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Abstract 
 

 

In this study, combination synchronization of two drive and one response oscillator(s) as 

well as one drive to two response oscillator(s) via cyclic coupling are reported. The 

influence of the coupling strength on cyclic coupling of combined oscillators of Van der 

Pol oscillator as a case study was examined using linear feedback technique. Depending 

on the choice of coupling strength, a rich variety of synchronized regime is observed. We 

also study the analytical and numerical simulation to confirm the effectiveness of the 

scheme.  An optimal value of critical coupling from experimental simulation of three 

oscillators which has better advantage over two oscillators. Finally, this type of 

synchronization can improve the security of communication by spliting or combined the 

transmitted signals from drive oscillator(s) or received signal(s) from response 

oscillator(s), respectively. 
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1. INTRODUTION 
 

The concept of cyclic coupling involves two coupling strength in reverse directions when maximum control of synchrony is feasible 

[1]. The scheme established a mutual interaction between oscillator(s) when a signal is sent to another oscillator(s) via one pair of 

state variables and simultaneously receives a feedback via different state variables [1]. In synchrony of chaotic oscillators, the main 

task is to determine the critical coupling which depends on the type of coupling and the topology used [2- 4]. The numerical studies 

of one to one oscillator using linear stability analysis and the analytical solutions using master stability function (MSF) to determine 

the critical coupling for stable synchronization under cyclic coupling as well as diffusive coupling for different chaotic oscillators 

have been studied and compared [1]. In practice, oscillators are not actually coupled directly but synchrony can only occur due to 

interaction between the systems particles and the common medium. This is similar to the interaction between self-pulsating periodic 

and chaotic oscillations by controlling field cavity detuning and an ensemble of cold atoms interacting with coherent 

electromagnetic field [5]. However, a cyclic bidirectional interaction may occur in a natural situation such as neuronal interaction in 

the brain in which the signal sends to one neuron may fail until a feedback from another neuron is received via pair of dendrites [6]. 

Another example of mutual interaction that may occur during cyclic coupling is like pulling-by-hand by one individual while the 

other pushing-by-leg which eventually results in cyclic motion [1]. In other to provide rigid and secure information, combination or 

addition of two or more oscillators needs to be designed before coupling. The numerical simulation of two masters to one slave has 

been studied for active backstepping [7, 8] while the finite-time synchronization application to secure communication of three 

chaotic oscillators has equally been reported by Luo and Wang [9]. Recently, on cyclic coupling, the enhancement in synchrony for 

different identical oscillators has been investigated by Olusola et. al.[10]. The transition from homogenous to inhomogenous steady 

state of two van der Pol oscillators as limit cycle and two sprott oscillators as chaotic systems has been reported for both diffusive 

and cyclic coupling [11].  And recently, experimental evidence of chaos synchronization via cyclic coupling between Sprott and 

Rossler oscillators was reported for an improved synchrony [12]. To the best of the authors’ knowledge, cyclic coupling of three 

oscillators via  linear feedback scheme has not been studied. Motivated by the reports so far, coupling of three analog van der Pol –

Duffing circuits with cubic function nonlinearity via diffusive and negative feedback scheme are investigated and reported in this 

paper as paradigmatic illustration. The rest of the paper is organized as follows. In section 2, combination synchronization scheme 

and cyclic coupling are discussed. Experimental implementation is studied in section 3, while section 4 concluded the paper. 
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2.0  Models and Coupling Scheme 

2.1  Combination synchronization Scheme 

The combination arrangement for one or two drive Cubic-van der Pol oscillator(s) as a case study, synchronized to two or one 

response oscillator(s) respectively are designed in this work. One drive ( x ) to two responses ( y  and z ) oscillators via negative 

feedback coupling is given as follows: 

)(xfx x= ,                                                                                                                            

))(()( zyxkyfy y +−+= ,                                                   (1.1)                                                       

))(()( zyxkzfz z +−+= , 

Similarly, for two drives ( y  and z ) to one response ( x ) systems, the equations can be described as follows: 

zyxkxfx x −++= )(()( , 

)(yfy y= ,                                                                          (1.2) 

)(zfz z= , 

For diffusive coupling, one drive ( x ) to two responses ( y and z ) systems, the equations can be described as follows: 

))(()( xzykxfx x −++=
 
,
 

))(()( zyxkyfy y +−+= ,                                              (1.3) 

))(()( zyxkzfz z +−+= , 

Similarly, for two drives ( y and z ) to one response ( x ) systems, the equations can be described as follows: 

))(()( xzykxfx x −++= , 

))(()( zyxkyfy y +−+= ,                                             (1.4)                                                                                          

))(()( zyxkzfz z +−+= , 

where ),( 21 xxx = , ),( 21 yyy =  and ),( 21 zzz =  are the state vectors of systems while, xf , 
yf , zf  : nn RR →  are three 

vector functions  with controller or coupling parameter k  which will be designed respectively. 

