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Abstract 
 

 

Whenever a factorial experiment is not appropriately planned and its lay-out or 

randomization process is wrongly chosen, the analyses tend to be difficult and its 

interpretation is rendered meaningless and it becomes grossly inadequate. The 32 factorial, 

for example, is the easiest and simplest in the family of 3n, 2n    factorial experiments, 

yet if it is ill-planned with inappropriate lay-outs and randomization processes, it can be 

quite difficult to carry-out with clumsy and inexplicable results, for some research works. 

This paper purports to present valid and generalizable techniques from 3n, n = 2, 3 

factorials to higher members of the 3n family in a simplified and reusable form. At least, an 

illustration of each proposed technique is also included for the readers’ perusal and 

appreciation. 
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 [ 

1. INTRODUTION 
In a factorial experiment the effects of a number of different factors are investigated simultaneously. The treatments (T i, i = 1, 2, …, 

k) consist of all combinations that can be formed from the different factors [1, 2]. In this work, letters A, B, … shall denote factors 

whilst a, b, … will generally be for specifying levels of the corresponding factor, for the purpose of clarity; if a factor (A) has three 

levels then the symbols a0, a1, a2 will denote respectively levels 1, 2 and 3. The testing of three variations of each factor makes 

possible a more thorough evaluation of the effects of the factors. With factorial experiments of this type, the F-test of the complete 

treatments means square (m. s.) may not be adequate at all times because it is directed, as it were, at a mixture of several diverse 

questions [3]. By an extension of the analysis of variance, we can subdivide the treatments sums of squares (s. s.) into a number of 

components that are more relevant to the individual questions. Moreover, an F-test can be made on the mean square for each 

component. The rules for subdivision are given in [2]. But for the purpose of this work, the subdivision into single components is 

explained thus: 

Subdivision into single components: Let us first consider the simplest case in which all the treatments have the same number of 

replications. If we denote a treatment total as Ti, i = 1,2,…,n, where n is the number of treatments altogether. Then  
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are some of the quantities (linear functions of the Ti’s) that we are interested in. Since the quantities are comparisons amongst the 

Ti’s, the sum of their coefficient is necessarily equal to zero. Consequently, for any comparison (linear function);  
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will be the component of the sum of squares 

for treatments and will represent 1degree of freedom (d.f.) in the appropriate Analysis of Variance (ANOVA) table. 

2.  Any pair of comparisons, 1z and 2z  are orthogonal if 
11 21 12 22 1 2... 0n n     + + + = .   

3. If 1z and 2z are orthogonal then 
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4. If 
1z ,

2z , …, 
1kz −

 are mutually orthogonal, then  
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              (3). 

The table below shows the single components most frequently used for interpretative purposes when there are three treatments. It is 

assumed that all treatments have the same number of replicates. The divisor D are those required for inserting the square of z in the 

analysis of variance.  

Table 1: Sample sets of single components (Three treatments) 

i) Equally spaced increments of one ingredient 

Trt.                         Z1                          Z2 

T1                           -1                           1 

T2                           0                           -2 

T3                           1                            1 

Component           Linear                 Quadratic 

Divisor D               2r                           6r 

                                                                                                       

ii) Two qualities of an ingredient and a control 

Trt.                          Z1                      Z2 

T1  (0)                     -2                        0 

T2  (a1)                     1                       -1 

T3  (a2)                     1                        1 

         Effects               Quality 

components              of ‘a’                difference 

Divisor D                   6r                        2r 

                              

When different treatments have different numbers of replicates, then the following ‘measures’ are adopted:  

If the ith treatments has ri replicates, then the treatments s.s. becomes;   
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Also;  

i) Equation (2) becomes a comparison amongst the treatment totals Ti if; 

1 2 ... 0j j jn  + + + =  

ii) Two components z1 and z2 are orthogonal if; 
11 21 12 22 1 2... 0k k     + + + =                  

 

2. 32 Factorial Experiment   

Let the factors be denoted by N and P. Consequently, the three levels of each of them are (n0, n1, n3) and (p0, p1, p2) respectively. 

