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Abstract 
 

 

In this paper, we investigate the single compound synchronization of three 

identical or three non-identical chaotic systems. The proposed scheme employed 

in this paper is among two drive systems and a single response system. For most 

synchronization schemes involving two drive systems and a single response 

system, the combination technique has been given a lot of attention in literature. 

This work aims at using the compound synchronization technique, which is 

different from the combination technique, to achieve the coupling of two drive 

systems. The controllers chosen have been found to be effective from the 

simulated results. 
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1. INTRODUTION 
 

The idea of chaos synchronization between coupled or forced chaotic systems was introduced by Pecora and Carroll [1] and 

ever since then the subject has attracted the interest of many researchers. The subject of chaos synchronization has various 

intriguing features [2] and has been applied to secure communication system, neural network, modeling brain activity just to 

mention a few. Because of the complex nature of dynamical systems, several kinds of chaos synchronization have been 

investigated, such as anti- synchronization [3], partial synchronization [4], phase synchronization[5], generalized 

synchronization [6,7], projective synchronization [8,9], multi-switching synchronization[10], combination-combination 

synchronization[11] compound synchronization[12] etc. Although, many researchers focused on the synchronization between 

a single master system and a single slave system, recently some researchers have extended the idea of chaos synchronization 

to more than two systems [10-12]. Researchers have realized that the synchronization of more than two chaotic systems can 

improve the anti-attack and anti-translated ability in communication system [13]. Despite the fact that researchers have begun 

synchronizing more than two chaotic systems, there are still more possibilities to be explored. Researchers who have worked 

on the synchronization of three chaotic systems studied a two drive system and a single response system, and in their work 

they combined the two drive system by adding, but the synchronization of two drive systems using the compound technique 

(that is coupling of two chaotic systems by multiplication) is very in literature. Recently, several nonlinear oscillators based 

Chua’s circuit, have been proposed [14,15]. These type of nonlinear chaotic oscillators have been applied in the design of 

more complicated time series which finds application in secure communication. Motivated by the above discussions, we 

studied the synchronization of three identical chaotic system  (modified Chua’s circuit system [16]) and three non-identical 

chaotic systems. In this case the two drive systems are combined by multiplication and the final result is used to drive the 

response system in order to achieve synchronization. 

 

2. Single compound synchronization scheme. 

In this section, the single compound synchronization scheme is designed for three chaotic system with two drive systems and 

one response system which can be represented schematically in Fig.1. The two drive systems are given by; 

𝑥̇1𝑑 = 𝑓1𝑥(𝑥1𝑑 , ⋯ ), 𝑥̇2𝑑 = 𝑓2𝑥(𝑥1𝑑 , ⋯ ), … 𝑥̇𝑛𝑑 = 𝑓𝑛𝑥(𝑥1𝑑 , ⋯ )      (1) 

and  

𝑦̇1𝑑 = 𝑓1𝑦(𝑦1𝑑 , ⋯ ), 𝑦2𝑑 = 𝑓2𝑦(𝑦1𝑑 , ⋯ ), … 𝑦𝑛𝑑 = 𝑓𝑛𝑦(𝑦1𝑑 , ⋯ )     (2) 
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and the controlled response system is given by 

𝑧̇1𝑟 = 𝑔1𝑧(𝑧1𝑟 , ⋯ ) + 𝑈1, 𝑧̇2𝑟 = 𝑔2𝑧(𝑧1𝑟 , ⋯ ) + 𝑈2, … 𝑧̇𝑛𝑟 = 𝑔𝑛𝑧(𝑧1𝑟 , ⋯ )+𝑈3    (3) 

where 𝑥𝑖𝑑 , 𝑦𝑗𝑑 , 𝑧𝑘𝑟(𝑖, 𝑗, 𝑘 = 1,2,3, … 𝑛) ∈ 𝑅𝑛 are state space vectors of the systems, 

 𝑓𝑖𝑑 , 𝑓𝑗𝑑 , 𝑔𝑘𝑟:  𝑅𝑛 → 𝑅𝑛          

are three continuous vector functions composed of linear and nonlinear components, and 𝑈𝑖(𝑖 = 1,2,3, … 𝑛):  𝑅𝑛 → 𝑅𝑛  is a 

nonlinear control function. We have used the indices d and r to represent drive and response system respectively. 

