (2), denoted by 𝑅𝑇, is given by  𝑅𝑇 =  𝜌(𝐹𝑉−1) = ( )( )

21

1111 1

gg

PkPg TTT −+ , 

where  𝜌(𝐹𝑉−1) is the spectral radius of the matrix  𝐹𝑉−1.The next result follows from Theorem 2 in [12]. 

Lemma 3 The DFE, 𝜉1, of the model (2) is locally asymptotically stable (LAS) if 10 R , and unstable if 10 R . 

The threshold quantity, 𝑅𝑇, is the effective reproduction number for the TB sub-model. It represents the average number of secondary TB infections 

generated by a typical infected individual in a completely susceptible population where treatment for TB is available. Epidemiologically speaking, Lemma 3 

implies that TB can be eliminated from the population when 𝑅𝑇< 1 if the initial sizes of the sub-population of the sub-model are in the basin of attraction 

of 𝜉1. Hence, a small influx of TB-infected individuals into the community will not generate large TB outbreaks, and the disease will die out with time. 
 

3.1.2   Existence and Local Stability of Endemic Equilibrium Point (EEP) of the TB-Only Model. 

Let the EEP of model (2) be denoted by 𝜉(1,𝑇) = (𝑆𝐻
∗∗, 𝐸𝑇

∗∗, 𝐼𝑇
∗∗, 𝑇𝑇

∗∗). The equations in (2) are solved in terms of the force of infection, at steady state, and 

the components of the EEP are given as  

HT

H
HS

 +


=

**

**

, 
( ) ( )( )

( ) ( )( ) ( ) ( )((
( ) ( )( )( ))HTTHT

HTHTHHTHTTHT

HTHTHTT
T

Pr

rkkd

rdP
E







+−+++

+++++

+++−
=

**

111

**

1

****

11

**

11

**

1

**

11

****

1**

1

1

, 
( )( )

( ) ( )( ) ( )((
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T
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=
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1
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11
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1**
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Since 𝑁𝐻

∗∗ = 𝑆𝐻
∗∗ + 𝐸𝑇

∗∗ + 𝐼𝑇
∗∗ + 𝑇𝑇

∗∗, we then have 

( ) ( )( ) ( )
( ) ( )
( )

( ) ( ) 
( ) ( )

( ) ( ) HTTHT
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

1
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11
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1

111

**2****

1

**

11
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1

111

**2**

1

**

11

**
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1

**

1

1

1

−+++

+++++

−+++

++++

++++++

+++++−

=

   

 

 

Now, since 
**

**
**

H

TT
T

N

I
 =

 (at the endemic equilibrium point), substituting **

HN  and 𝐼𝑇
∗∗into **

T gives the following polynomial (in terms of **

T ): 

04

**

3

2**

2

3**

1 =+++ AAAA TTT  ,

 

where  

011 =A , 
( ) ( ) −++++++++−= 11111111111112 1  TTHHHTHTT drrPkrdPA , 

( ) ( )

( ) THHTTTHTTHHTHHT

HHHTHTHHTHT

PkrPdkkdd

rrPkrPkrdPA





111111111

2

11

111

2

1111

2

111113

1

1

−−−−++++++

++++++++−=

, 

 and 
( )( ) THHTH RkrdA −+++= 11114  . 

Since 01 A , the number of positive roots of the polynomial (which then determines the number of endemic equilibria of the model (2)) is determined by 

the signs of the coefficients 432  and , AAA . Hence, we claim the following.  

Lemma 4 The number of endemic equilibria of model (2) is summarized as follows: 

If 104  TRA , then there are two endemic equilibria if 32  and AA
are of opposite signs or they are both negative 

If 104  TRA  and 32  and AA
 are both positive, then there are no endemic equilibrium for this case. 

If 104  TRA , then a unique endemic equilibrium is possible. 

Item (1) shows the possibility of a backward bifurcation in model (2), whereby there exist an endemic equilibrium coexisting with the DFE when 1TR In 

this case, the reproduction number becomes only a necessary (but not sufficient) condition for disease eradication. In particular, if 𝜎1 = 𝜖= 0, we observe 

that the third degree polynomial reduces to a linear equation, and for this case, there is no endemic equilibrium when 1TR . However, there is a unique 

endemic equilibrium when 1TR .  

3.1.3 Global Stability of  the DFE 

Considering the model (2) where there is no exogenous reinfection and there are no reinfection of treated individuals i.e., when 𝜎1 = 𝜖= 0. We claim the 

following 

Theorem 1: The DFE of the system (2), with 𝜎1 = 𝜖= 0, is globally asymptotically stable in D1 whenever RT< 1. 