This will enable us to capture the raw data (e.g. total yields over an equal number of plots, say, m), as contained in Table 2; 

Table 2: The table of total yields (over m plots each) captured from a 32 Factorial Experiment. 

 n0 n1 n2 Row Total (rt) 

p0 A  

n0p0 
C   

n1p0 

B  

n2p0 

r0t 

p1 B   

n0p1 

A  

n1p1 

C  

n2p1 

r1t 

p2 C  

n0p2 

B  

n1p2 
A   

n2p2 

r2t 

Column Total (ct) c0t c1t c2t Gt 

Where 
0 1 2 0 1 2( ) , 0,1,2, ( ) , 0,1,2,i i j jrt p n n n i c t n p p p j= + + = = + + =    

And gt = grand total. With respect to the latin and greek letters, they were superimposed so as to form a 3 X 3 graeco-latin square, 

this leads to another technique for calculating the sum of squares for the NP interaction (with 4 degrees of freedom). Since any 

relationship may exist between the amounts of N and P, it would be more appropriate to consider situations involving both linear 

and quadratic components of the regression [4] on the amount of dressing as the individual components of the main effects [5]. That 

is, the main effects of both N and P are, for instance, linear with the most interesting single degree of freedom from the interactions 

being that of Nl and Pl. From experience, since the interactions are calculated separately, one can easily see that it is this type of 

interaction that often approaches significance. The other three interaction components will be NlPq, NqPl and NqPq.   

Table 3: Calculation of linear and quadratic effects for the Analysis of variance 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 5, (September and November, 2017), 241–250 



243 
 

A Note on the Analysis of…          Dawodu, Apantaku, Adeogun and Asiribo     Trans. Of NAMP 

 

        Nl   Nq   Pl   Pq 

               (-1, 0, 1)                  (1, -2, 1)            (-1, 0, 1)                             (1, -2, 1) 

p0            n2p0-n0p0                 n0p0-2n1p0+n2p0             n0                  n0p2-n0p0                            n0p0-2n0p1+n0p2 

p1                 n2p1-n0p1                 n0p1-2n1p1+ n2p1       n1            n1p2-n1p0                           n1p0-2n1p1+n1p2 

p2           n2p2-n0p2                 n0p2-2n1p2+ n2p2       n2            n2p2-n2p0                           n2p0-2n2p1+n2p2 

Sum      Nl(p0+p1+p2)            Nq(p0+p1+p2)            Sum        Pl(n0+n1+n2)                     Pq(n0+n1+n2) 

Pl               Nl(p2-p0)                   Nq(p2-p0)                   Nl                 Pl(n2-n0)                            Pq(n2-n0)        

Pq               Nl(p0-2p1+p2)           Nq(p0-2p1+p0)           Nq                 Pl(n0-2n1+n2)                    Pq(n0-2n1+n2) 

 

Note that the four components in rows 5 and 6 of columns Nl and Nq are usually the transpose of contents of columns Pl and Pq 

(same rows), hence all the values can be obtained from the first pair of columns (i.e. Nl and Nq). 

The squares of the pertinent quantities, in table 3 with their appropriate divisors, will give an analysis of variance of the 8 degrees of 

freedom (d.f.) among the treatment totals into 8 single components. Recall that the entries in table 1 are individual totals over m 

plots, as such, the divisors are as shown in table 4 below: 

Table 4: Containing the divisors for the main effects (linear) and interactions in the analysis of variance. 

 Nl or Pl Nq or Pq Nl Pl Nl Pq Nq Pl Nq Pq 

Divisor  6m 18m 4m 12m 12m 36m 

 

For instance, the divisor for NqPq may be worked out as follows. The three Nq figures in table 2 each have divisor, m*(12 + (-2)2 

+12) = 6m. Since NqPq is a linear function of these three figures, with coefficients 1, -2 and 1, as before, this total will have the 

divisor, 6m*(12 + (-2)2 +12) = 36m. The analysis of variance will be as shown in table 5 below: 

Table 5: The analysis of variance (ANOVA) of the experiment 

 d.f. Sum (or mean) of squares  

Nl  1 (Nl(p0+p1+p2))
2 /6m 

Nq 1 (Nq(p0+p1+p2))
2 /18m 

Pl 1 (Pl(n0+n1+n2) )
2 /6m 

Pq 1 (Pq(n0+n1+n2))
2 /18m 

Nl 

Pl 

1 (Nl(p2-p0))
2 / 4m 

Nl 

Pq 

1 (Nl(p0-2p1+p2))
2 /12m 

Nq 

Pl 

1 (Pl(n0-2n1+n2))
2 / 12m 

Nq 

Pq 

1 (Pq(n0-2n1+n2))
2 / 36m 

 

