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Abstract 
 

 

In this paper, we further examine and analyze multi-switching combination 

synchronization (MSCS) using a 5-dimensional hyperchaotic system. In the MSCS 

master-slave scheme in which the synchronization takes place in diverse/multiple 

combination directions, we show that for the 3D chaotic and 4D hyperchaotic systems 

maximum of 27 and 256 switches grouped into 5 and 15, respectively are allowable. We 

further obtained 3125 switches for the 5D system grouped into 52 parts using their 

dimensions. This shows the high variabilities of switches available in higher dimension 

for information encoding; and its security implication for signal transmission. We 

performed numerical simulations to demonstrate MSCS in the case of 5D hyperchaotic 

system. 
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1. INTRODUTION 
 

Nonlinear deterministic dynamical systems exhibit sensitive dependence on initial conditions and the existence of this behavior has 

been confirmed in various fields such as sciences, medicines and engineering [1,2]. Such systems exhibit chaos as well as 
hyperchaos in high dimensions. Hyperchaotic systems though similar to the chaotic systems, are different because they possess two 

or more positive Lyapunov exponents [3] which determines the separation of nearby orbits in two or more directions and this makes 
them more complex and thereby more useful in chaoticdata encryption. One of the most fascinating attributes of such systems is 

synchronization because of its potential application in information, communication processing and security [1,4 6], among others. 
The original idea of synchronization as presented by Pecoraand Carroll in 1990 [7] is such that for coupled or interacting chaotic 

systems with state variables, 𝑦1(𝑡) and 𝑦2(𝑡),there is a complete or identical synchronization manifold𝑦1(𝑡)  =  𝑦2(𝑡) if 

lim
𝑡→∞

‖𝑦1(𝑡)  − 𝑦2(𝑡)‖ → 0for all 𝑡 ≥  0. In a latter work, Mainleri and Rehacek [8]showed that it is possible for two chaotic systems 

to synchronize up to a scaling factor such thatlim
𝑡→∞

‖𝑦1(𝑡) −  𝛼𝑦2(𝑡)‖ → 0 

For all 𝑡 ≥  0. This type of synchronization, known asProjective synchronization (PS) has gained prominentresearch attention 

because it yields a result in faster communication systems due to its scaling factors. Other works in this area includes functional 

projective synchronization 
[9,10], generalized projective synchronization [11], complex projective synchronization [12,13], adaptive projective 

synchronization [14,15] and hybrid projective synchronization [16], among others. Notably, all these works are one driver- one 
response systems. 

A more recent variation of PS was proposed by Luo et al [17]. In this case, two driver systems synchronise with a response system. 

This is known as combination synchronization. In this configuration communication signals can be split into two, each loaded and 
transmitted between 

the drivers. Alternatively, each part could be ransmitted at different time intervals. Combination synchronization as attracted 
considerable research attention and developments in this direction include compound synchronization[18,19], double compound 

[20], equal combination [21],complex combination [22,23], combination-combination[24–28], and generalized reduced-order 
hybrid combination synchronization [29]. 
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Earlier, Ucar et al [30] had proposed the multi-switching synchronization of chaotic systems. In their work, slave state variables 

synchronize with different state variables of the master systems. Since then, works on multi-switching had been limited to switching 
of synchronizing systems with varieties of scaling functions [31–33], adaptive switching [26,34], switching of fractional order 

chaotic system[35], and multi-switching of driven hyperchaotic systems[36]. However, all these works addressed the single driver-
single response systems until very recently when Vincent et al [1], proposed for the first time, a novel work on the double drivers-

single response multi-switching synchronization for a 3-dimensional chaotic system. To the best of our knowledge, all works of this 
kind reported in literature has not involved a higher dimensional system of order five (5). 

Furtherance to our earlier works [37-39], in this paper, we further examine and analyze multiswitching combinations 
synchronization (MSCS) using a 5D hyperchaotic systems, in which case, two drivers of the hyperchaotic 5D systems are 

synchronized with single response hyperchaotic system. Implementing MSCS in high-dimensional hyperchaotic systems would 
ensure that signals are transmitted in multi-directions, thereby eliminating predetermination and predictability. It is expected that 

this would enhance the security of transmitted information. Here, we report some new features that makes high-dimensional 

systems better models for MSCS. Unlike the 3D and 4D hyperchaotic systems which can generate maximum of 27 and 256 
switches respectively, we obtained all the 3125 switches (grouped into 52 parts using their dimension) available for the 5D system, 

and this shows the high variabilities of switches available in higher dimension. 
The rest of the paper is organised as follows: Section 2; System descriptions, section 3, definition and formulation of 5D multis-

witching combination synchronization 5DMSCS, in section 4, we designed the controllers for the 5D hyperchaotic systems, the 
numerical simulations were presented in section 5 while concluding remarks were made in section 6. 
 

2.  System description 

For the purpose of this study, we consider the following prototype 5D hyperchaotic system proposed by Yang andChen [40]. 

𝑥̇  =  𝑎 (𝑦 −  𝑥) +  𝑝, 
𝑦̇  =  𝑐𝑥 −  𝑥𝑧 +  𝑤, 
𝑧̇  =  −𝑏𝑧 +  𝑥𝑦,          (1) 

𝑝̇  =  −ℎ𝑝 −  𝑥𝑧, 
𝑤̇  =  −𝑘1𝑥 − 𝑘2𝑦, 
where 𝑎, 𝑏, ℎ ≠  0 and c are the system parameters and ℎ, 𝑘1, 𝑘2 are three control parameters of the system. System(3) has five 

Lyapunov exponents, three of which are positive Lyapunov exponents for a given set of system parameters; implying the existence 

of hyperchaos [37]. The phaseportraits of the system in different planes 𝑥𝑦, 𝑥𝑧, 𝑥𝑝, 𝑥𝑤, 𝑦𝑧, 𝑦𝑝, 𝑦𝑤 𝑎𝑛𝑑 𝑧𝑝 for 𝑎 =  10, 𝑏 =
8

3
, 𝑐 =

 28, ℎ =  2.25, 𝑘1  =  −0.12, 𝑘2  =  11.3 are as shown in figure 1. 
 