Proof: Consider the following linear Lyapunov function: 

( ) THT IkEkV 11 ++=  . 

Clearly, V>0 except at the DFE. Differentiating V with respect to time, we have 

𝑉̇ = 𝑘1𝐸̇𝑇 + (𝜇𝐻 + 𝑘1)𝐼𝑇̇ 

Substituting the expression for 
TIE   and  into V yields 
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( )   211111 1 ggIPgPk
N

SI
V TTT

H

HTT −+−=


 

On 𝐷1 , 𝑆𝐻 ≤ 𝑁𝐻 ≤
Λ𝐻

𝜇𝐻
.  𝐻𝑒𝑛𝑐𝑒,

𝑆𝐻

𝑁𝐻
≤ 1, so that we now have 

( )( )








−

−+
 1

1

21

1111
21

gg

PkPg
ggIV TTT

T


, 

 121 − TT RIggV , with the equality only at the DFE.  
 

For 𝑅𝑇 ≤ 1, we have that 𝑉̇ ≤ 0. Therefore, V is a Lyapunov function in 𝐷1 and it follows from the LaSalle’s Invariance Principle [13]that every solution to 

the equation in (2) with 𝜎1 = 𝜖 = 0, and initial conditions in 𝐷1, converges to ξ1 as t→. This means that 

(𝐸𝑇(𝑡), 𝐼𝑇(𝑡), 𝑇𝑇(𝑡))⟶ (0, 0, 0) as 𝑡 ⟶. Substituting ET = IT = TT = 0 into the system (2) gives(𝑡)𝑆𝐻 →
Λ𝐻

𝜇𝐻
 𝑎𝑠 𝑡 → ∞, so that (𝑆𝐻 , 𝐸𝑇 , 𝐼𝑇 , 𝑇𝑇) = (

Λ𝐻

𝜇𝐻
, 0, 0,0) 

𝑎𝑠 𝑡 → ∞ 𝑓𝑜𝑟 𝑅𝑇 ≤ 1.  Hence, the DFE ξ1 is GAS in D1 for 𝜎1 = 𝜖 = 0. 
 

The epidemiological significance of this is that in the absence of the exogenous reinfection and the case where there are no reinfection of TB treated 

individuals, tuberculosis can be eliminated from the population if RT< 1, regardless of the initial conditions. 
 

3.1.4 Global Stability of EEP of TB-only model. 

Consider a special case of model (2) where 011 === Td  i.e., there are no incidences of exogenous reinfection, there are no reinfection of treated 

individuals and no cases of disease-induced death.  Let  

( ) 0:,,, 10 ==== TTTTTTH TIEDTIESD  

be the stable manifold of the DFE (𝜉1). We claim the following. 

Theorem 2.The unique endemic equilibrium 𝜉(1,𝑇) of the model (3.2), with 011 === Td , is GAS in D1\D0 whenever RT> 1. 

Proof: Consider the model (2) with 011 === Td and RT> 1, so that the associated unique endemic equilibrium exists. Also, consider the following non-

linear Lyapunov function (of the Goh-Volterra type) : 











−−

+
+










−−+−−=

**

****

1
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T
TTT
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H
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S
SSSF




. 

Taking the derivative of F yields 











−

+
+





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I
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E

E

E
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S

S
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1
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


. 

It should be noted that setting 01 =Td  in (2) results in 
( ) →


→ ttN

H

H
H as



. Let 
( )

H

H
H tN




=

. Also, let 

H

TH
T


=


̂

 so that 
TTT I ˆ= .  Substituting the 

expressions on the right hand side of model (2) into F  gives 

HTHHHTH
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S
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It can be shown from (2) that at steady state, 
,ˆ ******

HTTHHH SIS  +=
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1 ,
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Using the above relations, and after several algebraic calculations, we have that  
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
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Since the arithmetic mean exceeds the geometric mean, the following inequalities hold: 

03,02
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

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
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Thus, we have that 𝐹̇ ≤ 0 𝑓𝑜𝑟 𝑅𝑇 > 1. Since the relevant variables in the equations for SH, ET, IT and TT are at the endemic steady state, it follows that these 

can be substituted into the equations for SH, ET, IT and TT so that  
(𝑆(𝑡), 𝐸𝑇(𝑡), 𝐼𝑇(𝑡), 𝑇𝑇(𝑡)) → (𝑆𝐻

∗∗, 𝐸𝑇
∗∗, 𝐼𝑇

∗∗, 𝑇𝑇
∗∗) 𝑎𝑠  𝑡 → ∞. 