In table 1, the Greek and Latin letters were superimposed so as to form a (3 x 3) graeco-latin square. This square leads to another 

method of calculating the sum of squares for the interactions (4 d.f.). Although the method is not likely to be used for the purpose of 

interpretation, it has formed the basis of some devices in the construction of designs. In the square, the column totals represent the 

main effects of N and the row totals are those of P. In practice, the Latin letter totals are usually orthogonal to rows and columns 

and hence it is reasonable to suppose that they represent two of the four components of the NP interaction. Analogously, the Greek 

letter totals provide the remaining two components. The totals are as contained in the following table: 

Table 6: Illustrating the Greek and Latin sub-totals and grand-totals: 

A B C Total           Total 

SA SB SC SABC  S
  S

  S
  S

  

Where SA = n0p0 + n1p1 + n2p2, 
0 0 2 1 1 2S n p n p n p = + + , 

           SB = n2p0 + n0p1 + n1p2, 
1 0 0 1 2 2S n p n p n p = + + , 

           SC = n1p0 + n2p1 + n0p2, 
2 0 1 1 0 2S n p n p n p = + + and (SABC = SA + SB + SC, S S S S   = + + ). 

Each quantity is by now a total of  3*12 = 36 plots. The sums of squares of deviations are obtained, individually, the usual way. For 

instance, the sum of squares of deviations of the Latin letter totals is 
( )

2

, ,

1

36
L i

A B C

S S S= −
. Similarly, the sum of squares of deviations 

of the Latin letter totals is 
( )

2

, ,

1

36
G jS S S

  

 = −
, where S and S   are the respective, means from the Latin and Greek sub-totals. 

The total sums of squares of deviations ( )L GS S+  will be the same as the aggregate sum of squares for the interactions in table 5.       

 

2.1 When the three factors have varying levels  

By assuming that we have three factors; A, B, C, with each one having the respective levels; a, b, c, then the main effects will have; 

( )1a − , ( )1b− and ( )1c −  degrees of freedom (or components) respectively.       
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2.2 Confounding in 3n Factorial Experiments 

By starting with the “least” member of the family (32), let us examine what confounding a 32 factorial will entail [6, 7].  

2.2.1 Confounding of a 32 Factorial 

By letting the symbol ij denote the treatment combination that has the ith level of factor A and the jth level of B (with , 1,2,3i j = ) 

and keeping the main effects away from the block effects, thus confounding only the AB interaction, the size of the incomplete 

block will be 3 units.  

Section 2.0 shows that the main effects of A and B both have two components whilst the interaction, AB has four. Besides, the main 

effects and the interaction can be divided into single components in many ways and the division that is most appropriate for the 

interpretation of the results varies from experiment to experiment. This implies that the particular component of the interaction 

which we should desire to confound will change from one case to the other. Confounding is more restricted in the 3n series than the 

2n equivalent because it is based on the properties of the 3 x 3 graeco-latin square. For instance if 9 treatment combinations are set 

out as in the table 7 (below) where a 3 x 3 square is superimposed, then by the usual notations, one can denote the latin letters in the 

square by Ij, j = 1, 2, 3 respectively and the greek letters by Ji, i = 1, 2, 3 respectively.    

 Table 7: Using a 3 x 3 graeco-latin square to obtain an AB interaction 

 b0 b1 b2 

a0 (00)I1J1 (01)I3J2 (02)I2J3 

a1 (10)I2J2 (11)I1J3 (12)I3J1 

a2 (20)I3J2 (21)I2J1 (22)I1J2 

 

Further, from table 7, it is clear that comparisons among the row totals of the square give the two components of the main effect A, 

while the comparisons among the column totals give the main effect of B. Let us now consider the I totals:  

1 2 3(00) (11) (22); (10) (21) (02); (20) (01) (12)I I I= + + = + + = + + . 