3. Definition and formulation of MSCS 

Let us consider the followingmasters-slave n dimensionalchaotic systems, where the master systems are given by 

𝑥̇1𝑑1  =  𝑓1𝑥(𝑥1𝑑1, 𝑥2𝑑1, 𝑥3𝑑1, . . . , 𝑥𝑛𝑑1), 
𝑥̇2𝑑1  =  𝑓2𝑥(𝑥1𝑑1, 𝑥2𝑑1, 𝑥3𝑑1, . . . , 𝑥𝑛𝑑1),       (2)    

⋮                                      ⋮ 
𝑥̇𝑛𝑑1  =  𝑓𝑛(𝑥1𝑑1, 𝑥2𝑑1, 𝑥3𝑑1, . . . , 𝑥𝑛𝑑1). 
and 

𝑦̇1𝑑2  =  𝑔1𝑦(𝑦1𝑑2, 𝑦2𝑑2, 𝑦3𝑑2, . . . , 𝑦𝑛𝑑2), 

𝑦̇2𝑑2  =  𝑔2𝑦(𝑦1𝑑2, 𝑦2𝑑2, 𝑦3𝑑2, . . . , 𝑦𝑛𝑑2),       (3) 

⋮                                      ⋮ 
𝑦̇𝑛𝑑2  =  𝑔𝑛𝑦(𝑦1𝑑2, 𝑦2𝑑2, 𝑦3𝑑2, . . . , 𝑦𝑛𝑑2). 

and the controlled slave system is given by 

𝑧̇1𝑟  =  ℎ1𝑧(𝑧1𝑟, 𝑧2𝑟 , 𝑧3𝑟 , . . . , 𝑧𝑛𝑟) + 𝑢1, 

𝑧̇2𝑟  =  ℎ2𝑧(𝑧1𝑟 , 𝑧2𝑟 , 𝑧3𝑟 , . . . , 𝑧𝑛𝑟)  + 𝑢2,       (4) 

⋮                                      ⋮ 
𝑧̇𝑛𝑟  =  ℎ𝑛𝑧(𝑧1𝑟 , 𝑧2𝑟 , 𝑧3𝑟 , . . . , 𝑧𝑛𝑟)  + 𝑢𝑛. 

where 𝑥̇1𝑑1 , . . 𝑥̇𝑛𝑑𝑛 , 𝑦̇1𝑑2, . . 𝑦̇𝑛𝑑𝑛, and 𝑧̇1𝑟 , . . 𝑧̇𝑛𝑟 are the driver systems and response system respectively, 

𝑥1𝑑1, . . . 𝑥𝑛𝑑1, 𝑦1𝑑2, . . . 𝑦𝑛𝑑2 𝑎𝑛𝑑 𝑧1𝑟 , . . . 𝑧𝑛𝑟  𝜀𝑅𝑛 are the state space vectors of the driver systems and the response system, 

respectively, 𝑓𝑛𝑥 , 𝑔𝑛𝑦  𝑎𝑛𝑑 ℎ𝑛𝑧 ∶  𝑅𝑛  → 𝑅𝑛are continuous vector functions composed of linear and nonlinear components; and 

𝑢𝑖 (𝑖 ∗ =  1, 2, . . . 𝑛) ∶  𝑅𝑛  →  𝑅𝑛 is a nonlinear control function. 

 

Definition 1 [17]  
If there exists three constant matrices 𝐴, 𝐵 𝑎𝑛𝑑 𝐶 𝜀 𝑅𝑛 𝑎𝑛𝑑 𝐶 ≠  0, such that 
lim
𝑡→∞

‖𝐶𝑧𝑛𝑟  −  𝐴𝑥𝑛𝑑1  −  𝐵𝑦𝑛𝑑2‖  =  0 

where ‖∙‖is the matrix norm, 𝐴, 𝐵, 𝐶 are scaling matricesand 𝐶𝑧𝑛𝑟  −  𝐴𝑥𝑛𝑑1  −  𝐵𝑦𝑛𝑑 is the error state with respectto n then systems 

(2), (3) and (4) are said to be in combination synchronization. 
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Fig. 1. The phase portraits of the 5D system in different planes x − 𝑦, 𝑥 −  𝑧, 𝑥 −  𝑝, 𝑥 −  𝑤, 𝑦 −  𝑧, 𝑦 −  𝑝, 𝑦 −  𝑤 𝑎𝑛𝑑 𝑧 −  𝑝 

showing possibleplanes in which synchronization could take place for 𝑎 =  10, 𝑏 =  8/3, 𝑐 =  28, ℎ =  2.25, 𝑘1  =  −0.12, 𝑘1   =
11.3 are shown respectively 

Comment 1 

Definition 1 represents the error dynamics for three(3) indices, three (3) being the number of systems in consideration. We can write 

this error dynamics as 𝑒𝛼𝛽𝛾 = ‖𝐶𝑧𝛼𝑟 − 𝐴𝑥𝛽𝑑1 − 𝐵𝑦𝛾𝑑2‖ so that the indices are subsets of the n-dimensional n of the systems. For 

easy identification of the mathematics function, we assume that the maximum number of state space variable is five (5), each 

denoted by dimensions 1, 2, 3, 4, 5 =  𝑖, 𝑗, 𝑘, 𝑙, 𝑚 for the five (5) dimensional systems in consideration. 

Comment 2 

By definition 1 and comment 1, it follows that the indices of the error states as in definition 1 are strictly chosen to satisfy the 

definition 𝑒𝛼𝛽𝛾(𝛼 =  𝛽 =  𝛾),where 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 are indices taken from the dimension 𝑖, 𝑗, 𝑘, 𝑙, 𝑚 of the 5D system. 

Definition 2 [1] 

If the error states in relation to Definition 1 and the comments above are redefined such that for𝑒𝛼𝛽𝛾any, combination of, or all of 

the equality signs as described in Comment 2 is changed, different from the dimension of the corresponding response sub-system, in 

at least one ofthe sub-systems, and𝑒𝛼𝛽𝛾 = ‖𝐶𝑧𝛼𝑟 − 𝐴𝑥𝛽𝑑1 − 𝐵𝑦𝛾𝑑2‖then, systems (2), (3) and (4) are said to be in multi-switching 

combination synchronization state if𝑙𝑖𝑚𝑡→∞𝑒𝛼𝛽𝛾 → 0. 

Comment 3. 
(i) The conditions in Definition 2 are generic conditionsthat must be met and these are dependent on the choice of the dimension, as 

the indices of the error system. 

(ii) By implication, for a complete set of the 5D system,we have five 5 sets of 3-indices,𝛼, 𝛽 𝑎𝑛𝑑 𝛾, chosenfrom 𝑖, 𝑗, 𝑘, 𝑙, 𝑚. 
(iii) This means that one determining factor for a complete set in (ii) is the arrangement of the dimensions in the three 3 indices of 
the 5D system. 

(iv) Notably, in synchronization, the arrangement of the response systemis kept in order and that the arrangements of the driver 
systems can be varied for varieties, each driver to be treated on its own merit. 

