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Abstract 
 

 

Rapid surface heating can induce large stresses in solids.  A relatively simple model, 

assuming full constraint in two dimensions and no constraint in the third dimension, can 

adequately model stresses in a wide variety of situations.  This paper derives this simple 

model, and supports it with criteria for its validity.  Phenomena that are considered 

include non-zero penetration depths for the heat deposition, spatial non-uniformity in the 

surface heating, and elastic waves.  Models for each of these cases, using simplified 

geometries, are used to develop quantitative limits for their applicability. 

 

Keyword:   

1. INTRODUTION 
 

Rapid surface heating can induce large stresses in solids, possibly leading to surface roughening, yielding, or fracture.  The determination 
of the stresses for a given marital and set of loads can be quite difficult, requiring a time-dependent, three dimensional analysis [1]  For 
many cases, though a relatively simple model, assuming full constraint in two dimensions and no constraint in the third dimension, can 
adequately model the peak stress [2].  This paper derives such a model, and supports it with criteria for its validity.  Phenomena that are 
considered include non-zero penetration depths for the heat deposition, spatial non-uniformity in the surface heating, and elastic waves.  
Models for each of these cases,using simplified geometries, is used to develop quantitative limits for their applicability. Thermal waves are 
additional phenomenon that can be of concern for very short pulses [3], but the effect is left for future paper.   

With this volumetric enlargement, the elements of a solid undergo greater levels of stress. Thermal stresses can have a significant effect on 
a structure's strength and stability, potentially causing cracks or breaks within certain components [4-5]  Such failures compromise the 
overall design of the structure, which can lead to possible weakening and deformation. 
Residual stress in welding is just one example  [6]. In welding, a bond is formed between metal parts by melting their surfaces and placing 
them together so they are joined when the materials solidify again [7-9].  As the assembled structure cools down, some areas of the welding 
tend to contract more than other areas due to differing thermal expansion coefficients [10] .  This causes residual stresses within the area of 
the weld [11].  
  

2. BASELINE CASE 

The base case considers a solid restrained from deformation in two dimensions and without constraint in the third dimension.  The lack of 
constraint in the third dimension is a result of the free surface.  The full constraint in the other dimensions assumes that the thermal field is 
shallow relative to the depth of the structure, so that cold material below the surface restrains motion of the heated material in that shallow 
layer.  To develop a model for stresses in this situation, we begin with the stress-strain relations: 
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where  is the Lame constant,  is the shear modulus, and  is the thermal expansion coefficient.  This equation assumes that T is the 
temperature difference from a stress-free reference temperature.  Under the assumptions discussed above, we impose the condition that 
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From the last of these conditions, combined with Eq. (1), we find the strain in the x direction to be 
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This can then be substituted into Eq. (1) to find the transverse stresses, which can be written as: 
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where E is the elastic modulus and   is Poisson’s ratio.  To complete the model we need an estimate of the surface temperature induced 

by the surface heating.  Assuming uniform heating applied on a half-space, the surface temperature is as in [1] 
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where q is the surface heat flux, k is the thermal conductivity, and  is the thermal diffusivity.  Combining Eqs. (4) and (5) provides the 
following model for stresses induced by rapid surface heating: 
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This result provides a baseline estimation of the surface stresses induced by rapid surface heating.  It assumes spatial uniformity of the 
applied heat, no volumetric heating below the surface, and it ignores both elastic and thermal waves.  
 

3. DEPOSITION BELOW THE SURFACE 

Most surface heating actually deposits heat as volumetric heating within a thin layer near the surface.  A typical model for volumetric 

heating resulting from energy impinging on a surface is  
xeAQ −=         (7) 

where A is a constant and  is the attenuation coefficient.   To provide the same total heat input as a true surface heating flux q, we must 

enforce   A= q.  The temperature distribution resulting from volumetric heating of this type is  : 
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where  kt = , representing the ratio of the diffusion length in time t to the characteristic deposition length, and  =x.  The surface 

temperature resulting from this solution is  
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The ratio of the surface temperature from Eq. (9) to the surface temperature due to surface heating (Eq. 5) is  
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The result of Eq. (10) was determined using the asymptotic result:[6] 
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4. Spatial Non-Uniformity in Surface Heating 