With latin square, it is customary the comparisons among these totals be orthogonal to both rows and columns: that is, to the main 

effects of A and B. Consequently, the comparisons among the I totals must represent two of the four components of the AB 

interaction. An equivalent argument shows that the two remaining components of AB are obtained from the comparisons among the 

J totals, where 

1 2 3(00) (21) (12); (10) (01) (22); (20) (11) (02)J J J= + + = + + = + + . 

The application of this result to confounding is shown in table 7. 

Table 8:  A 3 x 3 experiment with AB partially confounded 

             Plan (a)                                                             Plan (b) 

     Incomplete blocks                                           Incomplete blocks  

(i)      (ii)      (iii)                                              (i)     (ii)     (iii) 

(00)   (10)    (20)                                            (00)   (10)    (20)  

       (11)    (21)    (01)                                            (21)   (01)    (11) 

       (22)    (02)    (12)                                            (12)   (22)    (02) 

       1I       2I      3I                                                1J     2J      3J   

I  components confounded                           J  components confounded 

 

In plan (a) the I components of AB are completely confounded with incomplete blocks, since the block totals have been made the 

same as the I totals. Here, the main effects and the J components of AB are not confounded. However, in plan (b), the J components 

of AB are completely confounded. The experimenter’s choice for confounding between I and J is purely based on convenience since 

neither the I components nor its J equivalents are easy to interpret. This principle of construction can be utilized for higher factorial 

designs (in the 3n series).                                                                                                                                                                                                      

 

2.2.2 Confounding of a 33 Factorial 

By continuing with the same symbols, such that (ijk), denotes the treatment combination
i j ka b c , there will be 27 treatment 

combinations altogether, the possible sizes of incomplete block will be of 3 and 9 units. Considering the plan for blocks of 9 units, 

only ABC need be confounded.  Recall how we handled the 32 factorial by dividing the 9 treatments combinations into groups of 

three (i.e. the I and J groups), such that comparison among the group totals gave the components of AB. We now extend the 

principle, such that, the 27 treatment combinations for our 33 factorial will be divided into groups of 9, in such a way that, 

comparison amongst their group totals will give the components of ABC. Each set of three groups will contribute two components 

of ABC. Now ABC has eight components in all, hence there will be four of such sets. The AB interaction can be calculated 

separately for each level of C. As in the 32 case, we will obtain the AB interaction from it’s I and J components. Table 9 (below) 

shows the I components for each level of C. 
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Table 9: The I components of AB shown for each level of C. 

 C0 C1 C2 

1

2

3

I

I

I

  
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

000 110 220

100 210 020

200 010 120

+ +

+ +

+ +

  
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

001 111 221

101 211 021

201 011 121

+ +

+ +

+ +

  
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

002 112 222

102 212 022

202 012 122

+ +

+ +

+ +

  

Table 9 may also be observed as a 3 x 3 table in which each entry is the total of three treatment combinations. The row totals of the 

table give the I components of AB, while the column totals give the main effect of C. Further, we may take I and J totals from this 

table just as in table 7. These totals will be labelled ( ) ( )1 1,I I I J− −  etc. because they come from the I components of AB. Hence; 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

2

3

: 000 110 (220) 101 211 021 202 012 122

: 100 210 (020) 201 011 121 002 112 222

: 200 010 (120) 001 111 221 102 212 022

I I

I I

I I

− + + + + + + + +

− + + + + + + + +

− + + + + + + + +

  

Using the analogous argument to the 32 case, the comparisons among these totals of 9 treatment combinations must represent two of 

the components of the interaction of AB with C; that is, of the ABC interaction. Consequently, if we put all treatment combinations 

in ( )1I I−  into the first block, those of ( )2I I− into the second and those in ( )3I I− into the third, we obtain a plan which 

completely confounds two of the eight components of ABC and leaves all other factorial effects unconfounded. The second set of 

three groups of 9 treatments combinations is obtained by taking the J totals from table 9: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

2

3

: 000 110 (220) 201 011 121 102 212 022

: 100 210 (020) 001 111 221 202 012 122

: 200 010 (120) 101 211 021 002 112 222

I J

I J

I J

− + + + + + + + +

− + + + + + + + +

− + + + + + + + +

 

The remaining sets are obtained by forming a 3 x 3 table similar to table 9 for the J components of AB at each level of C.  