In line with above definitions and comments, bearing in mind that the same number and type of switches exist for the second driver 
system, we generated all possible arrangements, henceforth referred to as switches, for the 3D, 4D and 5D cases. In brief, for the 

3D, there are 27 switches in 5 groups. For the 4D, there are 256 switches in 15 groups and for the 5D, we have 3125 switches with 
52 groups. It follows that each of the master systems can be multi-switched in 3125 way coined from the 52 groups. In what 

follows, we present all the switches below: 

3D switch groups: 

1. 𝑖 =  𝑗 =  𝑘, 2. 𝐼 =  𝑗 ≠  𝑘, 3. 𝑖 =  𝑘 ≠  𝑗, 4. 𝑖 ≠  𝑗 =  𝑘 𝑎𝑛𝑑 5. 𝑖 ≠  𝑗 ≠  𝑘. 
4D switch groups: 

1. 𝑖 =  𝑗 =  𝑘 =  𝑙, 2. 𝐼 =  𝑗 =  𝑘 ≠ 𝑙, 3. 𝑖 =  𝑗 =  𝑙 ≠  𝑘, 4. 𝑖 =  𝑗 ≠  𝑘 =  𝑙, 
5. 𝑖 =  𝑗 ≠  𝑘 ≠  𝑙, 6. 𝑖 =  𝑙 =  𝑘 ≠  𝑗, 7. 𝑖 =  𝑘 ≠  𝑗 =  𝑙, 8. 𝑖 =  𝑘 ≠  𝑗 ≠  𝑙, 
9. 𝑖 =  𝑙 ≠  𝑗 =  𝑘, 10. 𝑖 ≠  𝑗 =  𝑘 =  𝑙, 11. 𝑖 ≠  𝑗 =  𝑘 ≠  𝑙, 12. 𝑖 =  𝑙 ≠  𝑗 ≠  𝑘, 
13. 𝑖 ≠  𝑗 ≠  𝑘 =  𝑙, 14. 𝑖 ≠  𝑗 ≠  𝑘 ≠  𝑙 𝑎𝑛𝑑  15. 1 ≠  𝑗 =  𝑙 ≠  𝑘. 
5D switch groups: 

1. 𝑖 =  𝑗 =  𝑘 =  𝑙 =  𝑚, 2. 𝑖 =  𝑗 =  𝑘 =  𝑙 ≠  𝑚, 3. 𝑖 =  𝑗 =  𝑘 =  𝑚 ≠  𝑙, 
4. 𝑖 =  𝑗 =  𝑘 ≠  𝑙 =  𝑚, 5. 𝑖 =  𝑗 =  𝑘 ≠  𝑙 ≠  𝑚, 6. 𝑖 =  𝑗 =  𝑙 =  𝑚 ≠  𝑘, 
7. 𝑖 =  𝑗 =  𝑙 ≠  𝑘 =  𝑚, 8. 𝑖 =  𝑗 =  𝑚 ≠  𝑘 =  𝑙,   9. 𝑖 =  𝑗 ≠  𝑘 =  𝑙 =  𝑚, 
10. 𝑖 =  𝑗 ≠  𝑘 =  𝑙 ≠  𝑚, 11. 𝑖 =  𝑗 =  𝑚 ≠  𝑘 ≠  𝑙,   12. 𝑖 =  𝑗 ≠  𝑘 ≠  𝑙 =  𝑚, 
13. 𝑖 =  𝑗 ≠  𝑘 ≠  𝑙 ≠  𝑚, 14. 𝑖 =  𝑗 =  𝑙 ≠  𝑘 ≠  𝑚,   15. 𝑖 =  𝑘 =  𝑙 =  𝑚 ≠  𝑗, 
16. 𝑖 =  𝑘 =  𝑙 ≠  𝑗 =  𝑚, 17. 𝑖 =  𝑘 =  𝑙 ≠  𝑗 ≠  𝑚,   18. 𝑖 =  𝑘 ≠  𝑗 =  𝑙 =  𝑚, 
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19. 𝑖 =  𝑘 ≠  𝑗 =  𝑙 ≠  𝑚, 20. 𝑖 =  𝑘 =  𝑚 ≠  𝑗 ≠  𝑙,   21. 𝑖 =  𝑘 ≠  𝑗 =  𝑚 ≠  𝑙, 
22. 𝑖 =  𝑘 ≠  𝑗 ≠  𝑙 =  𝑚, 23. 𝑖 =  𝑘 ≠  𝑗 ≠  𝑙 ≠  𝑚,   24. 𝑖 =  𝑙 =  𝑚 ≠  𝑗 =  𝑘, 
25. 𝑖 =  𝑙 ≠  𝑗 =  𝑘 =  𝑚, 26. 𝑖 =  𝑙 ≠  𝑗 =  𝑘 ≠  𝑚,   27. 𝑖 =  𝑚 ≠  𝑗 =  𝑘 =  𝑙, 
28. 𝑖 ≠  𝑗 =  𝑘 =  𝑙 =  𝑚, 29. 𝑖 ≠  𝑗 =  𝑘 =  𝑙 ≠  𝑚,   30. 𝑖 =  𝑚 ≠  𝑗 =  𝑘 ≠  𝑙, 
31. 𝑖 ≠  𝑗 =  𝑘 =  𝑚 ≠  𝑙, 32. 𝑖 ≠  𝑗 =  𝑘 ≠  𝑙 =  𝑚,   33. 𝑖 ≠  𝑗 =  𝑘 ≠  𝑙 ≠  𝑚, 
34. 𝑖 =  𝑙 =  𝑚 ≠  𝑗 ≠  𝑘, 35. 𝑖 =  𝑙 ≠  𝑗 =  𝑚 ≠  𝑘,   36. 𝑖 =  𝑙 ≠  𝑗 ≠  𝑘 =  𝑚, 
37. 𝑖 =  𝑙 ≠  𝑗 ≠  𝑘 ≠  𝑚, 38. 𝑖 =  𝑚 ≠  𝑗 =  𝑙 ≠  𝑘,   39. 𝑖 =  𝑚 ≠  𝑗 ≠  𝑘 =  𝑙, 
40. 𝑖 ≠  𝑗 =  𝑙 =  𝑚 ≠  𝑘, 41. 𝑖 ≠  𝑗 =  𝑙 ≠  𝑘 ≠  𝑚,   42. 𝑖 ≠  𝑗 =  𝑚 ≠  𝑘 =  𝑙, 
43. 𝑖 ≠  𝑗 ≠  𝑘 =  𝑙 =  𝑚, 44. 𝑖 ≠  𝑗 ≠  𝑘 =  𝑙 ≠  𝑚,   45. 𝑖 ≠  𝑗 =  𝑚 ≠  𝑘 ≠  𝑙, 
46. 𝑖 ≠  𝑗 ≠  𝑘 =  𝑚 ≠  𝑙, 47. 𝑖 =  𝑚 ≠  𝑗 ≠  𝑘 ≠  𝑙,   48. 𝑖 ≠  𝑗 ≠  𝑘 ≠  𝑙 =  𝑚, 
49. 𝑖 ≠  𝑗 ≠  𝑘 ≠  𝑙 ≠  𝑚, 50. 𝑖 =  𝑘 =  𝑚 ≠  𝑗 =  𝑙,   51. 𝑖 =  𝑗 ≠  𝑘 =  𝑚 ≠  𝑙 𝑎𝑛𝑑 
52. 𝑖 ≠  𝑗 =  𝑙 ≠  𝑘 =  𝑚. 
In this paper, five (5) cases were considered, each having two (2) sets of switches drawn from a particular group. For the first case, 
we chose groups 1 and 6 (representing groups in first quarter). For case 2, groups 10 and 38 (middle groups); case 3, groups 5 and 

36 (about quarter to the ends); case 4, group 5 for both systems and case 5, group 49 for both drivers(making use of all the 
variables.) 