Hence, F is a Lyapunov function in D1\D0 
 

3.2       Dengue-only model 

The dengue only model is derived from system (1) by setting 𝐸𝑇 = 𝐼𝑇 = 𝑇𝑇 = 𝐸2 = 𝐸3 = 𝐸4 = 𝐼2 = 0. This leads to the following sub-model:  

,HDVHHH
H SS

dt

dS
 −−=

 

( ) ,11
1 ES

dt

dE
HHDV  +−=

 

( ) ,11111
1 IE

dt

dI
DH  ++−=

 

,111
1 RI

dt

dR
H −=

        

         (3) 

,VVVDHV SS
dt

dSv
 −−=

 

( ) ,VVVVDH
V ES

dt

dE
 +−=

 

( ) ,VVHVVV
V IE

dt

dI
 +−=
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with 

( )VH v v v

DV

H

E I

N

 


+
=

, 𝜆𝐷𝐻 =
𝛽𝐻𝑉(𝜂𝐴𝐸1+𝜂𝐵𝐼1+𝜂𝐶𝐸2+𝜂𝐷𝐸3+𝜂𝐸𝐸4+𝜂𝐹𝐼2)

𝑁𝐻
, 

111 RIESN HH +++=   and 
VVVV IESN ++= . 

Consider the region 𝐷2 = {(𝑆𝐻, 𝐸1, 𝐼1, 𝑅1,𝑆𝑉 , 𝐸𝑉 , 𝐼𝑉)𝜖ℝ+
7 : 𝑁𝐻 ≤

Λ𝐻

𝜇𝐻
, 𝑁𝑉 ≤

Λ𝑉

𝜇𝑉
}.  Using the approaches used in Section 3.1, it can be shown that the set D2 is positively 

invariant and an attractor of all positive solution of the system (3). Hence, we claim the following 

Lemma 5.The region D2 is positively invariant for the system (3). 
Lemma 6.  Let the initial data for the model (3) be 𝑆𝐻(𝑡) > 0, 𝐸1(𝑡) > 0, 𝐼1(𝑡) > 0, 𝑅1(𝑡) > 0, 𝑆𝑉(𝑡) > 0, 𝐸𝑉(𝑡) and 𝐼𝑉(𝑡) > 0 then the solution 𝑆𝐻(𝑡), 𝐸1(𝑡),𝐼1(𝑡), 

𝑅1(𝑡), 𝑆𝑉(𝑡), 𝐸𝑉(𝑡), and 𝐼𝑉(𝑡)with positive initial data will remain positive for all time t > 0. 

3.2.1 Local Stability of Disease-Free Equilibrium (DFE) of the Dengue-only Model 

The model (3) has a disease-free equilibrium, obtained by setting the right hand side of the model to zero, given by  
( )****

1

*

1

*

1

*

2 ,,,,,, vvvH IESRIES=









 
= 0,0,,0,0,0,

v

v

H

H

  
The stability of  𝜉2 is established using the next generation operator method on the system (3) [12]. Following the procedure, as implemented in Section 

3.1.1, we have that the effective reproduction number of the model (3) is given by  

𝑅𝐷 = √
Λ𝑉𝛽𝐻𝑉𝛽𝑉𝐻𝜇𝐻(𝑔4𝜂𝐴+𝛾1𝜂𝐵)(𝛾𝑉+𝑔6𝜂𝑉)

Λ𝐻𝑔3𝑔4𝑔5𝑔6𝜇𝑉
, 

where, 
HVVVVDHH gggg  +=+=++=+= 6511413 ,,, . The next result follows from Theorem 2 in [12]. 

Lemma 7. The DFE of the system (3) is locally asymptotically stable if RD< 1 and unstable if RD> 1. 
The threshold quantity RD is the effective or control reproduction number for the Dengue only sub-model. The implication of Lemma 7 is that Dengue can be 

eliminated from the population when RD < 1 if the initial sizes of the subpopulations of the sub-model are in the region of attraction of 𝜉2. 