          

3. Applications to the 3n, n = 2, 3 Factorial Experiments 

All other pertinent concepts will be fully illustrated in the following. Each of the two illustrations, one for each factorial experiment, 

is geared towards the provision of a detailed explanation on how the afore-stated theory is actually applied on the respective cases. 

 

a. The 32 Factorial case 

In the following, table 10, are the treatment totals for an experiment with 3 levels of Nitrogen fertilizer (N) and 3 of Phosphate 

fertilizer (P). The table contains data on the number of lettuce plant that emerged from the ground which are totals over m = 12 plots 

each. Both N and P appear to have a deleterious effect on emergence (the subscript 2 denotes the largest application). The main 

effects of N and P both comprise of two independent comparisons and thus have 2 degrees of freedom each. Since the amounts of N 

and P are somewhat in arithmetic progression, it would probably be appropriate to choose both the linear (N l, Pl) and quadratic (Nq, 

Pq) components of the regression on amount of dressing as the individual components of the main effects. 

Table 10: The number of lettuce plants emerging (over m=12 plots each). 

 n0 n1 n2 Row Total (rt) 

p0 A   

449 

C    

413 

B   

326 

1188 

p1 B    

409 

A   

358 

C   

291 

1058 

p2 C   

341 

B   

278 

A    

312 

931 

Column Total (ct) 1199 1049 929 3177 

The initial computation will appear in the following table (Table 11). 

Table 11: Calculation of linear and quadratic effects for the Analysis of variance 

        Nl   Nq   Pl   Pq 

                (-1, 0, 1)                  (1, -2, 1)            (-1, 0, 1)                             (1, -2, 1) 

p0             -123                                 -51                      n0                        -108                                    -28 

p1                    -118                                -16                  n1                -135                                  -25  

p2              -29                                +97                  n2                -14                                   +56 

Sum       -270 (Nl)                     +30 (Nq)              Sum           -257 (Pl)                           +3 (Pq) 

Pl                +94 (Nl)                       +148 (Nq)             Nl                    +94 (NlPl)                        +84 (PqNq)        

Pq                +84 (NlPq)                  +78 (NqPq)            Nq                   +148 (PlNq)                      +78 (PqNq) 
   
The left side of table 11 shows the Nl and Nq effects for each level of P, while the right side shows the Pl and Pq effects for each 

level of N. The column sums give the individual components of N and P main effects. For instance by considering the difference 

between the third and the first rows, for the Nl column, it is +94 and hence equals the linear effect of P on N (i.e. NlPl interaction). 

From the Pl column, the difference gives the linear effect of N on Pl, or the PlNl interaction, which is exactly the same as the NlPl 

interaction.  
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The other two columns provide the NqPl and the NlPq effects. The sum of the first and third rows minus twice the second row leads 

to the components of interaction that contain a quadratic term. It is easy to see that all four components can be obtained from either 

left or the right half of table 11, hence, in practice only one half is required. We have just used the computation of both halves to 

establish the existing symmetry amongst the components with respect to N and P. The square of these quantities, with appropriate 

divisors will give an analysis of variance of the 8 degrees of freedom amongst the treatment totals into 8 single components.  Since 

an entry in the data (table 10) is the total over 12 plots, the divisors may be verified to be as shown in table 12. 

Table 12: Containing the divisors for the main effects (linear) and interactions in the analysis of variance. 

 Nl or Pl Nq or Pq Nl Pl Nl Pq Nq Pl Nq Pq 

Divisor  72 216 48 144 144 432 
          

Consequently, the analysis of variance is as shown in table 13 below: 

Table 13: The analysis of variance for the subdivisions of the treatment sum of squares 

                                                                     Degree of freedom             sum of squares (or mean of squares) 

     Nl                                                                     1                                           1012.50          

     Nq                                                                     1                                              4.17 

     Pl                                                                      1                                            917.35          

     Pq                                                                      1                                              0.04 

     NlPl                                                                   1                                           184.08          

     NlPq                                                                  1                                              49.00 

     NqPl                                                                  1                                            152.11          

     NqPq                                                                  1                                              14.08 

With an error mean of squares of about 59, the linear effects of both fertilizers are significant with no indication of curvature. The 

NlPl is significant at 10% level but not at the 5% level.   