 
4. Design of controllers for 5-D hyperchaotic systems 

Let us redefine the variables of system (1) as follows,𝑥 =  𝑥1, 𝑦 =  𝑥2, 𝑧 = 𝑥3, 𝑝 = 𝑥4 , 𝑤 = 𝑥5 𝑎𝑛𝑑 𝑥 =  𝑦1, 𝑦 =  𝑦2, 𝑧 =
 𝑦3, 𝑝 =  𝑦4 𝑎𝑛𝑑 𝑤 =  𝑦5 for the mastersystems and 𝑥 =  𝑧1, 𝑦 =  𝑧2, 𝑧 =  𝑧3, 𝑝 =  𝑧4 𝑎𝑛𝑑 𝑤 =  𝑧5 for the slave system.Thus, for 
the five dimensional system defined in (1), the master systems are given by 

𝑥̇1  =  𝑎 (𝑥2  − 𝑥1) + 𝑥4, 
𝑥̇2  =  𝑐𝑥1  − 𝑥1𝑥3 + 𝑥5, 
𝑥̇3  =  −𝑏𝑥3  + 𝑥1𝑥2,          (5) 
𝑥̇4  =  −ℎ𝑥4  − 𝑥1𝑥3, 
𝑥̇5 =  −𝑘1𝑥1  − 𝑘2𝑥2. 
and 

𝑦̇1  =  𝑎 (𝑦2  − 𝑦1 )  + 𝑦4 , 
𝑦̇2  =  𝑐𝑦1  − 𝑦1𝑦3  + 𝑦5, 
𝑦̇3  =  −𝑏𝑦3  + 𝑦1𝑦2,          (6) 
𝑦̇4  =  −ℎ𝑦4  − 𝑦1𝑦3, 
𝑦̇5 =  −𝑘1𝑦1  − 𝑘2𝑦2. 
while 

𝑧̇1  =  𝑎 (𝑧2  − 𝑧1 )  + 𝑧4   +  𝑢1, 
𝑧̇2   =  𝑐𝑧1  − 𝑧1𝑧3  + 𝑧5 +  𝑢2, 
𝑧̇3   =  −𝑏𝑧3  + 𝑧1𝑧2  +  𝑢3,         (7) 
𝑧̇4   =  −ℎ𝑧4 − 𝑧1𝑧3  +  𝑢4, 
𝑧̇5   =  −𝑘1𝑧1  − 𝑘2𝑧2  +  𝑢5. 
is the slave system, where 𝑢1, 𝑢2, 𝑢3, 𝑢4 𝑎𝑛𝑑 𝑢5 are the set of nonlinear controllers.Based on previous definitions, the switching 

combinations are chosen as follows: 
Case 1: 

Group 1: 𝑖 =  𝑗 =  𝑘 =  𝑙 =  𝑚, switch (1,1,1,1,1) 

Group 6: 𝑖 =  𝑗 =  𝑙 =  𝑚 ≠  𝑘, 𝑠𝑤𝑖𝑡𝑐ℎ (2,2,1,2,2) 

𝑒112  =  𝑧1 − 𝑥1  − 𝑦2; 𝑒212   =   𝑧2  − 𝑥1  − 𝑦2; 
𝑒311  =  𝑧3  − 𝑥1  − 𝑦1; 𝑒412  =  𝑧4  − 𝑥1  − 𝑦2; 
𝑒512  =  𝑧5 − 𝑥1 − 𝑦2.          (8) 
Case 2: 

G𝑟𝑜𝑢𝑝 10: 𝑖 =  𝑗 ≠  𝑘 =  𝑙 ≠ 𝑚, 𝑠𝑤𝑖𝑡𝑐ℎ (3,3,1,1,5) 

g𝑟𝑜𝑢𝑝 38: 𝑖 =  𝑚 ≠  𝑗 =  𝑙 ≠ 𝑘, 𝑠𝑤𝑖𝑡𝑐ℎ (1,3,2,3,1) 
𝑒131  =  𝑧1 − 𝑥3  − 𝑦1; 𝑒233  =  𝑧2  − 𝑥3  −  𝑦3; 
𝑒312  =   𝑧3 − 𝑥1  − 𝑦2; 𝑒413  =  𝑧4  − 𝑥1  − 𝑦3; 
𝑒551  =  𝑧5  − 𝑥5   − 𝑦1.          (9) 
Case 3: 

G𝑟𝑜𝑢𝑝 5: 𝑖 =  𝑙 ≠ 𝑘 =  𝑚 ≠  𝑗, 𝑠𝑤𝑖𝑡𝑐ℎ (4,1,2,4,2) 

 G𝑟𝑜𝑢𝑝 36: 𝑖 =  𝑗 =  𝑘 ≠  𝑙 ≠  𝑚, 𝑠𝑤𝑖𝑡𝑐ℎ (4,4,4,1,5) 
𝑒144  =  𝑧1  − 𝑥4  − 𝑦4;  𝑒214  =  𝑧2 − 𝑥1  − 𝑦4; 
𝑒324  =   𝑧3  − 𝑥2  − 𝑦4; 𝑒441   =   𝑧4  − 𝑥4  − 𝑦1; 
𝑒525 = 𝑧5  − 𝑥2  − 𝑦5.          (10) 
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Case 4: 

G𝑟𝑜𝑢𝑝 5: 𝑖 =  𝑗 =  𝑘 =  𝑙 =  𝑚, 𝑠𝑤𝑖𝑡𝑐ℎ (5,5,5,5,5) 

G𝑟𝑜𝑢𝑝 5: 𝑖 =  𝑗 =  𝑘 =  𝑙 =  𝑚, 𝑠𝑤𝑖𝑡𝑐ℎ (5,5,5,5,5) 

𝑒155  =  𝑧1  −  𝑥5  −  𝑦5; 𝑒255  =  𝑧2  −  𝑥5  −  𝑦5; 
𝑒355  =   𝑧3 −  𝑥5  −  𝑦5; 𝑒455  =   𝑧4  −  𝑥5  −  𝑦5; 
𝑒555  =  𝑧5  − 𝑥5  − 𝑦5.          (11) 
 

 
Case 5: 

𝐺𝑟𝑜𝑢𝑝 49: 𝑖 ≠  𝑗 ≠  𝑘 ≠ 𝑙 ≠  𝑚. , 𝑠𝑤𝑖𝑡𝑐ℎ (1,2,3,4,5) 