Definition 1: If there exist three scaling matrices A, B, C  nR  and C  0 such that 0lim =−+
→

CzByAx
t

, then the problem is 

combination synchronization. The drive-response systems (1.1) to (1.4) are realized via negative feedback and diffusive coupling 

respectively, where .  denotes the matrix norm. 

Remark 1: Definition 1 shows that the combination of the drive – response systems can be extended to three or more chaotic 

systems whether identical or different. The constant matrix A, B and C are called scaling matrices and further extended to the 

functional matrices of state variables Ax , Ay and Az . Where ),( 21 AAA xxx ,  ),( 21 AAA yyz  and  ),( 21 AAA zzz  are the state vectors 

of systems (1.1) to (1.4), respectively. 

Remark 2: If BA = , then the combination synchronization will be turned into a chaos control problem.
 

 

The non-identical cubic function oscillators via negative feedback coupling which involves one drive to two responses systems in 

Eqns. (1.1) to (1.2), respectively, are given as follows: 
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[ 

While two drives ( y  and z ) to one response ( x ) systems for negative feedback as stated in Eqns. (1.3) to (1.4), respectively, are 

given as follows: 
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Similarly for diffusive coupling, one drive ( x ) to two slaves ( y  and z ) systems is described as follows: 
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While two drives (with state variables y  and z ) to one response ( x ) systems are given as follows: 
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where 03,2,1  ,   and   are constant parameters, 
3,2,1 and 

3,2,1f are angular frequencies and amplitudes respectively. State 

vectors 
2,1x , 

2,1y  and 
2,1z  represent the circuitry voltages of the oscillators. 
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Figure 1: Phase portrait (a) and Poincare map (b) for cubic-van der Pol oscillator and        ( vi − ) characteristics (c) with constant 

parameters: 25.1= ,  8.0= , 05.1= , 0.4=f  and 55.0=  

Numerical solutions of Eqns. (1.5) to (1.8) were obtained using the Fourth- order Runge-Kutta routine with time step-size 02.0 , 

and fixing the parameter values as in Figure 1 . In Figure 2(a-b), we display the non-synchronous results for one drive to two 

response negatively feeedback coupled van der Pol oscillators ( 1x ) vs  ( 11 zy + ) and two drive to one negatively feedback 

coupled van der Pol oscillators ( 11 zy + ) vs  ( 1x ) when coupling constant k  is 0 (which implies no coupling effect on the 

coupled systems) and 10 , respectively. Similarly, Figure 3 (a-b) also display the results when the oscillators are diffusively 

coupled. In Figures 4 and 5, complete synchronization actually occurs between 58=k  and 59  respectively when the oscillators 

are negatively coupled, and error dynamics of the oscillators converges to zero which implies that the oscillators (1.5) and (1.6) 

have achieved combination synchronization. Similar trend also follows when Eqns. (1.7) and (1.8) were diffusively coupled.   

 

 
Figure 2: Phase portraits for nonsynchronous state for one ( 1x ) to two ( 11 zy + ) and two   ( 11 yx + ) to one ( 1z ) negative feedback 

coupled oscillators at coupling strength 0=k  and 10  respectively.  
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Figure 3: Phase portraits for nonsynchronous state for one ( 1x ) to two ( 11 zy + ) and two   ( 11 yx + ) to one ( 1z ) 

diffusively coupled oscillators at coupling strength 0=k  and 10  respectively.  

 

Figure 4: Complete synchronization (a) and error dynamics )]([ 111 yxzex +−= , )])[( 222 zyxey −+=  and 

22

yx eee +=  for two to one coupled oscillators when the coupling strength ( k ) is 59.19 
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Figure 5: Complete synchronization (a) and error dynamics  ])[( 111 xzyex −+= , )]([ 222 zyxey +−=  and 22

yx eee +=   for 

one to two coupled oscillators when the coupling strength is 58. 