Definition 1 

If there exist three constant matrices A, B, C, ϵ Rn and C ≠0, such that 

lim
𝑡→∞

‖𝑒‖ = lim
𝑡→∞

‖𝐴𝑥𝑖𝑑𝐵𝑦𝑗𝑑 − 𝐶𝑧𝑘𝑟‖ = 0        (4) 

Where ‖∙‖ is the matrix norm and A, B, C are scaling matrices, then systems (1), (2) and (3) are said to achieve single compound 

synchronization. 

 

Remark 1 

The constant matrices A,B and C are called the scaling matrices, which are capable of extending the functional diagonal matrices of 

state variables x,y and z respectively. 

3. Single compound synchronization of three identical chaotic systems. 

In this section, we can realize single compound synchronization among three identical modified Chua’s circuit systems. The two 

drive modified Chua’s systems are given as;  

{
𝑥̇1 = 𝑝1(𝑥2 − 2

7
𝑥1

3 + 1

7
𝑥1)

𝑥̇2 = 𝑥1 − 𝑥2 + 𝑥3              
𝑥̇3 = −𝑞1𝑥2                          

         (5) 

{
𝑦̇1 = 𝑝2(𝑦2 − 2

7
𝑦1

3 + 1

7
𝑦1)

𝑦̇2 = 𝑦1 − 𝑦2 + 𝑦3              
𝑦̇3 = −𝑞2𝑦2                           

        (6) 

the drive systems (5) and (6) and the response system (7) exhibit a chaotic attractor at p1=p2=p3 =10 and q1=q2=q3= 100/7 as shown 

in Fig. 2, while the chaotic attractor of the two drive systems is shown in Fig. 3. The third modified Chua’s system which serves as 

the response system is given as 

{
𝑧̇1 = 𝑝3(𝑧2 − 2

7
𝑧1

3 + 1

7
𝑧1)+𝑈1

𝑧̇2 = 𝑧1 − 𝑧2 + 𝑧3  +𝑈2            
𝑧̇3 = −𝑞3𝑧2 +𝑈3                         

        (7) 

where U1, U2 and U3 are the control parameters to be designed. In this work, we assume A= diag(a1 a2 a3), B= diag(b1 b2 b3) and C= 

diag(c1 c2 c3) for the synchronization scheme. 

The error systems is as follows: 

{

𝑒1 = 𝑎1𝑥1𝑏1𝑦1 − 𝑐1𝑧1

𝑒2 = 𝑎2𝑥2𝑏2𝑦2 − 𝑐2𝑧2

𝑒3 = 𝑎3𝑥3𝑏3𝑦3 − 𝑐3𝑧3

         (8) 

The error dynamics of Eqn. (8) is given as  

{

𝑒̇1 = ∅1 − 𝑐1𝑝1(𝑧2 − 2

7
𝑧1

3 + 1

7
𝑧1)−𝑐1𝑈1

𝑒̇2 = ∅2 − 𝑐2(𝑧1 − 𝑧2 + 𝑧3 ) − 𝑐2𝑈2     
𝑒̇3 = ∅3 + 𝑐3𝑞3𝑧2 −𝑐3𝑈3                       

       (9) 

where 

{

∅1 = 𝑎1𝑝1(𝑥2 − 2

7
𝑥1

3 + 1

7
𝑥1)𝑏1𝑦1 + 𝑎1𝑥1𝑏1𝑝2(𝑦2 − 2

7
𝑦1

3 + 1

7
𝑦1)

∅2 = 𝑎2(𝑥1 − 𝑥2 + 𝑥3)𝑏2𝑦2 + 𝑎2𝑥2𝑏2(𝑦1 − 𝑦2 + 𝑦3)                    
∅3 = −𝑎3𝑞1𝑥2𝑏3𝑦3  − 𝑎3𝑥3𝑏3𝑞2𝑦2                                                      

    (10) 

Theorem 1 If the control laws are chosen as follows: 

{

𝑈1 = 1

𝑐1
∅1 − 𝑝3(𝑧2 − 2

7
𝑧1

3 + 1

7
𝑧1) + 1

𝑐1
(𝑎1𝑥1𝑏1𝑦1 − 𝑐1𝑧1) + 1

𝑐1
(𝑎2𝑥2𝑏2𝑦2 − 𝑐2𝑧2)                                     

