
127 
 

Transactions of the Nigerian Association of Mathematical Physics 

Volume 5,(September and November, 2017), pp127 –140  

© Trans. of NAMP 
 

Variable Viscosity, Nonlinear Thermal Radiation And Slip Effects On Unsteady MHD Micropolar 

Fluid in a Porous Medium in the Presence of Thermophoresis and Ohmic Heating 

Yusuf T. A. and Gbadeyan J. A. 

 

Department of Mathematics, University of Ilorin, Ilorin, Nigeria 

 
 

Abstract 
 

 

In this study, the effect of variable viscosity, Soret number and non-linear thermal 

radiation on an unsteady hydromagnetic mixed convection heat and mass transfer of a 

micropolar fluid past a vertical stretching sheet through a porous medium with slippage, 

thermophoresis, Ohmic heating and heat source is investigated. An optically thick limit 

approximation for radiation heat flux is assumed. The governing boundary layer 

equations for the model are reduced using similarity transformation to a set of coupled 

nonlinear ordinary differential equations The transformed equations are then integrated 

numerically using the fourth-fifth order Runge-Kutta-Fehlberg integration scheme. 

Influence of various physical parameters on the dimensional velocity, microrotaion, 

temperature, concentration, velocity gradient, wall coupled stress, temperature gradient 

and concentration gradient are shown graphically and discussed in detail. The results 

obtained are compared with those from previous studies and found to be in good 

agreement. It is noticed that the rate of heat transfer at the surface decelerates with an 

increase in a thermophoretic parameter, while the reverse is noticed for the local 

Sherwood number. 
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Nomenclature  

: Unsteadiness parameter 

𝑎: Constant [𝑚−1] 

𝑏: Constant [𝑚−1𝜃] 

𝐵0: Magnetic field strength 

𝐶𝑓𝑥: Coefficient of local skin-friction 

𝐶𝑝: Specific heat at constant pressure[𝐽𝐾𝑔−1 𝐾−1] 

𝐶: Concentration of the fluid 

𝐶𝑤: Wall concentration 

𝐶∞: Concentration of the fluid far away from the sheet 

𝐷𝑚: Coefficient of mass diffusivity 

Ec: Eckert number 

𝑓: Non-dimensional velocity component 

𝑔: Acceleration due to gravity [𝑚−2] 
𝑠: Non-dimensional velocity slip 

𝐺𝑟: Grashoff number for heat transfer 

𝐺𝑚: Grashoff number for mass transfer 

𝑗:    Microinertia density 

𝑘0: Permeability of the porous medium 

𝑘1: Rosseland mean absorption coefficient[𝑚−1] 
𝑘∞: Thermal conductivity of the fluid[𝑊𝑚−1 𝐾−1] 
𝐿: Dimensional slip parameter 

𝐻: Magnetic field 

𝑁: Dimensional Microrotation component[𝑟𝑎𝑑 𝑠−1] 
𝑅: Thermal radiation parameter 
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𝑁𝑢𝑥: Nusselt number 

𝑝: Pressure[𝑁𝑚−2] 
𝑃𝑟: Prandtl number 

𝑄0: Heat source parameter 

𝑞𝑚: Mass flux at the wall[𝑚𝑠−1] 
𝑞𝑟: Radiative heat flux [𝑊𝑚−2] 
𝑅𝑒𝑥: Local Reynolds number 

𝑠:     Dimensionless velocity slip parameter 

𝑆𝑐:   Schmidtl number 

𝑆𝑜:   Soret number 

𝑆ℎ𝑥:  Local Sherwood number 

𝑡:      time[𝑠] 
𝑇:    Temperature [𝐾] 
𝑇𝑓:   Reference temperature 

𝑇𝑟:   Temperature ratio parameter 

𝑇𝑤: Wall temperature [K] 

𝑇∞: Temperature of the fluid far away from the sheet[𝐾] 
𝑢, 𝑣: Velocities in 𝑥 and 𝑦 directions[𝑚−1] 
𝑥, 𝑦: Axial and perpendicular coordinates [𝑚]. 
 

Greek Symbols 

𝛿: Permeability parameter 

𝛽: Material parameter 

𝜇: Dynamic viscosity 

𝜎1: Stefan–Boltzmann constant 

𝛽1: Volumetric coefficient of the thermal expansion[𝐾−1] 
𝛽2: Volumetric coefficient of the concentration expansion 

𝜂: Non-dimensional distance 

𝜑: Porosity of the porous medium  

𝜐: Kinematic viscosity [𝑚2 𝑠−1] 
𝜌: Fluid density [𝑘𝑔𝑚−3] 
𝜃: Non-dimensional temperature 

𝜎: Electrical conductivity of the fluid 

𝜙: Non-dimensional concentration 

𝛼: Variable viscosity parameter. 

𝜅: Vortex viscosity 

𝜏: Thermophoresis parameter 

Subscripts 

∞: Free stream condition 

𝑤: Condition at the wall of stretching sheet. 

Superscript 

 : Derivative with respect to 
 

 
 

Introduction 
The study of heat and mass transfer of fluid flow over a stretching sheet has recently gained interest of a number of researchers due 

to its vast application in engineering and industries, this include, the production of glass fiber and polymer sheets, the cooling and 

drying of paper and textiles and a lot more. It is also applicable especially in many metallurgical processes that involve cooling of 

continuous strips or filament by drawing them through a quiescent fluid and in the process of drawing, these filaments are 

sometimes stretched.  Other related applications can be found in Refs [1-2]. 

