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Abstract 
 

 
In this paper, we propose a new numerical algorithm called the decomposition variation iteration 

method (DVIM) for solving delay differential equations (DDEs). The proposed method is an elegant 

mixture of Adomian decomposition method with variation iteration method. The method is highly 

sufficient and efficient in solution of the DDEs as it has excellent rate of convergence, by-passing all 

linearization, perturbation or discretization procedures in the solution process. Two numerical 

examples (linear and nonlinear DDEs) were considered for experimentation of the method. The 

results obtained show the new method is effective, efficient and reliable for resolving DDEs. All 

computations were implemented with maple 18 software. 
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1. INTRODUTION 
The delay differential equations (DDEs) have become relevant in recent times due to its explicit evaluation in mathematical modelling in a 

variety of fields, such as, biology, chemistry, physics, engineering, etc. The solutions to these problems are what give the precise 

interpretation of the model under consideration. To this effect, researchers in recent times have devoted their time and energy seeking for 

methods to evaluate mathematical problems explicitly. Conventional analytic methods are insufficient to handle these problems as most of 

these methods would require linearization, perturbation or even discretization. Numerical methods are becoming more explicit in resolving 

these problems as an approximation of the analytic solution. Such iterative methods include Adomian decomposition method (ADM) [1-2], 

Variation iteration method (VIM) [3], Differential transform method (DTM) [4], Runge-Kutta Method [5], Spline function method [6], etc. 

The stability of the solutions to DDEs was studied by Zennaro [7]. 

As knowledge is dynamic, we present a contribution to this dynamic nature of knowledge, a new numerical algorithm called the 

Decomposition Variation Iteration Method (DVIM) for resolving DDEs. This proposed method takes an elegant mixture of Adomian 

decomposition method and variation iteration method. In this new method, the Adomian polynomials are formulated for nonlinear cases, 

which we then employ to obtain the components 0, nun  recursively. Thereafter, the correction functional is constructed for the given 

problem. The Lagrangean multiplier is then obtained optimally via variation theory [8]. We then substitute the value of the Lagrangean 

multiplier and iterate the given scheme for 0n . For a linear case, Adomian polynomials formulation is by-passed.  

The rate of convergence of the DVIM is excellent as compared with results available in the literature [1]. The method explicitly avoids 

linearization, perturbation or discretization. Also, computational and round-off errors are minimized in this method. 

 

2. The Theory of Adomian Decomposition Method 

In this section, we consider the Adomian decomposition method as presented in [1]. 

Consider the generalized ODE of the form; 

fNuRuLu =++                (1) 

with prescribed auxiliary conditions, u  is an unknown function, L  is the highest power derivative which can be easily invertible, Nu is the 

nonlinear term, R is a linear operation whose order less than L , and f  is the source term.  

Applying the inverse operator 1−L to both sides of equation (1), we have  

][][ 11 NuRuGLLuL −−= −− ,    

this implies that 

),()()( 111 NuLRuLGLu −−− −−=                    (2) 

The standard Adomian defines the solution as 




=

=
0n

nuu
,                                            (3) 

And the nonlinear term series 𝑁𝑢 is defined as 
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=

=
0n

nANu
 ,                                (4) 

where 
nA  are the Adomian polynomials (ADP) which can be determined recursively using the relation  [9-12]. 
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If we let )( 0uFNu = , then the ADP are arranged into the form  used in [9-12] as 

)( 00 uFA =  

)(' 011 uFuA =              (5) 
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The components of  ,...,,,, 4210 uuuu  are determined recursively using the relation 

)()( 11
0 RuLGLu −− −= , 

satisfying the prescribed conditions, and  

)()()( 111
1 NuLRuLGLun

−−−
+ −−=  ,                          (6) 

Where 0u  is the zero component. Hence, an n-component truncated series solution is obtained as 


=

=
n

i

in uu
0

                                                        (7) 

3 Decomposition Variation Iteration Method (DVIM) 

We can construct a correction functional for Equation (1) as follows: 

  −+++=+

x

nnnnn dssfsuNsRusLusxuxu

0

1 ,)()(~)()()()()( 
0n                    (8) 

where )(s is a general Lagrangean multiplier and 
nu~ is a restricted variable. Abbasbandy and Sivanian [13] obtained the generalized value 

of the Lagrangean multiplier via variation theory as 

)1()(
)!1(

)1(
)( −−

−

−
= m

m

xs
m

s
  ,                              (9) 

where m is the order of the derivatives appearing in the problem. 