𝑈2 = 1

𝑐2
∅2 − (𝑧1 − 𝑧2 + 𝑧3) + 1

𝑐2
(𝑎2𝑥2𝑏2𝑦2 − 𝑐2𝑧2) − 1

𝑐2
(𝑎1𝑥1𝑏1𝑦1 − 𝑐1𝑧1) − 𝑞1

𝑐2
(𝑎3𝑥3𝑏3𝑦3 − 𝑐3𝑧3)

𝑈3 = 1

𝑐3
∅3 + 𝑞3𝑧2 + 1

𝑐3
(𝑎3𝑥3𝑏3𝑦3 − 𝑐3𝑧3) + 𝑞1

𝑐3
(𝑎2𝑥2𝑏2𝑦2 − 𝑐2𝑧2)                                                                 

  (11) 

then the drive systems (5) and (6) will achieve single compound synchronization with the response system (7). 

Proof: If we choose a Lyapunov function as follows: 

𝑉(𝑒1, 𝑒2, 𝑒3) = 1

2
(𝑒1

2 + 𝑒2
2 + 𝑒3

2)        (12) 

then 

𝑉̇ = 𝑒1𝑒1̇ + 𝑒2𝑒2̇ + 𝑒3𝑒3̇         (13) 

Putting (9) into (13) 

𝑉̇ = 𝑒1(∅1 − 𝑐1𝑧1̇−𝑐1𝑈1) + 𝑒2(∅2 − 𝑐2𝑧2̇−𝑐2𝑈2) + 𝑒3(∅3 − 𝑐3𝑧3̇−𝑐3𝑈3)    (14)  
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Putting (11) into (14) 

𝑉̇ = 𝑒1(−𝑒1 − 𝑒2) + 𝑒2(𝑒1 − 𝑒2 + 𝑞2𝑒3) + 𝑒3(−𝑞2𝑒3 − 𝑒3)  

𝑉̇ = (−𝑒1
2 − 𝑒2

2 − 𝑒3
2)  

Since 𝑉̇ ≤ 0 as 𝑡 → ∞ then it is negative definite and according to the Lyapunov theorem, ei tends to zero (i=1,2,3), and this means 

that the drive systems (5) and (6) will achieve single compound synchronization with the response system (7). 

Corollary 1 Suppose 𝑎1 = 𝑎2 = 𝑎3 = 0, 𝑏1 = 𝑏2 = 𝑏3 = 0, and 𝑐1 = 𝑐2 = 𝑐3 = 1 if the controllers are chosen as follow: 

{

𝑈1 = −𝑝3(𝑧2 − 2

7
𝑧1

3 + 1

7
𝑧1) − 𝑧1 − 𝑧2                                      

𝑈2 = −(𝑧1 − 𝑧2 + 𝑧3) − 𝑧1 − 𝑧2 + 𝑧3                                      
𝑈3 = +𝑞3𝑧2 − 𝑧3 − 𝑧2                                                                 

     (15) 

then the equilibrium point (0,0,0) of the response system is asymptotically stable. 

Numerical simulations are presented in order to show the effectiveness of the controllers. The fourth-order Runge-Kutta method 

with time step size 0.001 is used. During simulation we assume 𝑎1 = 𝑎2 = 𝑎3 = 1, 𝑏1 = 𝑏2 = 𝑏3 = 1, 𝑐1 = 𝑐2 = 𝑐3 = 1 and the 

initial states for the drive systems are (𝑥1, 𝑥2, 𝑥3) = (0.5, 0.01, 2),(𝑦1, 𝑦2, 𝑦3) = (0.5, 0.01, 2) and (𝑧1 , 𝑧2, 𝑧3) = (0.1, 0.03, 0.5). 

The corresponding numerical results are shown in Figs. 4-7. Fig. 4 shows the time response of the synchronization error 𝑒𝑖(𝑖 =
1,2,3), which implies that drive systems (5) and (6) have achieved single compound synchronization with the response system (7). 

Figs. 5-7 are the time response of states 𝑥1𝑦1, 𝑧1, 𝑥2𝑦2, 𝑧2 and  𝑥3𝑦3, 𝑧3. 