Micro fluids are those which contain micro-constituents and can undergo rotation. The theory of micropolar fluid model introduced 

in [3] exhibits the local effect arising from the micro structure and micro motion of the fluid elements. Its practical application 

includes colloidal suspension, solidification of liquid crystals, extrusion of polymer fluids, animal blood etc. This type of fluid has 

been studied by many researchers in various geometries. Some important contributions on micropolar fluid flow over a stretching 

surface under different conditions include the work of [4] who investigated the flow of micropolar fluid past a porous stretching 

sheet. Rahman et al [5] also studied the heat transfer in micropolar fluid along a linear stretching sheet with temperature dependent 

viscosity and variable surface temperature. Lately, [6] studied the effect of chemical reaction and double stratification on MHD free 

convection in a micropolar fluid with heat generation and Ohmic heating. In another work of [7], effect of thermal radiation in 

mixed convention of a micropolar fluid from an unsteady stretching surface with viscous dissipation and heat generation/absorption 

has been analyzed.  

The application of studies involving the flow of micropolar fluid through various porous media can be found in te production of 

aerogels, alloys, polymer blends and foamed solids. Turyilmazoglu [8] examined the flow of a micropolar fluid due to porous 

stretching sheet and heat transfer. Zaib and Shafie [9] studied the heat and mass transfer in a MHD non-Darcian micropolar fluid 

over an unsteady stretching sheet with non-uniform heat source/sink and thermophoresis. 
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Most flows of micropolar fluid have been studied under no-slip boundary condition. Slip phenomena occurrence of micropolar fluid 

on MHD mixed convection stagnation point flow towards a shrinking vertical sheet have been studied in [10]. Zaib and Shafie [11] 

also investigated the Slip effect on unsteady MHD stagnation-point flow of a micropolar fluid towards a shrinking sheet with 

thermophoresis. 

Thermophoresis can be described as a mechanism at which colloidal particles migrate due to temperature gradient [12]. This 

phenomenon causes small particles to move away from a high temperature surface toward a low temperature surface. The velocity 

attained and the forces exerted by the suspended particles caused by change in temperature are known as thermophoretic velocity 

and thermophoretic forces respectively. Some of the practical applications of this mechanism are the removal of small particles 

from a gas particle trajectory in combustion devices, in the micro electronics manufacturing and in nuclear reactor safety. Talbot et 

al [13] investigated thermophoresis of particles in a heated boundary layer. In the work of [14] thermophoresis deposition of 

particles in laminar and turbulent flows was examined. Effect of thermophoresis particle deposition in free convection boundary 

layer from a vertical flat plate embedded in a porous medium is studied by Chamkha and Pop [15]. Recently, [12] analyzed 

thermophoresis and MHD mixed convection three dimensional flow of viscous elastic fluid with Soret and Dufour effects using 

Homotopy analysis method. Other studies of mass and heat transfer characteristics of fluid flow over a stretching /shrinking surface 

with thermophoresis include those in [16-19]. 

All of the above mentioned studies considered mass and heat transfer of micropolar fluid flow in the presence of thermophoresis in 

various geometries with uniform viscosity. But in many practical situation, these physical properties changes significantly with the 

temperature. For example, the effect of thermophoresis and chemical reaction on MHD micro polar fluid flow with variable fluid 

properties is been studied in [20]. Furthermore, Saddeek [21] employed finite element method to analyze the effect of chemical 

reaction, variable viscosity, thermophoresis and heat and mass transfer over a heat surface. Rahmon et al [5] have also studied the 

heat transfer in micropolar fluid along a linear stretching sheet with temperature dependent viscosity and variable surface 

temperature. 

The effect of thermal radiation has a vital role in the thermal performance of working fluids. Its importance is seen in variety of 

applications such as gas turbine, space technology, nuclear power plants and also processes in engineering field where high 

temperature is required. At high temperature, thermal radiation influences the heat transfer and temperature distribution of a fluid 

through different geometries. Mohamed and Ado-Dahab [22] investigated chemical reaction and thermal radiation effect on the heat 

and mass transfer in the MHD micropolar flow over a vertical moving porous medium with heat generation. Few studies in this 

direction are [7, 23-26]. All these aforementioned studies used the optically thick limit approximation to simulate the thermal 

radiation. They also assumed small temperature difference within the flow to linearize the radiative heat flux gradient. In other 

words they did not consider non-linear thermal radiation. 

 Convection problems associated with fluid flow, heat and mass transfer by involving non-linearized radiative heat flux gradient 

was carried out in [27] who studied the effect of thermal radiation on entropy generation due to micropolar fluid flow along a wavy 

surface. Uddin et al [28] discussed the radiative convective nanofluid past a starching/shrinking sheet with slip effects. Recently, 

[29, 30] have investigated the effect heat transfer of a radiative MHD fluid flow taking non-linear thermal radiation into 

consideration. They have all reported that the presence of nonlinear thermal radiation significantly influences the fluid temperature. 