2.2 Design of coupled Cubic-van der Pol circuit 

The experimental design of cubic-van der Pol oscillator is shown in Figure 6, where the circuit parameters are resistors 71−R , 

capacitors 21−C , AD633JN 31−U  as analog multiplier, TL084CN AAU 64 −  as operational amplifier, and operational voltage of 

positive and negative power supplies were set to V12 . Each system was designed with a cubic-nonlinear function of current-

voltage characteristics 
3)( bVaVVI +−=  as shown in Figure 1(c), where )0,( ba .  Different phase portrait of attractors 

shown in Figure 7, are generated from Figure 6 due to regulation in internal noise and circuitry parameters.  The coupled systems 

(1.5) - (1.8) are transformed into circuits A and B interconnected via linear feedback technique to circuit C.  Let 1V  and 2V  be the 

voltages across the capacitor C  involved in the cubic-van der Pol circuits A, B and C, respectively. Application of Kirchhoff's rule 

on schematic diagram of van der Pol circuit [12] when combined and coupled together yields: 
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for one master and two slaves oscillators with diffusive coupling, and 
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for one master and two slaves oscillators with negative feedback coupling. 

Similar transformation can be performed on two masters coupled to one slave with linear feedback coupling (diffusive and negative 

feedback). With the following changes to the variables and parameters:  


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 and 


fR
k =  

the electronic equations for cubic van der Pol circuit can be written in differential form as shown in Eqn. (1.5) - (1.8). 

 

Figure 6: Analog design of cubic-nonlinear Van der Pol Oscillator 
 

 

Figure 7: Phase portrait attractors 
2

V vs 
1

V for Circuit A: = kRA 2 , = 5002R  and = 5004R , Circuit B: 

= kRB 3 , = 4002R  and = 5004R and Circuit C: = kRC 2 , = 6002R  and = 5004R  

 
2.3 Cyclic coupling Scheme 

The idea of cyclic coupling in chaotic oscillators for both negative feedback and diffusive scheme involves pairs of variables 

engaged in the coupling such that there is a different possible topologies of cyclic coupling out of which some are independent 

while the other topologies are symmetric for identical oscillators.  As example, for three,  two dimensional oscillators, the state 

vectors can be denoted as 
T

xxx ][ 21= , 
Tyyy ][ 21=  and 

Tzzz ][ 21= . Table 1 indicates some dimensions with 

possible topologies. 

Table1: Systems dimensions and there cyclic topologies
 

System 

Dimensions 

Possible 

Topologies 

Independent 

Toplogies 

Symmetric 

Toplogies 

2-D 2 1 1 

3-D 6 3 3 

4-D 12 6 6 

5-D 20 10 10 

6-D 30 15 15 

Considering the topologies in Table 1, two pairs of variables for combined cubic-van der Pol oscillators as shown in Eqn. 1.1 and 

Eqn.1.2, then one possible pairing could be: for one drive to two response,  111 zyx +→ , 222 zyx +  and 111 zyx →+ , 

222 zyx +  for two drive to one response. 
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The directions of coupling in the expression above denote how the concept of cyclic coupling is achieved. Hence, introducing 

stability/coupling parameter 1k  and 2k , the stability matrix ( M ) can be written in terms of  output function of each oscillator that 

is engaged in the coupling ( H ), linear coupling Hurwitz matrix of the oscillating oscillator    ( A ) and the identity matrix ( I ) as 

given in the relation: 

                                           
jjii HkHkIAM −−+=                                      (1.9) 

The stability criteria for complete synchronization are derived from the negative real parts of the eigenvalues    of the matrix M 

according to Routh-Hurwitz stability criterion. Here,  ik  and   are real valued and non-negative.  

 

3.0 Experimental Implementation 

In this paper, our focus is basically on experimental synchronization of combination arrangement of cubic-van der Pol circuits via 

negative feedback and diffusive coupling. We also investigate the influence of coupling strength on cyclic coupling of the 

oscillators. The set-up involves one drive coupling with two response circuits as well as two drives and one response circuits for 

possibility of synchrony. In Appendix I and II, the output voltage signals of circuit B and C are added together with an adder to 

form drive and coupled with circuit A, while the relayed voltage is sent back to the input voltages of the individual circuit via 

voltage follower (operational amplifiers). In Appendix I, negative feedback coupling is applied unlike diffusive coupling used in 

Appendix II which leads to changes in chaotic dynamics of each oscillator by varing the coupling resistor. However,  

the circuit exhibit chaotic dynamics in the absence of coupling and changes in dynamical behaviour as coupling strength increasing 

which may lead to complete synchronization. 