3.3.2.  Existence of Endemic Equilibrium Point (EEP) of Dengue-only model 

Let the EEP of model (3) be denoted by𝜉(1,𝐷) = (𝑆𝐻
∗∗, 𝐸1

∗∗, 𝐼1
∗∗, 𝑅1

∗∗, 𝑆𝑉
∗∗, 𝐸𝑉

∗∗, 𝐼𝑉
∗∗). The equations in (3) are solved in terms of the force of infection at steady 

state and they are given as  
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 (at steady state). Substituting the expressions for **

1E , **

1I
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HN and ,**

VE **

VI
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HN  into **

DH  and **

DV leads to 
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Substituting the expression for **

DH into **

DV , we now have the following polynomial in **

DV : 
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where 
HvvvDHH gggg  +=+=++=+= 61511413  and ,,, . 

As we can see, 01 A . Hence, the number of positive roots of the polynomial will depend on the signs of 
32  and AA . Therefore, we claim the following. 

Theorem 3The number of endemic equilibria of model (2) is summarized as follows: 
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1. If 103  DRA , then there are two endemic equilibria if and only if  0 2 A . 

2. If 103  DRA  and 0 2 A , then there are no endemic equilibria in this case 

3. If 103  DRA , then regardless of the sign of 
2A , the model (3) will have a unique endemic equilibrium. 

4.0      Analysis of complete model (1) 

Consider the region  

𝐷 = {(𝑆𝐻 , 𝐸𝑇 , 𝐼𝑇 , 𝑇𝑇, 𝐸1, 𝐼1, 𝑅1,𝑆𝑉, 𝐸𝑉, 𝐼𝑉 , 𝐸2, 𝐸3, 𝐸4, 𝐼2)𝜖ℝ+
14: 𝑁𝐻 ≤

Λ𝐻

𝜇𝐻
, 𝑁𝑉 ≤

Λ𝑉

𝜇𝑉
}. 

Using the approaches in Section 3.1, it can be shown that the set 𝐷 is positively invariant and an attractor of all positive solution of the system (1).  Hence, 

we claim the following. 
Lemma 8. The region D is positively invariant for the system (1). 

Lemma 9.  Let the initial data for the model (1) be 𝑆𝐻(𝑡) > 0, 𝐸𝑇(𝑡) > 0, 𝐼𝑇(𝑡) > 0, 𝑇𝑇(𝑡) > 0, 𝐸1(𝑡) > 0, 𝐼1(𝑡) > 0, 𝑅1(𝑡) > 0, 𝑆𝑉(𝑡) > 0, 𝐸𝑉(𝑡) >
0, 𝐼𝑉(𝑡) > 0, 𝐸2(𝑡) > 0, 𝐸3(𝑡) > 0, 𝐸4(𝑡) > 0, 𝑎𝑛𝑑 𝐼2(𝑡) > 0 then the solution 𝑆𝐻(𝑡),𝐸𝑇(𝑡), 𝐼𝑇(𝑡), 𝑇𝑇(𝑡), 𝐸1(𝑡),𝐼1(𝑡), 

𝑅1(𝑡), 𝑆𝑉(𝑡), 𝐸𝑉(𝑡), 𝐼𝑉(𝑡), 𝐸2(𝑡), 𝐸3(𝑡), 𝐸4(𝑡), 𝑎𝑛𝑑 𝐼2(𝑡)  with positive initial data will remain positive for all time t > 0. 
 

4.1  Local Stability of disease-free equilibrium (DFE) of TB-Dengue Model 

The model (1) has a disease-free equilibrium obtained by setting the right hand side of the model to zero given by  

𝜉3 = (𝑆𝐻
∗ , 𝐸𝑇

∗ , 𝐼𝑇
∗ , 𝑇𝑇

∗, 𝐸1
∗, 𝐼1

∗, 𝑅1
∗, 𝑆𝑉

∗ , 𝐸𝑉
∗ , 𝐼𝑉

∗ , 𝐸2
∗, 𝐸3

∗, 𝐸4
∗, 𝐼2

∗) = (
Λ𝐻

𝜇𝐻
, 0,0,0,0,0,0,

Λ𝑉

𝜇𝑉
, 0,0,0,0,0,0). 

The linear stability of  𝜉3 is established using the next generation operator method on the system (1) [12]. Following a similar procedure in Section 3.1.1, the 

effective reproduction number of the TB-Dengue model (1) is obtained as 
CR  = max  DT RR , , where ( )( )
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The control reproduction number, associated with the DFE (𝜉3) of the model (1), denoted by
CR . The following result follows from Theorem 2 in [12]. 