Mass diffusion due to temperature also known to be the Soret number effect has also had its relevance in industries. Studies of Soret 

effect in various convective flows include the work in Refs. [31-34]. However, none of these considered the effect of Soret and 

thermophoresis on micropolar fluid flow and heat transfer. 

The aim of this work is therefore to study the effect of velocity slip and Soret number in hydro magnetic micropolar fluid flow in a 

porous medium over an unsteady vertical stretching sheet with Ohmic heating and thermophoresis. This problem is relevant in 

chemical engineering fluids including manufacturing of lubricants and polymeric suspensions. Here, the non linear radiation heat 

flux is adopted. The governing nonlinear partial differential equations are transformed to a set of non linear ordinary differential 

equation and then solved numerically by fourth-fifth order Runge-Kutta-Fehlberg scheme [35]. The effect of various controlling 

parameters (namely, variable viscosity parameter, Hartman number, solutal and thermal buoyancy parameters, velocity slip, Darcy 

number, radiation conduction, heat source parameter, Soret number, Schmidt number and thermophoretic parameter) on the 

dimensionless velocity, temperature, angular velocity and concentration profiles are graphically analyzed and represented in table.        

Formulation of the problem 

The heat and mass transfer of an unsteady two dimensional mixed convective boundary layer slip flow of a viscous incompressible 

electrically conducting micropolar fluid over an impermeable stretching sheet through a  porous medium under the influence of 

thermophoresis, non-linear thermal radiation, heat source and transverse magnetic field is considered. The flow model is shown in 

Fig 1. The flow is assumed to be in positive  𝑥 direction and this is taken along the plate while the positive 𝑦 coordinate is normal to 

it. The flow taken w is caused by the stretching of the sheet which moves in its own plane with surface slip velocity 𝑈𝑤. A uniform 

magnetic field of strength 𝐵0 is applied normally to the flow and the electrical conductivity is assumed to be constant. The Ohmic 

heating due to the application of magnetic field is also considered. The temperature dependent viscosity and the Darcy resistance 

terms are taken into account. 
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Furthermore, the surface temperature 𝑇𝑤 of the stretching sheet is assumed to vary with distance 𝑥 and time 𝑡, and 𝑇∞ is the ambient 

fluid temperature. The Soret effect is also considered in this model. 

Under these assumptions the unsteady boundary layer equations [7, 9] are 

Continuity equation 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (1) 

Momentum equation 

(
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) =

𝜕

𝜕𝑦
((

𝜇(𝑇) + 𝜅

𝜌
)

𝜕𝑢

𝜕𝑦
) − (𝜎𝐵0

2 +
𝜇(𝑇)𝜙

𝑘0
) 𝑢 −

𝜅

𝜌

𝜕𝑁

𝜕𝑦
+ 𝑔𝛽1(𝑇 − 𝑇∞) + 𝑔𝛽2(𝐶 − 𝐶∞) (2) 

Heat balance equation 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝑘

𝜕2𝑇

𝜕𝑦2
+ 𝑄0(𝑇 − 𝑇∞) −

𝜕𝑞𝑟

𝜕𝑦
+ 𝜎𝐵0

2𝑢2 + (𝜇(𝑇) + 𝜅) (
𝜕𝑢

𝜕𝑦
)

2

 

 

(3) 

Angular momentum equation 

𝜌𝑗 (
𝜕𝑁

𝜕𝑡
+ 𝑢

𝜕𝑁

𝜕𝑥
+ 𝑣

𝜕𝑁

𝜕𝑦
) = 𝑗

𝜕

𝜕𝑦
((𝜇(𝑇) +

𝜅

2
)

𝜕𝑁

𝜕𝑦
) − 𝛿 (2𝑁 +

𝜕𝑢

𝜕𝑦
) 

 

(4) 

Mass transfer equation 
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝑚

𝜕2𝐶

𝜕𝑦2
+

𝐷𝑚𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2
−

𝜕(𝑉𝑇𝐶)

𝜕𝑦
 (5) 

The appropriate boundary conditions is presented  [7 9] as 

𝑢 = 𝑈𝑤(𝑥, 𝑡) + 𝐿
𝜕𝑢

𝜕𝑦
, 𝑣 = 0, 𝑁 = 0, 𝑇 = 𝑇𝑤(𝑥, 𝑡), 𝐶 = 𝐶𝑤(𝑥, 𝑡) at     𝑦 = 0 (6) 

𝑢 → 0, 𝑁 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞    at    𝑦 → ∞ (7) 

Where 𝑢 and 𝑣 are the components of velocity in 𝑥 and 𝑦 axis respectively, 𝐶𝑝is the specific heat at constant pressure and 𝜌 is the 

fluid density. The vortex viscosity is denoted by  𝜅, 𝑗 is the microinertia density, 𝛿 is the spin-gradient viscosity. 𝜙 is the porosity of 

the porous medium, 𝑘0 the permeability of the porous medium, 𝜈 is the kinematic viscosity, 𝜎 is the parameter denoting the 

electrically conductivity of the fluid, 𝑇 is the dimensional fluid temperature. 𝑔 is the gravitational acceleration, 𝛽1,2 are the 

volumetric coefficients of the thermal expansion and volumetric expansion respectively. 𝑞𝑟 is the radiative heat flux, 𝐶, 𝐶𝑤 and 𝐶∞ 

are the dimensional fluid concentration, surface concentration and the ambient concentration respectively. 𝐷𝑚 is the coefficient of 

mass diffusitivity, 𝑇𝑚 is the mean fluid temperature, 𝐾𝑇 is the thermal diffusivity ratio.  

