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Abstract 
 

 

A mathematical model for the control of laser fever disease was developed. The research shows that lassa fever 

disease can be controlled by reducing the transmission rate and using control strategies that can lead to a 

reduction in the basic reproduction number.  The numerical imulation shows the effect of the control parameter 

on the various classes of the model. The results also show that the infected human population increases at the 

initial stage because of the migration from susceptible human class and get to the peak after a certain period of 

time. However, the infected human population begins to drop due to the high disease-induced death, recovery 

and migration to the Treated class.   Similarly, the treated human population increases at the initial stage due 

to the migration from the infected class and later decreases due to migration to the treated class. The treated 

and recovered human populations increase at the initial stage but later beg into decrease because of the effective 

prevention and control strategies and the efficacy of the vaccine. 
 

1. INTRODUTION 
Lassa fever is an infectious  disease that is transmitted from animal to human and human to human.   Mas-tomys (atalensis), a rat species is the animal 
host of lassa fever. People contract lassa fever has a result of poor hygienic conditions, inadequate or ineffective prevention measures and contact 

between  susceptible persons and infected food, animal or human [1].  Lassa fever is an acute viral haemorrhagic fever illness that is known to be 

endemic in many  West African countries including  Nigeria according to World Health Organization 2017. The current outbreak of the disease in 
Nigeria started in December 2016and a total of 501 suspected cases including 104 deaths have been reported as at 9June, 2017. Out of this number, 189 

have been further classified, 175 laboratory-confirmed including 59 deaths and 14probable cases (all dead). The current Lassa fever outbreak has been 

reported in 17 Nigerian states and each has at least one confirmed case. As at 9 June, 2017, the outbreak was still active in 9 states. Prevention of Lassa 
fever relies on promoting good community hygiene to discourage rodents from entering homes. In health-care settings, staff should always apply 

standard infection prevention and control precautions when caring for patients, regardless of their presumed diagnosis [2]. The incubation period of 

lassa fever is between six to twenty-one days.   The disease is endemic in West African countries like Sierra loane, Ghana and Nigeria.  [3] proposed a 
model of lassa fever disease dynamics.  The equilibrium states were obtained and were analysed for stability. It was discovered that the zero equilibrium 

state of the disease is stable when the birth rate of the human population is less than the death rate and when the birth rate of the mastomysnatalensis 
(reservoir) is less than the total death rates. [4] formulated a six-dimensional ordinary differential equation modeling the transmission of lassa virus 

between humans and reservoir with control strategies. The stability analysis of the disease free equilibrium was obtained and the basic reproduction 

number using the next generation operator approach. The model results shows that the disease free equilibrium is locally a symptotically stable at and 
unstable at.  The existence of the endemic equilibrium was determined. The numerical simulations was carried out and the possible nature of the model. [5] 

developed an SIR model for the control of lassa fever in Northern part of Edo State. The results of the analysis showed that for the disease to be 

eradicated from the endemic area, the transmission rate must be very low when compared with the recovery rate. The paper advocated adequate health 
education, low cost housings chemetoreduce over-population in some places and good health policy. Adequate equilibrium for the diagnosis and 

treatment of lassa fever must be provided. Lassa fever patients must be isolated and vaccinated to increase the rate of recovery. [6] developed a 

mathematical model for the spread and control of lassa fever. The six compartmental model incorporates two control parameters, the used of condom to 
control human to human transmission via sexual contact with opposite sex and the use of Rodenticide to reduce both dormant and active rat population. 

The disease free equilibrium points of the model were obtained and the analysis was carried out to determine its stability. 

 
2. THEORETICALANALYSIS 

2.1 Table1:   Model Variables 

Variable    Description 
Sh(t)       Susceptible Human Population 

Ih(t)       Infected Population 

Th(t)      Treated Human Population 

Rh(t)       Recovered Human Population 

Sv(t)       Susceptible Vector Population 

       Iv(t)       Infected Vector Population  
 

2.2    Model Parameters 

Parameter Description 
αh Natural Birth Rate of Human Population 

µh Natural Death Rate of Human Population 

ωh Rate of Loss of Immunity of Recovered Population 

γ1 Progression Rate from Susceptible Human to Infected Human Population 
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βh Contracting Rate for Susceptible Human Population as a Result of Interaction with the Infected Human Po 

βv Contracting rate for Susceptible Human Population as a Result of Interaction with Infected Vector Population 