Lemma 10. The DFE, 𝜉3 of the model (1) is locally asymptotically stable (LAS) if 1CR  and unstable if .1CR  

 

5.0    Numerical Simulations 

Model (1) is now simulated, using the parameter estimates in Table 2 to gain insight into some of its quantitative features. 

 
Figure 3: Numerical simulation of model (1) showing cumulative new cases of dengue from human to vectors when we vary 𝑷𝑻𝟏. 
Figure 3 shows the cummulative new cases of dengue from human to vectors, when we vary  the fraction of newly infectedhumans with active TB (fast 

progression)𝑃𝑇1 . We observe  that the cummulative new cases from human to vectors is increasing significantly as the fraction 𝑃𝑇1  increases. 

 
Figure 4: Numerical simulation of model (1) showing the cumulative new TB cases, with varied values of PT1. 

Figure 4 shows that the cummulative number of new TB cases increases as the fraction 𝑃𝑇1 increase, as expected.  

 
Figure 5: Numerical simulation of model (1) showing the cumulative new cases of dengue from vectors to human while varying PT1. 

In Figure 5, we observe that the cummulative number of new cases of dengue from vectors to humans was marginal as we vary 𝑃𝑇1 compared to when we 

had the cases where the dengue was spread from humans to vectors. 

 
Figure 6: Numerical simulation of (1) depicting the𝑬𝑻,𝑰𝑻, 𝑬𝟏 and 𝑰𝟏classes while varying 𝑷𝑫𝟏. 
Figure 6 is showing the number of individuals in the 𝐸𝑇,𝐼𝑇 , 𝐸1 and 𝐼1 classes as we vary𝑃𝐷1 ., the fraction of individuals with dengue and in the latent stage of 

TB.  Observe that there is a marginal change in the number of infected individuals in all four classes as 𝑃𝐷1  increases, in the long run. 
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Figure 7: Numerical simulation of model (1) showing the dually infected classes 𝐄𝟐,𝐈𝟑, 𝐄𝟒 and 𝐈𝟐while varying 𝐏𝐃𝟏. 
Figure 7 is showing the number of individuals in the dually infected classes 𝐸2, 𝐸3, 𝐸4 and 𝐼2 classes while varying𝑃𝐷1. Observe that that there is no 

significant change in the number of individuals in the 𝐸3and 𝐼2 classes, in the long run, compared to persons in the 𝐸2and 𝐸4 classes, as we increase the value 

of𝑃𝐷1.  

 
Figure 8: Numerical simulation of (1) depicting the number of individuals in the 𝑬𝑻,𝑰𝑻, 𝑬𝟏 and 𝑰𝟏classes while varying 𝝉𝟏. 
In figure 8, we observe that the number of infected individuals in the 𝐸𝑇,𝐼𝑇, 𝐸1 and 𝐼1 classes was decreasing with increase in the treatment rate for 

dengue(𝜏1), except in the𝐸1 class (as this could be to the fact that there are now more susceptibles available for reinfection). Figure 9 is depicting the number 

of individuals in the singly infected classes𝐸𝑇,𝐼𝑇 , 𝐸1 and 𝐼1 classes as we vary 𝑟1, the treatment rate for TB. As expected, increases in 𝑟1   results in a 

corresponding decrease in the number of infected individuals in the classes shown therein. 

 
Figure 9: Numerical simulation of model (1) showing the number of infected individuals in the 𝑬𝑻,𝑰𝑻, 𝑬𝟏 and 𝑰𝟏 classes while varying 𝒓𝟏. 
 

6.0     Discussions 

In this work, a mathematical model for the population dynamics of TB and Dengue coinfection (where treatment is available for both diseases) is proposed 
and analyzed. The mathematical analysis herein shows that the disease free equilibrium (DFE) of the TB-only model is globally asymptotically stable when 

there are insignificant levels of exogenous reinfection and reinfection of treated individuals. Also, it was shown that the endemic equilibrium point (EEP) of 
the TB-only model also seen to be globally asymptotically stable when 1TR  and when there are insignificant levels of exogenous reinfection, reinfection 

of treated individuals and disease-induced death in humans. Furthermore, the analyses showed that the dengue-only model has a unique endemic equilibrium 
point whenever the associated reproduction number is greater than unity. 

Numerical simulations of the model show that effective treatment for either Tb or dengue will result in a reduction in the disease burden of either diseases or 

its coinfection. Also, the simulations reveal that the fraction of fast progressions to active TB can impact on the number of new cases of dengue (on both the 
vectors and humans alike). 
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