Assuming that the temperature dependent viscosity 𝜇(𝑇) which varies as an exponential function of temperature of the form [36] 

𝜇(𝑇) = 𝜇∞𝑒𝜖(𝑇−𝑇∞)  (8) 

where 𝜖 is the viscosity variation parameter and 𝜇∞ is the dynamic viscosity of the ambient fluid. The radiative heat flux 𝑞𝑟 is 

employed according to the Rosseland diffusion approximation for radiation. For an Optically thick boundary layer the radiative heat 

flux is defined [27, 28] as 

𝑞𝑟 = −
4𝜎1

3𝜒

𝜕𝑇4

𝜕𝑦
=

16𝜎1

3𝜒
𝑇3

𝜕𝑇

𝜕𝑦
 (9) 

here 𝜎1 is the Stefan-Boltzman constant, 𝜒 is the mean absorption coefficient. Furthermore, the effect of thermophoresis is usually 

prescribed by the mean velocity, which a particle acquires when exposed to a temperature gradient in the 𝑦-direction. This is usually 

very much larger than in the 𝑥-direction, and therefore only the thermophoretic velocity in the 𝑦-direction is considered [9] and 

denoted by 𝑉𝑇. The thermophoretic velocity 𝑉𝑇 in equation (5) is expressed [9] as follows 
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In the above expression Tf and Δ are the temperature reference and thermophoretic coefficient with a range of values from 0.2 

to 1.2. The thermophoretic coefficient ∆ is defined [9, 13] as 

∆=
2𝑐𝑠(𝜆𝑔 𝜆𝑝⁄ + 𝑐𝑠𝐾𝑛)[1 + 𝐾𝑛(𝑐1 + 𝑐2𝑒−(𝑐3 𝐾𝑛⁄ ))]

(1 + 3𝑐𝑟𝐾𝑛)[1 + 2 𝜆𝑔 𝜆𝑝⁄ + 2𝑐𝑡𝐾𝑛]
 (11) 

  

where 𝑐1, 𝑐2, 𝑐3, 𝑐𝑟 , 𝑐𝑠 , 𝑐𝑡 are constants, 𝐾𝑛 is the Knudsen number, while 𝜆𝑔 and 𝜆𝑝 are the thermal conductivities of the fluid and 

the diffused particles respectively. 

Following [20], we introduce the following similarity transformations,  

𝑢 =
𝑎𝑥

1 − 𝑐𝑡
𝑓 ′(𝜂) = 𝑈𝑤𝑓 ′(𝜂), 𝑣 = −√

𝑎𝜈

1 − 𝑐𝑡
𝑓(𝜂), 𝑁 = √

𝑎3

𝜈(1 − 𝑐𝑡)3
𝑥 𝜔(𝜂),

𝑇 = 𝑇∞ +
𝑏𝑥

𝜈(1 − 𝑐𝑡)2
𝜃(𝜂) = 𝑇𝑤𝜃(𝜂),  

 𝐶 = 𝐶∞ +
𝑑𝑥

𝜈(1 − 𝑐𝑡)2
𝜙(𝜂) = 𝐶𝑤𝜙(𝜂), 𝜂 = √

𝑈𝑤(𝑥, 𝑡)

𝜈𝑥
𝑦. 

 

(12) 

Here (′) denotes the differentiation with respect to 𝜂. 𝑎, 𝑏, 𝑐, 𝑑 are constants with dimension per time. The expressions for 𝑈𝑤(𝑥, 𝑡), 

𝑇𝑤(𝑥, 𝑡) and 𝐶𝑤(𝑥, 𝑡) are valid for 𝑡 = 0 or 𝑡 = 𝑐−1. Using equation (12) on equations (1) - (6), it is found that the continuity 

equation (1) is identically satisfied. Also making use of equations (8), (9) and (10) the momentum equation, angular momentum 

equation, heat balance equation and the concentration equation in dimensionless form yields respectively, 

(𝑒−𝛼𝜃 + 𝐾)𝑓 ′′′ − 𝑓 ′′(𝛼𝜃′ − 𝑓) − (𝑓 ′)2 −
𝐴

2
(𝜂𝑓 ′′ + 2𝑓 ′) + 𝐾𝜔′ − (𝐻 + 𝜆𝑒−𝛼𝜃)𝑓 ′ + 𝐺𝑟𝜃 + 𝐺𝑐𝜙 = 0 (13) 

(𝑒−𝛼𝜃 +
𝐾

2
) 𝜔′′ − 𝛼𝜃′𝜔′ + (𝑓𝜔′ − 𝑓 ′𝜔) −

𝐴

2
(3𝜔 + 𝜂𝜙 ′) − 𝐾𝐵(2𝜔 + 𝑓′′) = 0 

(14) 

 

 

 

 

 

 

 

 

 

 

𝐴 =
𝑐

𝑏
 is the unsteady parameter, 𝑀 =

𝜎𝐵0
2

𝜌𝑏
  is the Hartmann number, 𝑃𝑟 =

𝜇∞𝐶𝑝

𝑘
 is the Prandtl number, 𝛿 =

𝜈𝜙

𝑘0𝑏
 denotes the Porosity 

parameter, 𝑇𝑟 =
𝑇𝑤

𝑇∞
 is the wall temperature excess ratio parameter, and the radiation parameter is denoted as 𝑁 =