 

b. The case 33 Factorial Confounded in Blocks of 9 units 

This is best illustrated with the following experiment. In this experiment, we are required to test the effects of three levels of 

nitrogen, three of phosphorus and three of potash on the germination of lettuce seedlings. The seeds were thoroughly mixed and 

divided into 108 samples, each of about 60 seeds. Each sample was planted in a copper box; 6 inches square and 1.5 inches deep 

containing a mixture of soil and sand. The boxes were placed in a germinator at a temperature of about 320C. After one week, the 

produce was classified as normal, abnormal, hard or dead. A summary of the numbers of normal lettuce plant is given in tables 13, 

14 and 15 below. There were four replications altogether, each placed on a different shelf in the germinator. On a shelf the boxes 

were placed in three columns (A, B and C) of nine boxes each, each column being an incomplete block. It should be noted that the 

three fertilizers had a deleterious effect on emergence.    

 

Table 14: Showing the summary of the numbers (Treatment totals) of normal lettuce plants in their respective categories. 

  n0   n1   n3  

 p0 p1 p2 p0 p1 p2 p0 p1 p2 

k0 171(000) 160(010) 131(020) 174(100) 118(110) 89(120) 101(200) 102(210) 92(220) 

k1 160(001) 130(011) 99(021) 82(101) 123(111) 108(121) 120(201) 86(211) 127(221) 

k2 118(002) 119(012) 111(022) 157(102) 117(112) 81(122) 96(202) 103(212) 93(222) 

 

Table 15: The two-way equivalent of the data in table 14 above 

 n0 n1 n2 Total 

p0 449 413 326 1188 

p1 409 358 291 1058 

p2 341 278 312 931 

k0 462 381 295 1138 

k1 389 313 342 1044 

k2 348 355 292 995 

 1199 1049 929 3177 

     

 p0 p1 p3 Total 

k0 446 380 312 1138 

k1 371 339 334 1044 

k2 371 339 285 995 

 1188 1058 931 3177 
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Table 16: The NPK components of the data in table 13 above 

 1A 1B 1C Total 

From treatment totals 944 1102 1131 3177 

From replicate 1 171 354 394 919 

Difference 773 748 737 2258 

 2A 2B 2C Total 

From treatment totals 1119 1113 945 3177 

From replicate 2 308 251 134 693 

Difference 811 862 811 2484 

 3A 3B 3C Total 

From treatment totals 1025 1073 1079 3177 

From replicate 3 197 232 233 662 

Difference 828 841 846 2515 

 4A 4B 4C Total 

From treatment totals 1104 991 1082 3177 

From replicate 4 302 290 311 903 

Difference 802 701 771 2274 

 

The algorithm for the computation goes thus: 

Step 1: Form the block and replicate totals and the grand total and also the totals for each treatment combinations and the three 

two-way tables 14, 15 and 16. 

Step 2: These data enable us to calculate the total sum of squares and the sum of squares for replication, blocks within replications 

and for the N, P, K, NP, NK and PK factorial effects. All are obtained in the usual manner and are entered in the preliminary 

analysis of variance (i.e. table 18). 

Step 3: There remains the calculation of the contribution from the NPK interactions. Before doing this, it may be remarked that 

sometimes, from the nature of the factors or from previous experience [7], there is good reason to believe that the three-factor 

interactions will be negligible. In this case the researcher may decide to pool the sum of squares for NPK with the error sum of 

squares without bordering to compute the sum of squares for NPK.. The pooled error will have 78 degree of freedom and would be 

obtained by subtracting the sum of squares obtained in step 2 from the total sum of squares. However, a note of caution has to be 

sited here because, if three-factor interactions are present the researcher may not detect them and consequently his estimate of error 

will be inflated. When there is doubt it is better to isolate NPK.       

Step 4: In an experiment of this type, where each factor has equally spaced levels of an ingredient, it is usually advisable to 

examine the linear and quadratic components of the response curves. The contributions to the sum of squares of treatments are 

displayed in the lower section of table 17. All three fertilizers show significant linear responses, with no indication of any departure 

from linearity.  