6. Synchronization between three different chaotic system 

We have also applied the single synchronization technique among three different chaotic systems namely the Rossler system, and 

the Chen system which are taken as the drive systems and the Tigan system which is taken as the response system. The two drive 

systems are as follows: 

{

𝑥̇1 = −𝑥2 − 𝑥3                                    
𝑥̇2 = 𝑥1 + 𝑎1𝑥2                                   

𝑥̇3 = 𝑏1 + 𝑥3(𝑥1 − 𝑐1)                      
          (16) 

{

𝑦̇1 = 𝑎2(𝑦2 − 𝑦1)                              

𝑦̇2 = (𝑐2 − 𝑎2)𝑦1 − 𝑦1𝑦3 + 𝑐2𝑦2  
𝑦̇3 = 𝑦1𝑦2 − 𝑏2𝑦3                            

        (17) 

while the response system is as follows: 

{

𝑧̇1 = 𝑎3(𝑧2 − 𝑧1) + 𝑈1                                   

𝑧̇2 = (𝑐3 − 𝑎3)𝑧1 − 𝑎3𝑧1𝑧3 + 𝑈2                  
𝑧̇3 = 𝑧1𝑧2 − 𝑏3𝑧3 + 𝑈3                                    

       (18) 

For chaotic attractor to occur, the Rossler system must have its parameters at  𝑎1 = 0.2, 𝑏1 = 0.2, 𝑐1 = 5.7, and for Chen system 

 𝑎2 = 35, 𝑏2 = 3, 𝑐2 = 28 while for the Tigan system 𝑎3 = 2.1, 𝑏3 = 0.6, 𝑐3 = 30. For convenience of our discussion, we take A= 

diag(α1 α 2 α 3), B= diag(β1 β 2 β3) and C= diag(γ1 γ2 γ3) for the synchronization scheme. 

We have the error system as  

{

𝑒1 = 𝛼1𝑥1𝛽1𝑦1 − 𝛾1𝑧1

𝑒2 = 𝛼2𝑥2𝛽2𝑦2 − 𝛾2𝑧2

𝑒3 = 𝛼3𝑥3𝛽3𝑦3 − 𝛾3𝑧3

         (19) 

The error dynamics of (19) is  

{

𝑒̇1 = ∅1 − 𝛾1𝑎3(𝑧2 − 𝑧1)−𝛾1𝑈1                                 

𝑒̇2 = ∅2 − 𝛾2((𝑐3 − 𝑎3)𝑧1 − 𝑎3𝑧1𝑧3 ) − 𝛾2𝑈2     

𝑒̇3 = ∅3 + −𝛾3(𝑧1𝑧2 − 𝑏3𝑧3) −𝛾3𝑈3                       

      (20) 

Theorem 2 If  the control laws are chosen as follows: 

{

𝑈1 = 1

𝛾1
∅1 − 𝑎3(𝑧2 − 𝑧1) + 1

𝛾1
(𝑎1𝑥1𝑏1𝑦1 − 𝛾1𝑧1) + 𝑎1

𝛾1
(𝑎2𝑥2𝑏2𝑦2 − 𝛾2𝑧2)                                                                     

𝑈2 = 1

𝑐2
∅2 − ((𝑐3 − 𝑎3)𝑧1 − 𝑎3𝑧1𝑧3) + 1

𝛾2
(𝑎2𝑥2𝑏2𝑦2 − 𝛾2𝑧2) − 𝑎1

𝛾2
(𝑎1𝑥1𝑏1𝑦1 − 𝛾1𝑧1) − 𝑏1

𝛾2
(𝑎3𝑥3𝑏3𝑦3 − 𝛾3𝑧3)

𝑈3 = 1

𝑐3
∅3 − (𝑧1𝑧2 − 𝑏3𝑧3) + 1

𝛾3
(𝑎3𝑥3𝑏3𝑦3 − 𝛾3𝑧3) + 𝑏1

𝛾3
(𝑎2𝑥2𝑏2𝑦2 − 𝛾2𝑧2)                                                                 

 (21) 

then the drive systems (16) and (17) will achieve single compound synchronization with the response system (18).  