𝜒𝑘

4𝜎𝑇∞
3, 𝐺𝑟 =

𝑔𝛽1𝑏

𝑎2  

and 𝐺𝑐 =
𝑔𝛽2𝑏

𝑎2  are the thermal Grashof number and solutal Grashof number parameters respectively. 𝐸𝑐 =
𝑈2

𝑤

𝐶𝑝(𝑇𝑤−𝑇∞)
 is the Eckert 

number, 𝑆𝑐 =
𝜈

𝐷𝑚
 is the Schmidt number, and 𝑆𝑜 =

𝐷𝑚𝐾𝑇(𝑇𝑤−𝑇∞)

𝜈𝑇𝑚(𝐶𝑤−𝐶∞)
 is the Soret number, the thermophoretic parameter is denoted as 

 𝜏 = −
Δ(𝑇𝑤−𝑇∞)

Tf
, 𝐾 =

κ

𝜇∞
 is the microrotation parameter, while 𝛼 =

𝜖𝑏𝑥

𝜈(1−𝑐𝑡)2 is the dimensionless variable viscosity parameter. 

The corresponding dimensionless velocity slip, concentration slip and the convective boundary conditions are as follows 

𝑓 ′(𝜂) = 1 + 𝑠𝑓 ′′,   𝑓(𝜂) = 0, 𝜔(𝜂) = 0, 𝜃(𝜂) = 1,   𝜙(𝜂) = 1   at     𝜂 = 0 (17) 

𝑓 ′(𝜂) = 0,    𝜔(𝜂) = 0,    𝜃(𝜂) = 0,   𝜙(𝜂) = 0              at           𝜂 → ∞ (18) 

where the velocity slip parameter 𝑠 = 𝐿√
𝑎

𝜈(1−𝑐𝑡)
. It is interesting to note that the model present study reduces to Singh and Kumar 

[7] in the absence of mass transfer and by letting 𝑠 = 𝛼 = 𝐺𝑐 = 𝑘0 = 𝐻 = 0 and 𝑇𝑟 = 1. Physical quantities of practical interest in 

this problem are the local Skin friction coefficient 𝐶𝑓𝑥 , local wall couple stress coefficient 𝑀𝑤𝑥 , local Nusselt number 𝑁𝑢𝑥 and local 

Sherwood number 𝑆ℎ𝑥 which are defined as follows [6, 28]. 
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𝑉𝑇 = −
Δ𝜈

Tf

𝜕𝑇

𝜕𝑦
  (10) 

𝜃′′ + 𝑃𝑟 [(𝑓𝜃′ − 𝑓′𝜃) −
𝐴

2
(4𝜃 + 𝜂𝜃′) + 𝑀(𝑓′)2 + 𝐸𝑐(𝑒−𝛼𝜃 + 𝐾)(𝑓′′)2] +

4

3𝑁
((1 + 𝜃(𝑇𝑟 − 1)𝜃)𝜃′)

′
+ 𝑄𝜃 = 0 (15) 

𝜙 ′′ + 𝑆𝑐 [(𝑓𝜙 ′ − 2𝑓′𝜙) − 𝜏(𝜃′𝜙′ + 𝜃′′𝜙) −
𝐴

2
(𝜂𝜙 ′ + 3𝜙)] + 𝑆𝑐𝑆𝑜𝜃′′ = 0 

 

(16) 
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where 𝑅𝑒𝑥
0.5 =

𝑈𝑤(𝑥,𝑡)𝑥

𝜈
 is the local Reynolds number. 

Numerical Solution 

In order to solve the set of nonlinear differential equations (13) - (16), with the corresponding boundary conditions (17) and (18) 

numerically. The fourth-fifth order Runge-Kutta-Fehlberg integration scheme was used with the help of MAPLE algebraic package. 

In this method, the problem domain is discretized and the boundary conditions for 𝜂 = ∞ are replaced by 𝑓 ′(𝜂𝑚𝑎𝑥) = 0,  
𝜔′(𝜂𝑚𝑎𝑥) = 0,  𝜃′(𝜂𝑚𝑎𝑥) = 0, and 𝜙 ′(𝜂𝑚𝑎𝑥) = 0. The value of 𝜂∞ is chosen to be a large value for which the boundary conditions 

in equation (18) are satisfied. Therefore 𝜂∞ is replaced by 𝜂22 and the step size ∆𝜂 = 0.001. The algorithm in MAPLE 18 package is 

strongly built and it has been well tested for its accuracy in [28, 35]. 