 G𝑟𝑜𝑢𝑝 49: 𝑖 ≠  𝑗 ≠  𝑘 ≠  𝑙 ≠  𝑚. 𝑠𝑤𝑖𝑡𝑐ℎ (5,4,3,2,1) 
𝑒115  =  𝑧1  −  𝑥1  −  𝑦5; 𝑒224  =  𝑧2  −  𝑥2  −  𝑦4; 
𝑒333  =  𝑧3  −  𝑥3  −  𝑦3; 𝑒442 =   𝑧4  −  𝑥4  −  𝑦2; 
𝑒551 = 𝑧5  − 𝑥5  − 𝑦1.         (12) 

Using the backstepping method of synchronization as presented in [1], we consider case 1 with the appropriate notations. 
Differentiating the error variables of (8), we have 

𝑒̇112  =  𝑎(𝑒212 − 𝑒112) + 𝑒412  +  𝑥1  + 𝑦2  −  𝑎( 𝑥2  −  𝑥1) −  𝑥4  −  𝑦1(𝑐 −  𝑦3) −  𝑦5 +  𝑢1𝑒̇212 

=  𝑎𝑒212  +  𝑐𝑒311  − 𝑦3𝑒311  + (𝑐 − 𝑧3)(𝑒112  + 𝑥1  + 𝑦2) −  𝑎(𝑥2 − 𝑧2  + 𝑦2) +  
(𝑧3  − 𝑥1)(𝑦3  −  𝑐)  + 𝑧5  − 𝑥4  − 𝑦5  + 𝑢2, 
𝑒̇311 =  −𝑎𝑒311  −  𝑏𝑧3 +  2𝑒112𝑒212  − 𝑧1(𝑒112  + 𝑒212 + 𝑧1) − 𝑎(𝑥2 + 𝑦2  − 𝑧3) −  
𝑥4  − 𝑦4  +  𝑢3, 
𝑒̇412 =  −𝑒412(ℎ +  1) − (𝑥1  + 𝑦2)(ℎ + 𝑒311  + 𝑥1  + 𝑦1) − 𝑒112(𝑒311  + 𝑥1  + 𝑦1) – 

𝑎(𝑥2 − 𝑦2 − 𝑧4) − (𝑧3 − 𝑥1  − 𝑒311)(𝑐 − 𝑦3) − 𝑥4  − 𝑦5  + 𝑢4,  
𝑒̇512 =  −𝑎𝑒512  − 𝑘1(𝑒112  + 𝑥1  + 𝑦2) − 𝑘2(𝑒212 + 𝑥1  + 𝑦2) −  𝑎(𝑥2  − 𝑧5  + 𝑦2) −   
(𝑧3  − 𝑥1  − 𝑒311)(𝑐 − 𝑦3)𝑥4  − 𝑦5  + 𝑢5.     (13) 

With error dynamics (3.110), if appropriate 𝑢1, 𝑢2, 𝑢3, 𝑢4 𝑎𝑛𝑑 𝑢5 are chosen suchthat equilibrium (0, 0, 0, 0, 0) of the error system is 

stable and unchanged thenstabilization would be realized leading to stable synchronisation of the system. 

If 𝜂1 = 𝑒112, its time derivative is 𝑒̇112and write the first part of (13)as𝜂̇1 =  𝑎(𝑒212 − 𝜂1) + 𝑒412  + 𝑥1  + 𝑦2  −  𝑎(𝑥2  − 𝑥1) −
𝑥4  − 𝑦1(𝑐 − 𝑦3) − 

𝑦5  + 𝑢1,          (14)  
We can stabilize (14) using the Lyapunov function 

𝑣1  =
1

2
𝜂1

2          (15) 

By substituting for 𝜂̇1 in the derivative of (3.112), choosing 𝑒212  =  𝛼1(𝜂1)  =  0 as avirtual controller and 𝑢1 = −𝑒412   − 𝑥1(1 +
𝑎) − 𝑦2  + 𝑎𝑥2  + 𝑥4  + 𝑦1(𝑐 − 𝑦3) + 𝑦5  + 𝑘𝜂1, 

𝑣̇1  =  −(𝑎 −  𝑘)𝜂1
2  ≤  0.          (16) 

Thus, 𝑣̇1 is negative definite if 𝑘 ≤  0 and a takes on positive value showing that thesubsystem (𝜂̇1) is asymptotically stable. Since 

the error between 𝑒212 and 𝛼1(𝜂1)is estimative as 𝜂2  =  𝑒212 and its derivative is written as 𝜂̇2  =  𝑒̇212, the (𝜂̇1, 𝜂̇2) subsystems as 

𝜂̇1  =  −𝜂1(𝑎 −  𝑘)  +  𝑎𝜂2, 
𝜂̇2 =  𝑎𝜂2  +  𝑐𝑒311  − 𝑦3𝑒311  + (𝑐 − 𝑧3)(𝜂1 + 𝑥1   + 𝑦2) −  𝑎(𝑥2 − 𝑧2  + 𝑦2)  
+ (𝑧3  − 𝑥1)(𝑦3  −  𝑐)  + 𝑧5  − 𝑥4 − 𝑦5 + 𝑢2       (17) 

We stabilize (17) by choosing the second Lyapunov function given as 

𝑣2  = 𝑣1  +
1

2
𝜂2

2          (18) 

By substituting for 𝜂̇2 in the derivative of (18) choosing𝑒311  =  𝛼2(𝜂2)  =  0 asa virtual controller and choosing𝑢2  =  −2𝑎𝜂2  +
 𝑦3𝑒311   − (𝑐 −  𝑧3)(𝜂1  +  𝑥1  +  𝑦2) + 𝑎( 𝑥2 −  𝑧2 +  𝑦2) − ( 𝑧3  −  𝑥1)( 𝑦3  −  𝑐)  −  𝑧5  +  𝑥4  +  𝑦5  +  𝑘𝜂2 
We have 

𝑣̇2 =  −(𝑎 −  𝑘)(𝜂1
221 + 𝜂2

2)  ≤  0.         (19) 
Thus, 𝑣̇2 is negative definite 𝑖𝑓 𝑘 ≤  0 and a takes on positive value showing thatthe subsystem (𝜂̇1, 𝜂2) is asymptotically stable. 