Proof: If we choose a Lyapunov function as follows: 

𝑉(𝑒1, 𝑒2, 𝑒3) = 1

2
(𝑒1

2 + 𝑒2
2 + 𝑒3

2)        (22) 

then 

𝑉̇ = 𝑒1𝑒1̇ + 𝑒2𝑒2̇ + 𝑒3𝑒3̇         (23) 

Putting (20) into (23) 

𝑉̇ = 𝑒1(∅1 − 𝛾1𝑧1̇−𝛾1𝑈1) + 𝑒2(∅2 − 𝛾2𝑧2̇−𝛾2𝑈2) + 𝑒3(∅3 − 𝛾3𝑧3̇−𝛾3𝑈3)    (24) 

Putting (21) into (24) 

𝑉̇ = 𝑒1(−𝑒1 − 𝑎1𝑒2) + 𝑒2(𝑎1𝑒1 − 𝑒2 + 𝑏1𝑒3) + 𝑒3(−𝑏1𝑒2 − 𝑒3)  

𝑉̇ = (−𝑒1
2 − 𝑒2

2 − 𝑒3
2)  

Since 𝑉̇ ≤ 0 as 𝑡 → ∞ then it is negative definite and according to the Lyapunov theorem, ei tends to zero (i=1,2,3), and this means 

that the drive systems (16) and (17) will achieve single compound synchronization with the response system (18). 
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Corollary 2 Suppose 𝛼1 = 𝛼2 = 𝛼3 = 0, 𝛽1 = 𝛽2 = 𝛽3 = 0, and 𝛾1 = 𝛾2 = 𝛾 = 1 if the controllers are chosen as follow: 

{

𝑈1 = −𝑎3(𝑧2 − 𝑧1) − 𝑧1 − 𝑎1𝑧2                                                                            

𝑈2 = −((𝑐3 − 𝑎3)𝑧1 − 𝑎3𝑧1𝑧3) + 𝑎1𝑧1 − 𝑧2 + 𝑏1𝑧3                                      

𝑈3 = −(𝑧1𝑧2 − 𝑏3𝑧3) − 𝑧3 − 𝑏1𝑧2                                                                       

    (25) 

then the equilibrium point (0,0,0) of the response system (18) is asymptotically stable. 

Numerical simulations are presented in order to show the effectiveness of the controllers. The fourth-order Runge-Kutta method 

with time step size 0.001 is used. During simulation we assume 𝛼1 = 𝛼2 = 𝛼3 = 1, 𝛽1 = 𝛽2 = 𝛽3 = 1,𝛾1 = 𝛾2 = 𝛾 = 1 and the 

initial states for the drive systems are (𝑥1, 𝑥2, 𝑥3) = (0, 0.01, 0),(𝑦1, 𝑦2, 𝑦3) = (0, 0.01, 0) and (𝑧1, 𝑧2, 𝑧3) = (1, −0.4, 3). The 

corresponding numerical results are shown in Figs. 8-11. Fig. 8 shows the time response of the synchronization error 𝑒𝑖(𝑖 = 1,2,3), 
which implies that drive systems (16) and (17) have achieved single compound synchronization with the response system (18). Figs. 

9-11 are the time response of states 𝑥1𝑦1, 𝑧1, 𝑥2𝑦2, 𝑧2 and  𝑥3𝑦3, 𝑧3. 
 

5. Conclusion  

In conclusion, we investigate the synchronization among three identical chaotic systems and non-identical chaotic systems. Our two 

drive systems are compounded instead of combination thereby creating room for more anti-attack ability when secure 

communication is involved. The controllers designed in this work are found to be effective as can be seen from the Figs4-11. 

Therefore this result can be useful in a broad range of application in telecommunication. 
 

 

Fig.1 A schematic for single compound synchronization scheme 

 
Fig.2  Chaotic attractor of the modified Chua’s circuit system. 

 
Fig.3  Chaotic attractor of the two drive modified Chua’s circuit systems. 

 
Fig. 4 Synchronization errors between drive systems (5), (6) and response system (7). 
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Fig. 5 Response for states 𝑥1𝑦1 and 𝑧1 between the drive systems (5), (6) and response system (7). 

 

 
Fig. 6 Response for states 𝑥2𝑦2 and 𝑧2 between the drive systems (5), (6) and response system (7). 

 
Fig. 7 Response for states 𝑥3𝑦3 and 𝑧3 between the drive systems (5), (6) and response system (7). 

 
Fig. 8 Synchronization errors between drive systems (16), (17) and response system (18). 

 
Fig. 9 Response for states 𝑥1𝑦1 and 𝑧1 between the drive systems (16), (17) and response system (18). 

 
Fig. 10 Response for states 𝑥2𝑦2 and 𝑧2 between the drive systems (16), (17) and response system (18). 
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Fig. 11 Response for states 𝑥3𝑦3 and 𝑧3 between the drive systems (16), (17) and response system (18). 
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