Two cases of the DDE are considered  below. 

Case 1: If the DDE has a linear term, then the approximate solution can be obtained as 

 













−++=



=

+

x

n

nnn dssfusLusxuxu

0 0

01 ,)()()()()( 
0n  

Thus                    

 













−+−

−

−
+=



=

−
+

x

n

nn
m

m

n dssfusLuxs
m

xuxu

0 0

)1(
01 ,)()()(

)!1(

)1(
)()(

0n         (10) 

Case 2: If the DDE has a nonlinear term, then the approximate solution can be obtained as 
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where m is the order of the highest occurring derivative, 0, nun
, are the components derived recursively from the relation in Equation (6) 

and 0, nAn
, are the Adomian polynomials (ADP). 

 

4 Numerical Applications 

In this section, we implement the method on linear and nonlinear delay differential equations. To enable us the sake do comparison, we use 

the same examples in [1]. 

The error formulation for this problem is  

)()( xuxu n− , 

where )(xu  is the exact and )(xun
 is the approximate solution. 

Example 4.1 [1]: Consider the following nonlinear delay differential equation of first order: 

,10,
2

21 2 







−= x

x
u

dx

du                 (12) 

with the initial condition .0)0( =u  

The exact solution of the problem is )sin()( xxu =  
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We first have to find the components 0, nun
, recursively.  

Here, 

'uLu = , 
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2 2 x
uNu

 and 1=f . 

Thus, by Equation (2), we have   
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Hence,  

xxu =)(0
, 

−=+

x

nn Au
0

1 2
.      (13) 

Using the structure of the Adomian polynomials in Equation (5) where the nonlinear term is  
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we have the following ADP: 
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Thus, using Equation (13) we obtain the components 1, nun
 as follows 
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By the decomposition variation iteration method (DVIM), we construct a correction functional for Equation (12) as follows: 
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1)( −=s obtained using Equation (9). Since, a nonlinear term is involved in the given equation we adopt Case 2. 

Thus, 
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For 0n , we have  
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4321

362880

1
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xxxxxuuuu +−+−=====    (16) 

Using Equation (16), we obtain the approximate solution 𝑢(𝑥) as shown in Table 1.  

Table 1: The results obtained with DVIM compared with the exact solution and the ADM [1] using the partial sum of the first four 

approximations 

 

 

 

 

 

 

Example 4.2 [1]:  Consider the following linear delay differential equation of second order: 
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with the initial condition  
.0)0(',0)0( == uu  

The exact solution of the problem is 
2)( xxu = . 

We first have to find the components 0, nun
, recursively.  
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Thus, by Equation (2), we have  
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X Exact DVIM ADM DVIM Error ADM Error 

0.2 0.1986693308 0.1986693308 0.1986693309 0.0000E+00 -1E-10 

0.4 0.3894183423 0.3894183423 0.3894183422 0.0000E+00  1E-10 

0.6 0.5646424734 0.5646424735 0.5645424735 1.0000E-10  1E-09 

0.8 0.717356090 0.7173560930 0.717356093 2.1000E-09 -3E-09 
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Evaluating Equation (18) at 0=x , we have our initial approximation as  
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Thus, using Equation (19) we obtain the components 1, nun  as follows 
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By the decomposition variation iteration method (DVIM), we construct a correction functional for Equation (17) as follows: 
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with  
)()( xss −=  

obtained using Equation (9).  

Since, a linear is involved in the given equation we adopt the case 1. 