Since the error between 𝑒311 and 𝛼2 (𝜂2) is estimative as 

𝜂3 = 𝑒311and its derivative is written as 𝜂̇3 = 𝑒̇311, the (𝜂1, 𝜂2, 𝜂3) subsystem is 

𝜂̇1  =  −𝜂1(𝑎 −  𝑘)  +  𝑎𝜂2, 
𝜂̇2 =  −𝜂2(𝑎 −  𝑘)  −  𝑐𝜂3, 
𝜂̇3  =  −𝑎𝑒311 −  𝑏 𝑧3  +  2𝑒112𝑒212 −  𝑧1 (𝑒112  + 𝑒212  +  𝑧1) −     

𝑎( 𝑥2  +  𝑦2  −  𝑧3) −  𝑥4  −  𝑦4 + 𝑢3.       (20) 
We can stabilize (20) by choosing the third Lyapunov function given as 

𝑣3  = 𝑣2  +
1

2
𝜂3

2          (21) 

By substituting for 𝜂̇3 in the derivative of (21) choosing 𝜂1  =  𝛼3(𝜂3)  =  0 as avirtualcontroller and 𝑢3 =  𝑏 𝑧3  −  𝑧1(𝜂1  − 𝜂2  +
  𝑧1) +  𝑎( 𝑥2  −  𝑦2  −  𝑧3) +  𝑥4  +  𝑦4 +  𝑘𝜂3,to have 
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𝑣̇3 =  −(𝑎 −  𝑘)(𝜂1
2  + 𝜂2

2 + 𝜂3
2)  ≤  0,        (22) 

Thus, 𝑣̇3 is negative definite if 𝑘 ≤  0 and a takes on positive value showing thatthe subsystem (𝜂̇1, 𝜂2, 𝜂3) is asymptotically stable. 

Let 𝜂4 =  𝑒412 and its derivative𝑒̇412. and the 𝜂1, 𝜂2, 𝜂3, 𝜂4) subsystem is 

𝜂̇1  =  −𝜂1(𝑎 −  𝑘)  +  𝑎𝜂2, 
𝜂̇2  =  −𝜂2(𝑎 −  𝑘)  −  𝑐𝜂3, 
𝜂̇3  =  −𝜂3(𝑎 −  𝑘)  +  2𝜂1𝜂2, 
𝜂̇4 =  −𝜂4(ℎ +  1) − (𝑥1  + 𝑦2)(ℎ + 𝜂3  + 𝑥1  + 𝑦1) − 𝜂1(𝜂3 + 𝑥1  + 𝑦1) −  

𝑎(𝑥2  − 𝑦2  − 𝑧4) − (𝑧3  − 𝑥1 − 𝜂3)(𝑐 − 𝑦3) − 𝑥4 − 𝑦5  + 𝑢4.    (23) 
We can stabilize (23) by defining the fourth Lyapunov function given as 

𝑣4  = 𝑣3 +
1

2
𝜂4

2          (24) 

By substituting for 𝜂̇4 in the derivative of (24) and choosing𝑢4 = (𝑥1  + 𝑦2)(ℎ + 𝜂3  + 𝑥1  + 𝑦1) − 𝜂1(𝜂3 + 𝑥1  + 𝑦1) −  𝑎(𝑥2  −
 𝑦2  − 𝑧4) − 𝑦3(𝑧3  − 𝑥1 − 𝜂3) + 𝑥4 + 𝑦4,  
Write have 

𝑣̇4 =  −(𝑎 −  𝑘)(𝜂1
2  + 𝜂2

2 + 𝜂3
2) − (ℎ +  1 −  𝑘)𝜂4

2 ≤  0,     (25) 
Thus, 𝑣̇4 is negative definite if 𝑘 ≤  0, 𝑎 and h take on positive values showingthat the subsystem (𝜂̇1,𝜂2, 𝜂3, 𝜂4) is asymptotically 

stable. Let 𝜂5  =  𝑒512 and itsderivative be𝑒̇512, the whole system is 

𝜂̇1  =  𝜂1(𝑎 −  𝑘)  +  𝑎𝜂2, 
𝜂̇2  =  −𝜂2(𝑎 −  𝑘)  −  𝑐𝜂3, 
𝜂̇3  =  −𝜂3(𝑎 −  𝑘)  +  2𝜂1𝜂2, 
𝜂̇4  =  −𝜂4(ℎ +  1 −  𝑘),          (26) 
𝜂̇5 =  −𝑎𝜂5  − 𝑘1(𝜂1  − 𝑥1  + 𝑦2) − 𝑘2(𝜂2 + 𝑥1  + 𝑦2) −  𝑎(𝑥2  − 𝑧5  + 𝑦2)    

− (𝑧3  − 𝑥1 − 𝜂3)(𝑐 − 𝑦3) − 𝑥4  − 𝑦5 + 𝑢5.       (27) 
We can stabilize (26) by defining the fifth Lyapunov function given as 

𝑣5 = 𝑣4  +
1

2
𝜂5

2          (28)  

By substituting for 𝜂̇5 in the derivative of (3.125) and choosing𝑢5 = 𝑘1(𝜂1  + 𝑥1  + 𝑦2)  + 𝑘2(𝜂2 + 𝑥1  + 𝑦2) + (𝑥2  − 𝑧5  +
 𝑦2) + 𝑧3  − 𝑥1 − 𝜂3)(𝑐 − 𝑦3) + 𝑥4 + 𝑦5  +  𝑘𝜂5,  

𝑣̇5  =  −(𝑎 −  𝑘)(𝜂1
2 + 𝜂2

2  + 𝜂3
2 + 𝜂5

2) − (ℎ +  1 −  𝑘)𝜂4
2 ≤  0,    (29) 

Thus, 𝑣̇5 is negative definite if 𝑘 ≤  0, 𝑎 and h take on positive values. The wholesystem is expressed as 

𝜂̇1   = 𝜂1(𝑎 −  𝑘)  +  𝑎𝜂2, 
𝜂̇2  =  −𝜂2(𝑎 −  𝑘)  −  𝑐𝜂3, 
𝜂̇3   =  −𝜂3(𝑎 −  𝑘)  +  2𝜂1𝜂2, 
𝜂̇4   =  −𝜂4(ℎ +  1 −  𝑘), 
𝜂̇5   =  −𝜂5(𝑎 −  𝑘).           (30) 

For other switches 2, 3, 4 and 5, the controllers were also obtained following the above procedures, and are presented in equations 

(31), (32), (33) and (34) respectively. 

𝑢1  =  −𝑎(𝑦3  − 𝑦2) − 𝑒413  − 𝑥1(1 − 𝑥2) − 𝑦3  −  𝑏𝑥1 + 𝑦3  +  𝑘𝜂1, 
𝑢2  =  −(𝑥3  + 𝑦1)(𝑐 − 𝑒312  − 𝑥1 − 𝑦2) − 𝑒413  − 𝑥1(1 − 𝑥2) + 𝑦1𝑦2  − 𝑦3 −  𝑏𝑧2  +  𝑘𝜂2  + 𝜂1(𝑥1  + 𝑦2), 
𝑢3 =  𝑏(𝑥1  + 𝑦2) − (𝑒131  + 𝑥3  + 𝑦1)(𝑒233  + 𝑥3  + 𝑦3) − 𝑎(𝑧4  − 𝑦3  − 𝑥2) + 𝑥4  + 𝑦5  +  (𝑧1  − 𝑥3 − 𝑒131)(𝑐 − 𝑧4 + 𝑥1) 