δh Disease-Induced Death Rate of Human Population 

µv       Natural Death Rate of Vector Population 

γ2 Rate of Progression from Infected Human to Treated Human Population 

αv Birth Rate of Vector Population 

δv Disease-Induced Death Rate of Vector Population 

ωv Rate of Progression from Susceptible Vector to Induced Vector Population 

γ3 Recovery Rate of Treated Human Population 

γ4 Rate of Recovery by Natural Immunity 

β Treatment Factor 

 

2.3 Model Equation 
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Were the infection rate βv  is due to the interaction between susceptible humans and infected humans and susceptible humans and infected rodents 

and it is defined as 

βv =βhIhSh +βvIvS 

 

2.4   Derivation of the Model Equations 

The model is made up of six classes namely: susceptible human population Sh(t), infected human population Ih(t), treated human population 

Th(t), recovered human population Rh(t), susceptible vector population Sv(t) and infected human population Iv(t). 

The susceptible human population Sh(t) is generated through natural birth rate of human population αh  and it is increased by the number of 

recovered human population due to the rate of loss of immunity of recovered population at the rate ωh. This population is reduced by the 

natural death rate of human populationµh and the progression rate from susceptible to infected human population at the rate γ1. 

The infected human population Ih(t) is generated by the progression from susceptible human population to infected human population at the 

rate γ1 also it is increased by the  contact rate for susceptible human population as a result of interaction with infected vector population at the 

rate βv and is reduced by the rate of progression from infected to treated human population at the rate γ2 and disease–induced death rate of 

human population δh.It is also decreased by natural death and natural immunity at the rate µh and γ4 respectively. 

The treated human population Th (t) is generated by the rate of progression from infected to treated human population at the rate γ2 and it is 

reduced by recovery rate of treated human population at the rate ηγ3. It is further reduced by disease–induced and natural death at the rate (1-η) 

δh and µh respectively. 

The recovered human population Rh(t) is generated by the recovery rate of treated human population ηγ3 and rate of recovery by natural 

immunity γ4,but it is decreased by the rate of loss of immunity of recovered population at the rate ωh and natural death rate of human 

population at the rate µh. 

The susceptible vector population Sv(t) is generated by the birth rate of vector population αv  and reduced by the rate of progression from 

susceptible to infected vector population at the rate ωv and it is also decreased by the natural death rate of vector population µv. 

The infected vector population Iv(t) is generated by the rate of progression from susceptible to infected vector population at the rate ωv and 

decreased by the natural death rate of vector population µv. It is also reduced by the disease–induced death rate of vector population at the rate 

δv. 

Basic Properties of the Model 

Theorem 1:  The closed set 
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Proof:  

 
𝑑𝑁ℎ
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𝑑𝑁𝑣
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  respectively. Thus, a 

standard comparison theorem as in [7] can be used to show that  𝑁ℎ(𝑡)  ≤  𝑁ℎ(0)𝑒𝜇ℎ(𝑡) +  
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Further, if   𝑁ℎ(0) >
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𝜇ℎ
and  𝑁𝑣(0) >

𝛼𝑣
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,  then either the solution enters D in the finite time or  𝑁ℎ(𝑡)  approaches  
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𝜇ℎ
  and  𝑁𝑣(𝑡)  approaches  

𝛼𝑣

𝜇𝑣+ 𝛿𝑣
, and the infected variable 𝐼ℎ + 𝑇ℎ approaches 0. Hence, D is attracting, i.e all solutions in ℜ+

6  eventually enters D. Thus in D, the basic 

model equation (2.1) to (2.6) is well defined epidemiologically and mathematically according to [8]. Hence, it is sufficient to study the dynamics of 

the model equation (2.1) to (2.6) 

 

2.5    Basic Reproductive Number (R0) 

These are the number of secondary infections produced by an infection in a population that is totally susceptible. It can be measured by 

counting the number of secondary cases following the transmission of the disease into a susceptible population. Many epidemiological models 

have a disease free equilibrium (DFE) a t  which the population remains in  the absence of the disease. These models usually have athreshold 

parameter, known as the basic reproductive number R0 such that when R0 <1then the DFE is locally asymptotically stable, and the disease 

cannot invade the population, but if R0 >1,then the DFE is unstable and invasion is always possible. The basic reproductive number R0 is the 

spectral radius of the product matrix [9]FV
−1

, i.e, R0 =ρ(FV
−1

) 

The model has two infective compartments namely the Infected population Ih, and the Treated population Th. It follows that the matrices F 

and V for the new infective terms and remaining transfer terms respectively are given below: 

𝐹 =  [
𝛽ℎ𝑆ℎ

2 0
0 𝜂𝛿ℎ

]  𝑉 =  [
(𝛾2 + 𝛿ℎ +  𝜇ℎ +  𝛾4) 0

−𝛾2 (𝜂𝛾3  +  𝜇ℎ +  𝛾4 )
]    (2.7) 
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Theorem2: All the solution of the model equations ( 2.1) to (2.6) are positive for all time t ≥ 0provided that the initial conditions are 

positive. 