 

Table 18: Showing the analysis of variance for our 3 x 3 x 3 factorial 

   Degree of freedom sum of squares mean of squares 

Replications   3  2,041.88   

Blocks within replications                   8             5,008.15  626.02 

N    2  1,016.67  508.34** 

P    2  917.39  458.70** 

K     2  293.39  146.70 

NP    4  399.27  99.82 

NK    4  589.61  147.40 

PK    4  212.89  53.22 

NPK: confounded in replications 

1    2  25.21  12.60 

2    2  64.22  32.11 

3    2  6.39  3.29 

4    2  198.30  99.15 

Error    70  4,146.88  59.24 

Total    107  14,920.25  

 

       Subdivision of part of the treatments sum of squares 

N: L   1  1,012.50  1,012.50** 

 Q   1  4.17  4.17 

P: L   1  917.35  917.35** 

 Q   1  0.04  0.04 
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K: L   1  284.01  284.01** 

 Q   1  9.37  9.37 

NP: L X L   1  184.08  184.08 

 Rest   3  215.19  71.73 

NK: L X L   1  256.69  256.69** 

 Rest   3  332.92  110.97 

NPK: L X L X L  1  59.12  59.12 

 

Step 5: This concerns the representation of the results. Usually it will be sufficient to show the three two-way tables of means, 

which are derivable from the two-way tables of totals (table 15) on division by 12. Since all main effects and two factor interactions 

are not confounded, standard errors and t-tests for the 3 X 3 tables are obtained just as in a randomized blocks design. The principal 

results are that each fertilizer has produced a significant decrease in the numbers of seedlings that emerged, the decrease being 

adequately proportional to the amount of dressing. The significant NLKL interaction represents the fact that the decrease in 

emergence from n0 to n2 was smaller at the k2 level than at the k0 level. There is an indication of a similar effect with N and P, 

though this is not significant.       
 

4.0 Discussion and Conclusion 

With respect to the 32 factorial experiments, using the data in table 10, table 6, after being fed with the appropriate quantities, gives 

table 19, in which the actual values of the respective totals are displayed for easy calculation of the sums of squares of the 

deviations for both the latin and greek letters. These add to 399.28, which is the same as the total sum of squares for the interactions 

in table 13, apart from rounding up differences. 

Table 19: Illustrating the actual Greek and Latin sub-totals and grand-totals: 

A B C Total           Total 

1119 1013 1045 3177  1018 1134 1025 3177 

  

Furthermore, 32 factorial experiments can be very complex; such is usually the case when they result from a long-term experiment. 

The confounding on this category of experiments further adds to its complexity, the researcher really needs to see to it that there are 

no mix-ups throughout the conduct of the experiment and the collation of the raw data [1]. The collation of the raw data of a 3n 

factorial experiment can be very tedious [10]; to illustrate with our 33 factorial example, after confounding the ABC with nine units 

per block, the raw data actually looked like the contents of tables 19 through 22, it was through summarizing that tables 14 through 

16 were obtained. 
 

Table 20: Showing the data entries (number of lettuce plants emerging), in our 33 factorial example (rep. I) 
 

REPLICATE I 

Blocks   A    B    C      Total 

  npk No.   npk No.   npk No.  

  012 11   201 42   111 46 

  122 11   121 20   102 48 

  220 13   210 24   221 58 

  202 12   011 38   001 53 

  101 11   112 39   010 54 

  021 30   100 61   212 37 

  000 41   002 40   022 41 

  110 21   222 46   120 25 

  211 21   020 44   200 32 

 Total   171    354    394 919 

 

Table 21: Showing the data entries (number of lettuce plants emerging), in our 33 factorial example (rep. II) 

REPLICATE II 

Blocks   A    B    C      Total 

  npk No.   npk No.   npk No.  

  121 39   100 32   010 26 

  220 34   012 37   120 16 

  102 31   210 37   200 06 

  201 34   221 33   021 13 

  000 40   202 27   211 12 

  022 31   020 21   222 12 

  212 26   111 12   002 16 

  011 35   001 30   112 19 

  110 38   122 22   101 14 

 Total   308    251    134 693 
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Table 22: Showing the data entries (number of lettuce plants emerging), in our 33 factorial example (rep. III) 
 

REPLICATE III 

Blocks   A    B    C      Total 

  npk No.   npk No.   npk No.  