Thus, 
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For ,0=n  we have  

1210862
1

472007653631721

1038919

16001304596316

241829

566231040

1253

1105920

13
xxxxxu −++−=  (22) 

Using Equation (22), we obtain the approximate solution 𝑢(𝑥) as shown in Table 2.  

Table 2: The results obtained with DVIM compared with the exact solution and the ADM [1] using the partial sum of the first four approximations. 

 

 

 

 

 

 

 
 

5 Conclusion 

We have successively implemented the new numerical algorithm for linear and nonlinear delay differential equations (DDEs). It is evident 

from the results obtained as shown in the Tables 1 and 2, that the DVIM has an excellent rate of convergence. Hence, the method is 

efficient, effective and accurate for the numerical solution of the delay differential equations. Also, the method can be further explored for 

application in other areas of science and technology, such as in dynamic flow line analysis. 

References 
[1] Ogunfiditimi, F. O. (2015). Numerical solution of delay differential equations using Adomian decomposition method, The International 

Journal of Engineering and Science, 4(5), 18 -23. 

[2]  Mohammed, H. O. and Khlaif, A., (2014). Adomian decomposition method for solving delay differential equations of fractional order, IOSR 

Journal of Mathematics, 10(6), 01-05. 

[3]  Mohyud-Din, S. T.  and Yildirim, A. (2010). Variational iteration method for delay differential equations using He’s polynomials, Z. 

Naturforch, 65a, 1045-1048. 

[4]  Mirzaee, F.  and Latifi, L. (2011).  Numerical solution of delay differential equations by differential transform method. J. Sci. I. A. U 

(JSIAU), 20(78/2),  83-88. 

[5] Ismail, F.,  Al-Khasawneh,  A. R., Lwin, A. S. and  Suleiman, M.  (2002). Numerical treatment of delay differential equations by Runge-

Kutta method using Hermite interpolation, Mathematika, 18(2), 79-90 

[6] Kumar, D. and Kadalbajoo, M. K. (2012). Numerical treatment of singularly perturbed delay differential equations using B-spline collocation 

method on Shishkin mesh, Journal of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM)  7(3-4), 73 - 90. 

[7]  Zennaro, M. (1985). On the P-stability of one-step collocation for delay differential equations, International Series of Numerical Mathematics 

(ISNM), 74 , 334-343.  

[8] Mamadu, J. E.  and Njoseh, I. N. (2016).  On the convergences of variation iteration method for nonlinear integro-differential equations, 

Transactions of the Nigeria Association of Mathematics Physics, 2, 65-70. 

[9]  Wazwaz, A. M. (2011). Linear and nonlinear integral equations: methods and applications,  Springer, Berlin,. 

[10]  Adomian, G. (1994). Solving Frontier Problems of Physics: The Decomposition  Method, Kluwer, Boston,  

[11]  Adomian, G.  and Rach, R. (1992).  Noise terms in decomposition series solution, Comput. Math. Appl., 24  , 61–64. 

[12]  Biazer,  J. (2005). Solution of systems of integro-differential equations by Adomian decomposition method, Applied Mathematics and 

Computation, 168, 1234 – 1238. 

[13]  Abbasbandy, S.  and Shivanian, E. (2009).  Application of the variational iteration method for system of nonlinear Volterra’s integro-

differential equations, Mathematics and Computational Applications, 14(2),147-158.  
 

Transactions of the Nigerian Association of Mathematical Physics Volume 5, (September and November, 2017), 259–262 

x Exact DVIM ADM DVIM Error ADM Error 

0.0 0.0000000 0.000000 0.000000 0.0000E+00 0.0000E+00 

0.2 0.0400000 0.0400000 0.0399993 7.5000E-10 6.8408E-07 

0.4 0.1600000 0.1600000 0.1599896 4.6700E-08 1.0447E-05 

0.6 0.3600000 0.3599995 0.3599513 5.1120E-07 4.8663E-05 
0.8 0.6400000 0.6399973 0.6398650 2.7083E-06 1.3500E-04 

1.0 1.0000000 0.9999905 0.9997298 9.5249E-06 2.7020E-04 