Proof: 

 

Under the assumption that all initial conditions are positive, i.e. 

 

Sh(0)>0,Ih(0)>0,Th(0)>0,Rh(0)>0,Sv(0)>0,Iv(0)>0. 

 

By contradictions, we have that the solution of (2.1) to (2.6) are positive if we assume for contradiction that there exists an initial time, 

t1:Sh(t1) = 0 and 

 

Sh(0)>0,Ih(0)>0,Th(0)>0,Rh(0)>0,Sv(0)>0,Iv(0)>0, 

0<t<t1 

or there exists 

 

t2:Ih(t2)=0ad 

 

Sh(0)>0,Ih(0)>0,Th(0)>0,Rh(0)>0,Sv(0)>0,Iv(0)>0, 

0<t<t2 

or there exists 

3:Th(t3)=0and 

Sh(0)>0,Ih(0)>0,Th(0)>0,Rh(0)>0,Sv(0)>0,Iv(0)>0, 

0<t<t3 

or there exists 

 t4:Rh(t4)=0and 

Sh(0)>0,Ih(0)>0,Th(0)>0,Rh(0)>0,Sv(0)>0,Iv(0)>0, 

0<t<t4 

or there exists 
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t5:Sv(t5)=0and 

Sh(0)>0,Ih(0)>0,Th(0)>0,Rh(0)>0,Sv(0)>0,Iv(0)>0, 

0<t<t5 

or there exists 

t6:Iv(t6)=0and 

Sh(0)>0,Ih(0)>0,Th(0)>0,Rh(0)>0,Sv(0)>0,Iv(0)>0, 

0<t<t6 

Now, the  case where 

 Sh(t1)=0 

We have; 

(2.10) 
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Similarly, we have 
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However, from the model equation we have that 
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Which contradicts equation (2.10) therefore, 
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The hS will remain positive for all t. Similarly, for the remaining variables, we have  
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hvh
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Hence Ih,Th,Rh,Sv,Iv remains positive for all t. By this we have shown that all the solution of the model equation are positive, provided that 

the initial conditions are positive. 

 

3   EXPERIMENTALWORK 

In this section, we discuss the results of the model and the effect of the control strategies that are being employed to control the spread of laser 

fever disease in endemic area. 

Table 1:Table of Values 

Parameters Values Source 

Δv 0.3 [1] 

Αh 0.0000215 [11] 

Αv 0.05 [5] 

Ωv 0.06 [4] 

µh 0.0000548 [11] 

µv 0.04 [4] 

γ1 0.52 [4] 

Βh 0.52 [4] 

Βv 0.00005 [11] 

Δh 0.01 [4] 

γ3,4 0.52 Assumed  
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4 RESULTS AND DISCUSSION 

Figure 1showsthatthe Susceptible human population decreases with time because of the high rate of infection. The Susceptible human 

popula t ion then move to the Infected class. 

Figure 2 shows that the Infected human population increases at the initial stage because of the migration from susceptible human class and get 

to the peak after a certain period of time.  However, the infected human population begins to drop due to the high disease-induced death, recovery 

and migration to the Treated class. 

Figure 3 shows that the Treated human population increases due to the migration from the Infected class, where the Infected class get treated. 

However, the Treated class then decreases with time due to treatment and migrate to the Recovery class 

Figure 4 shows that the Recovery human population increases due to the migration from the Treated class. Whereby the Infected population 

recovered from the infection and moves back to  the Susceptible human population 

Figure 5 shows that the Susceptible vector population decreases due to human killing them or by natural death. 

Figure 6 shows the Infected vector population decreases due to not able to infect new ones and will eventually die out or been killed by human as 

time increases.  

 
Figure 1: Graph of Susceptible Human Population against Time 

 
Figure 2:Graph of Infected Human Population against Time  

 

 

 

 

 

 
 

Figure 3:Graph of Treated Human Population against Time  

 

 

 

 

 

 

Figure 4:Graph of Recovered Human Population against Time 

 

 

 

 

 

 

 

Figure 5: Graph of Susceptible Vector Population against Time 

 
Figure 6: Graph of Infected Vector Population against Time 

 

5   CONCLUSION 

 

A mathematical model for the c o n t r o l  o f  lassa fever has been developed. The numerical simulation of the model shows that after an 

initial rise in the number of susceptible, infected, treated recovered human populations due to some certain factors, there are  significant 

reduction in the number of these classes of human population. 
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