  101 26   020 19   220 19 

  210 17   211 25   122 19 

  221 21   121 18   100 42 

  000 38   110 27   201 11 

  112 22   222 20   010 36 

  011 19   001 60   111 37 

  120 18   012 30   002 29 

  202 22   102 28   021 27 

  022 14   200 25   212 13 

 Total   197    232    233     662 
 

Table 23: Showing the data entries (number of lettuce plants emerging), in our 33 factorial example (rep. IV) 

REPLICATE IV 

Blocks   A    B    C      Total 

  npk No.   npk No.   npk No.  

  112 37   020 47   222 15 

  121 31   002 33   201 42 

  010 44   221 15   012 41 

  022 25   122 29   210 24 

  100 39   011 38   000 54 

  211 28   212 27   111 28 

  202 35   200 38   120 30 

  001 37   101 31   102 50 

  220 26   110 32   021 29 

 Total   302    290    311 903 

         Grand total 3177 

 Consider the two components of NPK that are confounded in replication I. The contribution of these components to the sum of 

squares for NPK must be calculated from the remaining 3 replicates, in which they are not confounded with blocks. The totals 

needed are shown in table 15. From the treatment totals, compute the total (i.e. 944) of the 9 treatment combinations that appear in 

block 1A. That is; 
1 012 122 220 202 101 021 000 110 211

119 81 92 96 82 99 171 118 86 944

Block A = + + + + + + + +

= + + + + + + + + =

     

In the same way 1102 and 1131 are obtained for the totals over all treatments that appear in blocks 1B and 1C respectively. Under 

these three figures (i.e. 944, 1102 and 1131) are placed the respective totals for blocks 1A, 1B and 1C. Through subtraction we 

obtain the totals 773, 748 and 737 (the totals of the groups of treatment combinations taken over replications 2, 3 and 4). The sum of 

squares of deviations of these quantities from their mean is divided by 27, since each figure contains 27 observations. The result 

25.21 is the contribution of the two components of NPK to the sum of square for NPK. The remaining six components are found 

similarly from replications 2, 3 and 4. All eight components could be computed in one step as: 

( ) ( ) ( ) ( )  ( ) ( ) 2 2 2 2 2 21 1
773 748 ... 701 771 2258 ... 2274

27 81
+ + + + − + +

  

The Error sum of squares, with 70 degrees of freedom is obtained through subtraction. 

With respect to the two-factor interactions, the “linear by linear” components have been isolated for NP and NK, section 3.1 contain 

the details for the method. In the case of PK, it was not worthwhile because the total sum of squares for PK (i.e. 212.89) is not large 

enough to allow any single component to be significant. The linear by linear component is significant for NK but not for NP.  

Whenever the linear by linear components of the two-factor interactions are large, it usually becomes desirable that the linear by 

linear by linear (L X L X L) for the three-factor interaction be isolated from it.  

Finally, the individual 27 treatment totals or means cannot be used as they are for interpretative purposes because they each contain 

some quantity of block effect. A table of these totals or means will not be necessary except if the three-factor is under study. 

However, to obtain such a table, we could adjust each total so as to remove the inherent block effects. Each block effect is first 

estimated. Here, we do not use the observed block mean because that also contains treatment effects. Hence, the least square 

estimate of any block effect is; 

( ) ( ) 
1

4
27

block total total of treatments appearing in the block−
  

The required data for this computation is contained in Table 15. Thus, for block 1A, the estimated effect is 
( ) ( )

1
4 171 944 9.6

27
− = −  

. 

The block effects are given in Table 24. 
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Table 24: Showing all the block effects 

Block  

Replication   A  B  C 

 1   -9.6  11.6  16.5 

 2   4.2  -4.0  -15.1 

 3   -8.8  -5.4  -5.4 

 4   3.9  6.3  6.0 
 

In order to adjust any treatment total, we note the four blocks in which it features and compute the sum of the effects for these four 

blocks. This quantity is subtracted from the unadjusted total to give the adjusted total. For the purpose of illustration, consider 

n1p1k0, which appears in blocks 1A, 2A, 3B and 4B, the adjusted total for it is;   118 9.6 4.2 5.4 6.3 122.5− − + − + = . In order to 

obtain the adjusted mean we usually divide this quantity by 4 (i.e. 122.5
30.63

4
=

). 
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