Similarly, the arrangement of chaotic circuits which involves one drive against two response oscillators using negative feedback 

(Appendix III) or diffusive coupling (Appendix IV) lead to CS. 
 

3.1 Two masters coupled with one slave 

De-synchronization between systems occurs when the coupling is very weak (i.e at higher resistance) while synchronization occurs 

when coupling strength is high. For example, low coupling strength ( = kRC 2 ) in Figure 8 (a-c) which consist of two masters 

and one slave show uncorrelated dynamics for the layed output (a) and relayed inputs (b and c) voltages or signals. At high coupling 

strength or low resistance value as shown in Figure 8 (d-f), the dynamics completely synchronized for both layed and relayed output 

voltages specifically for 100CR .  
 

        

 
Figure 8: De-synchronization (a-c) and complete synchronization (e-f) for negative feedback coupling of two masters to 

one slave cubic function van der Pol circuits. 

 

The diffusive coupling of two masters to one slave Oscillators presented in Figure 9 also shows uncorrelated 

synchronization at low coupling strength (a-c) just like the one observed in negative feedback coupling. With increasing 

the coupling strength, the layed output voltage completely synchronized (d) but desynchronized (e and f) relayed input 

voltages. In other words, the two master circuits sending out one of their state variables and receiving them as input 

voltages at the same time and at the same coupling strength through the other variable.  
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Figure 9: De-synchronization (a-c) and (e-f) for both layed and relayed voltages, complete synchronization occur at (d) 

for only layed output voltages for diffusive coupling of two masters to one slave cubic function van der Pol circuits  

 

3.2 One master coupled with two slaves 

In case of one master to two slaves, the design involves negative feedback coupling, which also follows the same trajectory as 

observed in two masters to one slave coupling scheme. The dynamics still reveals uncorrelated output and input voltages at low 

coupling strength (say, = kRC 2 ) as presented in Figure 10 (a-c), but complete synchrony at high coupling strength (say, 

100CR ) as shown in Figure 10 (d-f). In Figure 11, similar trend of unsynchronized attractors occur for both layed and relayed 

output and input voltages (a-c) at low coupling strength when diffusively coupled, but complete synchronization only occurs at 

higher coupling strength (say,  1CR ) for layed output voltage (d) with  incomplete synchronization for the relayed input 

voltage (e and f).  

 

 

 
Figure 10: Desynchronization (a-c) and complete synchronization (e-f) for negative feedback coupling of one master to 

two slave cubic function van der Pol circuits. 
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Figure 11: Desynchronization (a-c) and (e-f) for both layed and relayed voltages, complete synchronization occur at (d) for only 

layed output voltages for diffusive coupling of one master to two slaves cubic function van der Pol circuits  

 

4. Conclusion 

In this paper, the main motivation was to examine the dynamics evolves when two combined chaotic oscillators, interact with the 

third oscillator via cyclic coupling. The influence of the same coupling strength on synchronization behaviour of cubic function Van 

der Pol circuits as a case study has been discussed. The coupled oscillators were analyzed analytically and numerically. The 

experimental circuit coupling of two masters with one slave as well as one master to two slaves using negative feedback and 

diffusive schemes has been reported. Our experimental results show correlation in voltages ranging from de-synchronization to 

complete synchronization when changing the coupling strength value. The relayed outputs were not, but actually acted as dynamical 

relay between the response and the drive voltages of the circuits. The combined scheme has more advantage than one to one 

synchrony and possibility of implementation in electronics which may have wider application in secure communication and 

cryptography.  

 

Appendix I 

 

 
 Negative feedback coupling of combination scheme of two masters against one slave circuits via cyclic coupling. 
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Appendix II 

 
 Diffusive coupling of combination scheme of two masters against one slave circuits via cyclic coupling. 

 

                                             Appendix III 

 
Negative feedback coupling of combination scheme of one master against two slave circuits via cyclic coupling. 
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Appendix IV 

 
 Diffusive coupling of combination scheme of one master against two slave circuits via cyclic coupling. 
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