Numerical Result and Discussion 

In this paper, the study of effects of variable viscosity, thermophoresis, Soret and thermal radiation on mixed convection flow of a 

micropolar fluid from an unsteady stretching surface with viscous dissipation and heat generation is carried out. The non-

dimensional governing equations are transformed using the similarity transformation and are solved numerically using the fifth 

order Runge-Kutta-Fehlberg method (R.K.F M) along with shooting technique. The effect of dimensionless governing parameters 

on the flow, heat and mass transfer are discussed with the aids of graphs. The values of the skin friction coefficient, wall couple 

stress coefficient, local Nusselt number and Sherwood numbers are computed numerically in Table 2.  In order to get the clear 

picture of the physical problem, the numerical results are obtained for different values of governing parameters for velocity, 

microrotation, temperature and concentration profiles. The default values used throughout the simulation are 𝐸𝑐 = 0.05, 𝜆 = 0.5, 
𝑠 = 0.1, 𝐻 = 2, 𝐴 = 0.5, 𝑅 = 0.5, 𝑃𝑟 = 0.72, 𝐾 = 0.2, 𝐺𝑟 = 0.2, 𝐺𝑐 = 0.2, 𝛼 = 0.5, 𝑄0 = 0.1, 𝑆𝑐 = 0.2, 𝑆𝑜 = 0.1, 𝜏 = 0.2, and 

𝑇𝑟 = 2. 
 

Code Validation 

In to order validate the accuracy of the present code, the non-dimensional governing equations (13) – (16) with the corresponding 

boundary conditions (17) – (18) are reduced to the corresponding set of equations governing the problem in [6] in the absence of 

mass transfer, MHD porous medium, and non-linear thermal radiation. The results obtained from the reduced equation were 

compared with those obtained in [6] as shown in Table 1. It is seen that the results agree well for the set of varying parameters and 

hence justify the use of the code for this present model. 

The dimensionless velocity for various values of porous medium parameter 𝜆 and velocity slip parameter 𝑠 are presented in Fig 2. 

The velocity profile decreases with increase in porous medium parameter 𝜆. This is as a result of the fact that the presence of porous 

medium enhances the resistive (drag) force motion which in turns decelerates the velocity and the angular velocity fields in the 

boundary layer. It is shown from the same plot that increasing the velocity slip parameter 𝑠 decelerates the flow in the boundary 

layer. 

Fig 3 depicts the velocity profile for different values of Hartmann number H. It is observed that an increase in Hartmann number 

decreases the velocity distribution profile. Also the momentum boundary layer thickness decreases as parameter H increases. The 

reason behind this trend is the force produced by the applied magnetic field normal to the fluid. This force called Lorentz force acts 

in opposite direction to the flow and hence results in decreasing the velocity profile. The effect of varying values of variable 

viscosity parameter 𝛼 is also illustrated in the same figure. It is seen that variable viscosity parameter 𝛼 increases the velocity 

profile. This is because increasing variable viscosity parameter 𝛼 reduces the fluid viscosity. The fluid’s resistance to flow therefore 

reduces which in turns enhances the fluid velocity.  

Figs 4 and 5 present the influence of solutal Grash of number 𝐺𝑐 and thermal Grashof number  𝐺𝑟 on velocity and microrotation 

(angular velocity) profiles respectively. It is observed in both cases that an upward acceleration of the fluid in the vicinity of the 

vertical wall is noticed with increasing intensity of buoyancy forces. Also in Fig 6, Effect of Hartmann number 𝐻 and variable 

viscosity parameter 𝛼 on the microrotation profile is shown. Observations similar to Fig 4 are noticed. The dimensionless velocity 

for various values of porous medium parameter 𝜆 and velocity slip parameter 𝑠 are depicted in Fig 7. The microrotation profile 

decreases with increase in porous medium parameter 𝜆. The presence of porous medium enhances the resistive (drag) force motion 

which in turns decelerates the velocity and the angular velocity fields in the boundary layer. It is shown from the same plot that 

increasing the velocity slip parameter 𝑠 accelerates the flow in the boundary layer. 
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𝐶𝑓𝑥 =
2

𝜌𝑈𝑤
2 ((𝜇(𝑇) + 𝛿)

𝜕𝑢

𝜕𝜂
+ 𝛿𝑁)|

𝑦=0

= 2(𝑒−𝛼𝜃 + 𝐾)𝑓 ′′(0),   

𝑀𝑤𝑥 = 𝛾 (
𝜕𝑁

𝜕𝑦
)|

𝑦=0

=
𝛾𝑎𝑈𝑤

𝜈(1 + 𝑐𝑡)
𝜔′(0) 

𝑅𝑒𝑥
−0.5𝑁𝑢𝑥 =

𝑥

𝑘(𝑇𝑤 − 𝑇∞)
− 𝑘 [1 +

16𝜎

3𝜒𝑘∞

𝑇3] (
𝜕𝑇

𝜕𝑦
)|

𝑦=0

= ((1 +
4

3𝑁
(1 + (𝑇𝑟 − 1)𝜃(𝜂))

3
) 𝜃(𝜂)) 𝜃′(𝜂)|

𝜂=0

,   

𝑅𝑒𝑥
−0.5𝑆ℎ𝑥 =

𝑥

𝐷𝑇(𝐶𝑤 − 𝐶∞)
= −𝜙′(𝜂)|𝜂=0 

 (19) 
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Fig 8 depicts the variation of micropolar parameter 𝐾 and the unsteadiness parameter 𝐴 on the microrotation profile. It is observed 

in this figure that the maximum point is shifted to the surface as the values of 𝐾 is increased. While increase in the unsteadiness 

parameter 𝐴 causes a decrease in the microrotation profile. In Fig 9, effects of Hartmann number 𝐻 and variable viscosity 𝛼 on 

concentration profile are depicted. It is seen that the concentration profile is increased as the values of Hartmann number 𝐻 and 

variable viscosity parameter 𝛼 are increased. 