+ 𝜂4(𝑧1  − 𝑥3) +  𝑘𝜂3, 
𝑢4  =  ℎ(𝑥1  + 𝑦3) + (𝑥1  + 𝑦2)(𝑒131  + 𝑥3 + 𝑦1) + 𝑎(𝑥2  − 𝑧3  + 𝑦2) + 𝑥4  −  𝑏(𝑧4  − 𝑥1) + 𝑦1(𝑧3  − 𝑥1) + 𝑥3𝑒312  +  𝑘𝜂4, 

𝑢5  =  𝑘1(𝑒131  + 𝑥3  + 𝑦1  − 𝑥1) + 𝑘2(𝑒233  + 𝑥3 
+𝑦3  − 𝑥2) +  𝑎(𝑦2  − 𝑧5  + 𝑥5) + 𝑦4  +  𝑘𝜂5.       (31) 

𝑢1  =  −𝑒441(1 − 𝑦3) −  𝑎(𝑥1  − 𝑥4) −  ℎ𝑧1  − 𝑥4  − 𝑦1 + 𝑥3𝑒214 − 𝑥3(𝑧2   − 𝑦4) − 𝑦3(𝑧4  − 𝑥4) +  𝑘𝜂1, 
𝑢2 =  −(𝑥4  + 𝑦4)(𝑐 − 𝑒324 − 𝑥2  − 𝑦4)  − 𝑒525 − 𝑥2  − 𝑦5 − 𝑎(𝑧2  − 𝑦4  − 𝑥2) − 𝑥4  −  ℎ(𝑧2   − 𝑥1) − 𝑦1𝑦3  + 𝜂1(𝑥2  

+ 𝑦4)  +  𝑘𝜂2, 
𝑢3 =  𝑏(𝑥2   + 𝑦4) − (𝑒144 + 𝑥4 + 𝑦4)(𝑒214  + 𝑥1 + 𝑦4) + 𝑥1(𝑐 − 𝑥3) + 𝑥5  −  ℎ𝑦4  − 𝑦3(𝑧4  − 𝑥4) + 𝑦3𝑒441  +  𝑘𝜂3, 
𝑢4 =  ℎ(𝑥4  + 𝑦1) + (𝑒144  + 𝑥4  + 𝑦4)(𝑒324 + 𝑥2 + 𝑦4)  −  ℎ𝑥1  − 𝑥1𝑥3  +  𝑎(𝑦2  − 𝑦1) + 𝑦4  +  𝑘𝜂4, 
𝑢5 =  −𝜂5(1 −  𝑘) + 𝑘1(𝑧1  − 𝑦1) + 𝑘2(𝑧2 − 𝑦2) + 𝑐𝑥1 − 𝑥1𝑥3  + 𝑥5  +  𝑘𝜂5.   (32) 

𝑢1  =  −𝑒455 − 𝑥5  − 𝑦5  − 𝑘1(𝑥1  + 𝑦1) − 𝑘2(𝑥2  + 𝑦2) +  𝑘𝜂1, 𝑢2  
=  −(𝑥5  + 𝑦5)(𝑐 − 𝑒355  − 𝑥5  − 𝑦5) − 𝑒555 − 𝑧2 − 𝑘1(𝑥1  +  𝑦1)  − 𝑘2(𝑥2  + 𝑦2) + 𝜂1(𝑥5  + 𝑦5)  +  𝑘𝜂2, 

𝑢3 =  −(𝑥5  + 𝑦5)(𝑒255  + 𝑥5  + 𝑦5  −  𝑏)  − 𝑘1(𝑥1  + 𝑦1) − 𝑘2(𝑥2  + 𝑦2) − 𝜂1(𝑥5  + 𝑦5) +  𝑘𝜂3, 
𝑢4 =  ℎ𝑧5  + (𝑒155  + 𝑥5 + 𝑦5)(𝑒355  + 𝑥5  + 𝑦5) − 𝑘1(𝑥1  +  𝑦1) − 𝑘2(𝑥2  + 𝑦2) +  𝑘𝜂4, 
𝑢5  =  −𝜂5(1 −  𝑘) + 𝑘1(𝑧1  − 𝑥1  − 𝑦1) + 𝑘2(𝑧2  − 𝑥2  − 𝑦2) +  𝑘𝜂5.    (33) 

𝑢1  =  −𝑎(𝑦4  − 𝑦5) − 𝑒442(1 − 𝑘2) − 𝑦2  − 𝑘1𝑦1  − 𝑘2(𝑧4  − 𝑥4 ) +  𝑘𝜂1, 
𝑢2  =  −𝑐𝑦1  + 𝑧3 (𝑥1  + 𝑦5) − 𝑥3 (𝑧1 − 𝑦5) − 𝑒551 − 𝑦1 −  ℎ(𝑧2  − 𝑥2) − 𝑦1𝑦3  + 𝜂1(𝑧3  +  𝑥3) +  𝑘𝜂2, 
𝑢3  =  −𝑧1𝑧2  + 𝑥1𝑥2  + 𝑦2(𝑧5  − 𝑥5) − 𝑦2𝑒551 +  𝑘𝜂3, 
𝑢4  =  ℎ𝑦2  + 𝑧1𝑧3  − 𝑥1𝑥3 + 𝑦1(𝑐 − 𝑧3  +  𝑥3) + 𝑦5  + 𝑦1𝑒333 +  𝑘𝜂4, 
𝑢5  =  −𝑘1(𝑒115  + 𝑦5)  + 𝑘2(𝑒224  + 𝑦4)  +  𝑎(𝑦2 − 𝑧5  + 𝑥5) + 𝑦4  +  𝑘𝜂5.   (34) 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 5, (September and November, 2017), 173–182 



179 
 

Multiswitching Combination…           Ogundipe, Laoye, Vincent and Odunaike        Trans. Of NAMP 

 

5. Numerical Simulations 

Here we present our numerical simulation in order to verify the effectiveness of the controllers u1, u2, u3, u4 and u5 for case 1 

above as well as the controllers for other cases presented in (31) - (34). We used the fourth-order Runge - Kutta algorithm. We 
maintained that our interest is to achievemulti switching combination synchronization of the 5D hyperchaotic system. The system 

parameters are chosen as 𝑎 =  10, 𝑏 =  8/3, 𝑐 =  28, ℎ =  2.25, 𝑘1  =  −0.12, 𝑘2  =  11.3when the initial conditions were 𝑥1  =
 0.1, 𝑦1  =  0.1, 𝑧1 =  0.1, 𝑝1  =  0.1, 𝑤1  =  0.1, 𝑥2  =  0.5, 𝑦2 =  0.01, 𝑧2  =  0.8, 𝑝2  =  0.7 𝑎𝑛𝑑 𝑤2  =  0.5. The step size was 

maintained at H = 0.005. For all the cases, the controllers 𝑢𝑖 (𝑖 =  1, 2, . . .5) were activated at 𝑡 ≥  10. The result for multi-

switchingcombination synchronized states 𝑒112, 𝑒212, 𝑒311, 𝑒412 𝑎𝑛𝑑 𝑒512 for case 1 is shown in Figure (2). For other cases 2,3, 4 and 