Quite often the heating distribution over the surface is non-uniform.  For example, many lasers produce a Gaussian heating distribution 

when the laser is normally incident on a flat surface.  To explore this effect, we consider the solution by Hector and Hetnarski [2].  This 
gives the peak stress due to laser heating with a Gaussian shape on a half-space as (at  r < z < 0): 
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In these equations, the starred quantities are all dimensionless, according to [3] 
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Here  and  are integration variables, 
cK  is a measure of the width of the Gaussian laser profile on the surface, and 0q  is the peak surface 

heating.  Putting Eqs. (13 – 15) together gives 
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Carrying out this integration gives: 
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To compare this to our simple analytical solution, we can write the stress from Eq. (6) using the dimensionless variables in Eq. (16), giving 




*
* 8

t
base −=

       (19)

 

Hence, the ratio of the stress due to a Gaussian heating profile to that of the uniform heating profile is  
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This ratio is a function of the dimensionless time for several values of the Poisson ratio. 
 A similar approach can be taken with the temperature.  Hector and Hetnarski ]2] give the temperature as  
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Carrying out this integral gives  
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In the dimensionless units given in Eq. 16, the one-dimensional surface temperature from Eq.{ 5) becomes  
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Hence, the ratio of the temperature due to the Gaussian heating profile to that of the uniform profile is  
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V. Elastic Waves 

 
To model elastic waves, we must include inertial terms in the stress equations.  To estimate their effects, consider thermoelastic 
deformation of a half-space, with x denoting the perpendicular distance from the surface.  Following Sternberg and Chakravor [3],  one can 

define the following dimensionless variables 
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Here c is the wave speed and  is the density of the solid.  With these definitions, the governing equations then become: 

2

2

2

2

2

2

2

2

ˆˆ

ww

xx

w

t 


















+




=








=





       (26)

 

It is assumed here that the only non-zero displacement is perpendicular to the surface of the half-space.  that is, stresses, and time 
derivatives are nonexistent.  The boundary conditions are that the temperatures and stresses vanish at x equals infinity, while at the surface 
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The solution for the dimensionless temperature is given by [1, 4] 
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and the stresses can be found to be 
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This completes our solution for the stresses induced by surface heating on a half-space. 

Since the longitudinal stress ( )x̂  is zero at the surface, the transverse stress ( )ŷ  at the surface is given by  
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The peak stress in the wave occurs at w = .  Substituting this into Eqs. (29) and (30) gives 
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For long times the longitudinal stress approaches -1, while the transverse stress approaches (-v). 
Typical wave shapes are shown in Fig. 4, which plots the two dimensionless stresses as a function of distance from the surface.  These 
results are given for dimensionless times of 0.5, 1, and 10.  As one would expect, the stresses are all compressive, and the peak stress in the 

wave occurs at w = .  Except at early times, the transverse stress peaks at the surface because that’s where the temperature peaks.  At 

early times, there is a local peak in the transverse stress where the wave front lies, and at this point the transverse stress is less than the 
longitudinal stress.  

The peak in the longitudinal stress occurs at w = , while the peak transverse stress occurs at the surface (except at short times).  These 

peaks are plotted in Fig. 5, which gives both stresses at w =  along with the surface stress at the same dimensionless time.  It can be 

seen that beyond a dimensionless time of approximately 4, the surface stress exceeds the stress at the wave peak.  
The ratio of the longitudinal stress at the wave peak to the surface stress is given by: 
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This ratio is plotted in Fig. 6.  For large times, this ratio is 0.  As w  approaches 0, this ratio approaches 1.10/(1-2v). 

5. Conclusions 

For most situations, a simple formula provides an adequate representation of the thermal stress induced in a rapidly heated solid.  When this 
formula is not valid, there are often simple analytical representations of these stresses.  This paper provides these formulas, along with their 
regions of validity. 
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