The effects of thermophoretic parameter 𝜏 and unsteadiness parameter 𝐴 on concentration profile are depicted in Fig 10. It found 

that increasing the thermophoretic parameter 𝜏 causes a decrease in the concentration profile thereby reducing the concentration 

boundary layer thickness. The unsteadiness parameter 𝐴decreases the thermal boundary layer thickness as well. 

Table 2: demonstrate the effect of the unsteadiness parameter 𝐴, the thermal radiation parameter 𝑅, the micropolar parameter 𝐾, the 

Soret number parameter 𝑆𝑜 and the thermophoretic parameter 𝜏 on the local skin-friction coefficient (– 𝑓 ′′(0)), local wall couple 

stress coefficient (– 𝜔′(0)), local Nusselt number (– 𝜃(0)) and the local Sherwood number (– 𝜙(0)) with other parameters fixed. It 

is seen from the table that local wall couple stress coefficient (– 𝜔′(0)) increase with an increase in parameters 𝜏, 𝐾, and 𝑅. But 

reduces on increasing the values of 𝑆𝑜 and 𝐴. In addition, the values of – 𝑓 ′′(0), – 𝜙(0) and – 𝜃(0) increase by increasing the values 

of unsteadiness parameter 𝐴, while a reverse is noticed for the case of – 𝜔′(0). Further, the rate of heat transfer at the surface  

(– 𝜃(0)) decreases with an increase in 𝜏, while the local Sherwood number (– 𝜙(0)) increases for an increasing values of  𝜏. 
Effects of varying values of Schmidt number 𝑆𝑐 and Soret number 𝑆𝑜 on the concentration profile is illustrated in Fig 11. It is 

observed that the concentration profile decreases as 𝑆𝑐 increases. This causes a reduction in the concentration boundary layer 

thickness. While reverse effect is noticed when parameter 𝑆𝑜 is increased as shown in Fig 11. 

Fig 12 and 13 illustrate the effects of solutal Grashof number and thermal Grashof number 𝐺𝑟 on concentration and temperature 

profiles respectively. As reported in Fig 4 and 5, a downward trend is observed. Influences of thermal radiation parameter 𝑅 and 

temperature ratio parameter 𝑇𝑟 on temperature profile are depicted in Fig 14. It is shown from this plot that increasing parameter 

𝑅decreases the temperature profile. This result is same as that reported by Singh and Kumar [7]. It can be seen that the thermal 

boundary layer thickness decreases as parameter 𝑅 increases. This increases the absolute value of the temperature gradient at the 

surface. It is also observed from the same figure that the thermal radiation parameter 𝑅 reduces for non-linear thermal radiation 

(𝑇𝑟 = 2)when compared with that of the linear thermal radiation (𝑇𝑟 = 1). It is remarked that the thermal boundary layer becomes 

thinner for non-linear than that of the linear thermal radiation. 

Fig 15 illustrates temperature profiles for different values of Hartman number 𝐻 and variable viscosity parameter 𝛼. Increase in 

Hartman number increases the temperature profile. The increment in the temperature profile is due to the effect of Lorentz force 

which generates flow friction. This friction thereby generates heat energy which enhances the flow temperature. The temperature 

profile also increases with an increase in variable viscosity parameter 𝛼, resulting in an increase in the thermal boundary layer 

thickness. 

Effect of variation in Prandtl and Eckert numbers (𝑃𝑟 and 𝐸𝑐) on the temperature profile are displayed in Fig. 16. Increase in 

Prandtl number decrease the temperature profile. As Prandtl number increases the thermal diffusivity become lower, this results to 

reduction in the thickness of the boundary layer. It is shown also from the same plot that Eckert number increases the temperature 

profile. This is due to the fact that increasing Eckert number allows energy to be stored in the fluid region as a result of viscous 

dissipation. In Fig 17, effect of varying values of heat source parameter 𝑄0 and unsteadiness parameter 𝐴 on temperature profile is 

depicted. Increasing the value of 𝑄0 increases the temperature profile. It is seen that the temperature profile increases as the heat 

source parameter 𝑄0 generates energy which causes rise in the fluid temperature. The unsteadiness parameter 𝐴  monotonically 

decreases the temperature profile. 

 

 
Fig 2 Effects of 𝝀 and 𝒔 on velocity profile. 
 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 5, (September and November, 2017), 127 –140 
 

Variable Viscosity, Nonlinear Thermal …         Yusuf and Gbadeyan       Trans. Of NAMP 



134 
 

 

 

Fig 3 Effects of 𝑯 and 𝜶 on velocity profile. 

 

Fig 4 Effects of 𝑮𝒄 and 𝑮𝒓 on velocity profile.  

 

Fig 5 Effects of 𝑮𝒄 and 𝑮𝒓 on microrotation profile. 

 

Fig 6 Effects of 𝑯 and 𝜶 on microrotation profile. 
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Fig 7 Effects of 𝝀 and 𝒔 on microrotation profile. 

 

Fig 8 Effects of 𝑲 and 𝑨 on microrotation profile. 

 

Fig 9 Effects of 𝑯 and 𝜶 on concentration profile. 