5, the results are as shown in Figures (3), (4), (5) and (6), respectively. In all cases of the multi-switching 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

Fig. 2. Multi switched combination synchronization case 1 for states 𝑒112, 𝑒212, 𝑒311, 𝑒412 𝑎𝑛𝑑 𝑒512, when t was activated at 

𝑡 ≥  10. Thesub-plot (f) is the combined state 𝑒112, =  𝑟𝑒𝑑, 𝑒212, =  𝑔𝑟𝑒𝑒𝑛, 𝑒311, =  𝑏𝑙𝑢𝑒, 𝑒412, =  𝑐𝑦𝑎𝑛 and 𝑒512, = magenta 

when 𝑎 =  10, 𝑏 =  8/3, 𝑐 =  28, 𝑑 =  2.25, 𝑝 =  −0.12, 𝑘 =  11.3 and the initial conditions were 𝑥1  =  0.1, 𝑦1  =
 0.1, 𝑧1  =  0.1, 𝑝1  =  0.1, 𝑤1  =  0.1, 𝑥2  =  0.5, 𝑦2  =  0.01, 𝑧2  =  0.8, 𝑝2  =  0.7 𝑎𝑛𝑑 𝑤2 =  0.5, 𝐻 =  0.005 at 𝑡 ≥  10 

 

 

 

 

 

 

Fig. 3. Multi switched combination synchronization case 2 for states 𝑒131, =  𝑟𝑒𝑑, 𝑒233, = 𝑏𝑙𝑢𝑒, 𝑒312, =  𝑔𝑟𝑒𝑒𝑛, 𝑒413, =  𝑐𝑦𝑎𝑛 

and 𝑒551, = magenta when 𝑎 =  10, 𝑏 =  8/3, 𝑐 =  28, 𝑑 =  2.25, 𝑝 =  −0.12, 𝑘 =  11.3 and the initial conditions were 

𝑥1  =  0.1, 𝑦1  =  0.1, 𝑧1  =  0.1, 𝑝1  =  0.1, 𝑤1  =  0.1, 𝑥2  =  0.5, 𝑦2  =  0.01, 𝑧2  =  0.8, 𝑝2  =  0.7 𝑎𝑛𝑑 𝑤2 =  0.5, 𝐻 =
 0.005 at 𝑡 ≥  10 
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Fig. 4. Multi switched combination synchronization case 3 for states (𝑒144  =  𝑟𝑒𝑑, 𝑒214 =  𝑏𝑙𝑢𝑒, 𝑒324  =  𝑔𝑟𝑒𝑒𝑛, 𝑒441   =
 𝑐𝑦𝑎𝑛 𝑎𝑛𝑑 𝑒525   =  𝑚𝑎𝑔𝑒𝑛𝑡𝑎 𝑤ℎ𝑒𝑛 𝑎 =  10, 𝑏 =  8/3, 𝑐 =  28, 𝑑 =  2.25, 𝑝 =  −0.12, 𝑘 =  11.3 and the initial 

conditions were 𝑥1  =  0.1, 𝑦1  =  0.1, 𝑧1  =  0.1, 𝑝1  =  0.1, 𝑤1  =  0.1, 𝑥2  =  0.5, 𝑦2  =  0.01, 𝑧2  =  0.8, 𝑝2  =
 0.7 𝑎𝑛𝑑 𝑤2 =  0.5, 𝐻 =  0.005 at 𝑡 ≥  10 

 

 

 

 

 

 

 

Fig. 5. Multi switched combination synchronization case 4 for states (𝑒155 =  𝑟𝑒𝑑, 𝑒255  =  𝑏𝑙𝑢𝑒, 𝑒355  =  𝑔𝑟𝑒𝑒𝑛, 𝑒455  =
 𝑐𝑦𝑎𝑛 𝑎𝑛𝑑 𝑒555  =  𝑚𝑎𝑔𝑒𝑛𝑡𝑎𝑤ℎ𝑒𝑛 𝑎 =  10, 𝑏 =  8/3, 𝑐 =  28, 𝑑 =  2.25, 𝑝 =  −0.12, 𝑘 =  11.3 and the initial 

conditions were 𝑥1  =  0.1, 𝑦1  =  0.1, 𝑧1  =  0.1, 𝑝1  =  0.1, 𝑤1  =  0.1, 𝑥2  =  0.5, 𝑦2  =  0.01, 𝑧2  =  0.8, 𝑝2  =
 0.7 𝑎𝑛𝑑 𝑤2 =  0.5, 𝐻 =  0.005 at 𝑡 ≥  10 

 

 

 

 

 

 

 

Fig. 6. Multi switched combination synchronization case 5 for states 𝑒115  =  𝑟𝑒𝑑, 𝑒224  =  𝑏𝑙𝑢𝑒, 𝑒333  =  𝑔𝑟𝑒𝑒𝑛, 𝑒442  =
 𝑐𝑦𝑎𝑛 𝑎𝑛𝑑 𝑒551  =  𝑚𝑎𝑔𝑒𝑛𝑡𝑎𝑤ℎ𝑒𝑛 𝑎 =  10, 𝑏 =  8/3, 𝑐 =  28, 𝑑 =  2.25, 𝑝 =  −0.12, 𝑘 =  11.3 and the initial 

conditions were 𝑥1  =  0.1, 𝑦1  =  0.1, 𝑧1  =  0.1, 𝑝1  =  0.1, 𝑤1  =  0.1, 𝑥2  =  0.5, 𝑦2  =  0.01, 𝑧2  =  0.8, 𝑝2  =
 0.7 𝑎𝑛𝑑 𝑤2 =  0.5, 𝐻 =  0.005 at 𝑡 ≥  10 
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6.  Concluding Remarks 

Conclusively, in this paper, we have examined and analysed multi-switching combination synchronization of a 5D hyperchaotic 

system. We extended the usual master-slave synchronization scheme for low dimensional chaotic systems to study the 
synchronization of this higher order systems, we provided various multi switches for the design of the controllers and performed the 

synchronization for combined drivers of the system. We identified 3125 possibleswitches belonging to 52 groupings out of which 
we used 7 groups including 2 special groups for the purpose of illustration. The synchronization in all the cases were examined and 

successfully confirmed by numerical simulations.By implication, signal information can be hidden, stored transmitted via any or 
both of the drivers simultaneously, in split or at different time interval information can be locked up in any of the states in each of 

the cases, with at least five different switch codes. Such information can be transferred, communicated and retrieved by applying the 
control inputs for each or all the dynamical states and respective switches. This would further enhance the security of information 

considering not only the hyperchaotic status of the system in consideration, but also the multiple switches that must be unlocked to 
retrieve the information and the unpredictable nature of the combined drivers in which the information are stored. 
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