 

Fig 10 Effects of 𝝉 and 𝑨 on concentration profile. 
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Fig 11 Effects of 𝑺𝒐 and 𝑺𝒄 on concentration profile. 

 

Fig 12 Effects of 𝑮𝒄 and 𝑮𝒓 on concentration profile. 

 

Fig 13 Effects of 𝑮𝒄 and 𝑮𝒓 on temperature profile. 

 

Fig 14 Effects of 𝑹 and 𝑻𝒓 on temperature profile.  
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Fig 15 Effect of 𝑯 and 𝜶 on temperature profile. 

 

Fig 16 Effects of 𝑷𝒓 and 𝑬𝒄 on temperature profile. 

 

Fig 17 Effects of 𝑸𝟎 and 𝑨 on temperature profile. 

Conclusion 

In this paper, we have numerically investigated the effects of variable viscosity, thermophoresis, Soret, heat source and 

nonlinear thermal radiation on unsteady MHD micropolar fluid in a porous medium with ohmic heating. The governing 

partial differential equations are reduced into a set of nonlinear ordinary differential equations using similarities 

transformations. The reduced equations are solved numerically using Fehlberg fourth order Runge-Kutta method. The 

following observations and conclusions are drawn 

1) Increase in porous parameter and velocity slip parameter causes a decrease in the momentum boundary layer 

thickness. 
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2) The velocity profile tends to decrease with an increase in magnetic parameter while temperature and concentration 

profile reduces with increase in magnetic parameter, respectively. 

3) Increase in nonlinear thermal radiation parameter decelerates the fluid temperature. 

4) The Sherwood number increases with an increase in Soret number while the rate of mass transfer decrease with an 

increase in porous parameter. 

5) The concentration boundary layer becomes thinner with an increase in thermophoretic parameter. 

6) The concentration boundary layer decreases with an increase 𝜏, while the local Sherwood number increases with 

increasing values of  𝜏. 
 

Table 1: Numerical values of – 𝒇′′(𝟎), −𝜽′(𝟎) and – 𝝎′(𝟎) for different values of  𝐴, 𝐾, 𝐺𝑟, 𝑅. 

 

 

 

 

 

 

 

 

 

Table 2: Numerical values of – 𝒇′′(𝟎), −𝜽′(𝟎) , – 𝝎′(𝟎), −𝝓′(𝟎) for different values of  𝐴, 𝜏, 𝐾, 𝑅, 𝑆𝑜 when 𝛼 = ℎ = 0. 
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𝑆𝑖𝑛𝑔ℎ 𝑎𝑛𝑑 𝐾𝑢𝑚𝑎𝑟 [7] 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑟𝑒𝑠𝑢𝑙𝑡 

𝐴 𝐺𝑟 𝐾 𝑅 −𝑓’’(0) 𝜔′(0) −𝜃′(0) −𝑓’’(0) 𝜔′(0) −𝜃′(0) 
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0.91260 
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0.024750 

0.023959 

0.023225 

0.36217 

0.45577 

0.46128 

0.46628 

0.91219018 

0.97434740 

0.94144039 

0.91002480 

0.02739408 

0.02472270 

0.02382086 

0.02302229 

0.32482125 

0.44754438 

0.45482396 

0.46099704 

𝐴 𝜏 𝐾 𝑅 𝑆𝑜 −𝑓’’(0) −𝜔′(0) −𝜃′(0) −𝜙′(0) 
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0.489453 

0.492222 

0.496404 

0.133069 

0.132923 

0.132636 

0.492602 

0.492222 

0.491825 

0.492222 

0.491917 

0.491613 



139 
 

Conclusion 

In this paper, we have numerically investigated the effects of variable viscosity, thermophoresis, Soret, heat source and nonlinear 

thermal radiation on unsteady MHD micropolar fluid in a porous medium with ohmic heating. The governing partial differential 

equations are reduced into a set of nonlinear ordinary differential equations using similarities transformations. The reduced 

equations are solved numerically using Fehlberg fourth order Runge-Kutta method. The following observations and conclusions are 

drawn 

1) Increase in porous parameter and velocity slip parameter causes a decrease in the momentum boundary layer thickness. 

2) The velocity profile tends to decrease with an increase in magnetic parameter while temperature and concentration profile 

reduces with increase in magnetic parameter, respectively. 

3) Increase in nonlinear thermal radiation parameter decelerates the fluid temperature. 

4) The Sherwood number increases with an increase in Soret number while the rate of mass transfer decrease with an 

increase in porous parameter. 

5) The concentration boundary layer becomes thinner with an increase in thermophoretic parameter. 

6) The concentration boundary layer decreases with an increase 𝜏, while the local Sherwood number increases with 

increasing values of  𝜏. 
7) Table 1: Numerical values of – 𝒇′′(𝟎), −𝜽′(𝟎) and – 𝝎′(𝟎) for different values of  𝐴, 𝐾, 𝐺𝑟, 𝑅. 

 

 

 

 

 

 

 

 

 

 

Table 2: Numerical values of – 𝒇′′(𝟎), −𝜽′(𝟎) , – 𝝎′(𝟎), −𝝓′(𝟎) for different values of  𝐴, 𝜏, 𝐾, 𝑅, 𝑆𝑜 when 𝛼 = ℎ = 0. 
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