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Abstract 
 

 

The transverse vibration of a prismatic non-uniform simply supported Rayleigh beam 

resting on an elastic foundation and continuously acted upon by concentrated masses 

moving with non-uniform velocity is studied. A procedure involving Mindlin-Goodman’s 

method to transform, the use of the expression of the Dirac delta function in series form, 

and the use of Generalized Galakin's method (GGM) is employed to simplify the 

governing fourth order partial differential equation with singular and variable 

coefficients. The resulting Galerkin’s equations are solved via the use of modified 

Struble’s asymptotic techniques to treat this dynamical beam problems, hence, the 

analytical solutions for moving force  models which is valid for all variants of classical 

boundary conditions was obtained. We are invariably interested in predicting the 

response of the dynamical beam model. The proposed analytical procedure is illustrated 

by examples of some practical engineering interest in which the effects of some important 

parameters such as boundary conditions, pre-stressed function, mass ratio and elastic 

foundation are investigated in depth. Resonance phenomenon of the vibrating system is 

carefully investigated and the condition under which this may occur is clearly 

scrutinized. The results presented in this paper shows good agreement when compared 

with that of existing literature. 

 

Keyword:  Non-uniform Rayleigh beam, resonance phenomenon, rotatory inertia, concentrated moving loads, 

dynamic responses. 

1. INTRODUTION 
 

The dynamic vibrations of Rayleigh beams resting on elastic foundation to moving concentrated masses is restricted to the 

case of uniform Beams [1 - 5]. In recent years, such important engineering problems as the vibration of turbines, hulls of 

ships and bridge girders of variable depths etc involving the theory of vibration of structures of variable cross-section have 

intensified the need for the study of the vibrations of non-uniform elastic system under the action of moving loads. 

Unlike in the [1 - 5], even after the use of Mindlin-Goodman’s technique to simplify the governing differential equation of 

motion, the method of the Generalized Finite Integral transform is inapplicable and we resort to a modification of an 

approximate method generally referred to as Galerkin’s method. This we term Generalized Galerkin’s Method (GGM). This 

method is employed to simplify the governing fourth order partial differential equation with singular and variable 

coefficients. The resulting Galerkin’s equations are solved via the modified Struble’s asymptotic techniques already alluded 

to in [6 - 10]. Thus, this work perhaps, focuses on  the dynamic vibrations of  structurally prestressed simply supported non-

uniform Rayleigh beams resting on elastic foundation and traversed by concentrated moving masses  at an arbitrarily 

prescribed velocity with time-dependent boundary and initial conditions. Effects of some very important beam parameters on 

the motions of the vibrating systems are investigated. 
 

2.  THEORETICAL FORMULATION OF THE GOVERNING EQUATIONS 

Considered here is a simply supported  non-uniform Rayleigh beam resting on  elastic foundation where the beams properties 

such as the moment of inertia , and the mass per unit length of the beam  vary along the span  of the beam.  The 
or  

is the Rotatory inertia, K is the elastic foundation Modulli, x is the spatial coordinate. 
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The transverse displacement  of the beam when it is under the action of a moving load of mass  which is moving 

with a non-uniform velocity such that the motion of the contact point of the moving load is described by the function  
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where 0x  is the point of application of force P = Mg at the instance t = 0, c is the initial velocity and a is the constant 

acceleration of motion governed by the fourth order partial differential equation given by 
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where g is the acceleration due to gravity,  is the variable moment of inertia and is the variable mass of the Rayleigh 

beam per unit area. Next, the example in [7] shall be adopted and   and    take the forms: 
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where Io and µo are constants. The boundary conditions of the above equation (2.0) are taken to be time dependent, thus at 

each of the boundary points, there are two boundary conditions written as: 

 and                  (4.0) 

where  are linear homogenous differential operators of order less than or equal to three. The initial conditions of the 

motion at time  are specified by two arbitrary functions thus: 

and            (5.0) 

But                (6.0) 

Substituting equations (3.0) to (6.0) into equation (2.00) on simplifications and rearrangements, gives.   
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3.0  Operational Simplifications of Equation 

In this work, the initial-boundary value problem (7.0) consisting of a non-homogeneous partial differential equation with 

non-homogeneous boundary conditions is transformed to a non-homogeneous partial differential equation with homogeneous 

boundary conditions, using the Mindlin-Goodman’s method described in [1-5]. In order to solve the above initial-boundary 

value problem. Thus, we introduce the auxiliary variable  in the form 

                                                                                        (8.0) 

Substituting equation (8.0) into the boundary value problem (7.0) and simplifying, transforms the latter into a boundary value 

problem in terms of . The displacement influence functions  are chosen so as to render the boundary conditions for 

the boundary value problem in  homogenous. Thus, gives;                                           
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3.1  Method of Solution 

Evidently, an exact closed form solution of the above partial differential equation does not exist. The method of separation of 

variables is inapplicable as difficulties arise in getting separate equations whose functions are functions of a single variable. 

As a result of these difficulties, one resort to an approximate method commonly called Galerkin’s method. 
 

3.2    Galerkin’s Method 

The Galerkin’s method is used to solve equations of the form 

 (10) 

where  is the differential operator. 

is the structural displacement and 

is the transverse load acting on the structure 

A solution of the form 

. (11) 

is sought when j = 1,2,3, …………..n. 

The function  are chosen to satisfy the approximate boundary conditions. The Galerkin’s method requires that the 

expression (11) be orthogonal to the function  for . 

Thus                    for  i =1,2,………,n (12) 

This gives us a set of ordinary differential equations in   to be solved. These differential equations are called Galerkin’s 

equations. 

 

3.3  Analytical Approximate Solution. 

The Galerkin’s method requires that the solution of equation (9.0) takes the form 

 (13) 

where  is chosen such that the desired boundary conditions are satisfied. 

Equation (13) When substituted into equation (9.0) yields             
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In order to determine   , it is required that the expression on the left hand side of equation (13) be orthogonal to the function . 

Thus, 
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At this juncture, a solution valid for all cases of classical boundary conditions is sought. Consequently, is chosen as the 

beam function given as  
 

Thus,                                                                                (18) 
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In order to evaluate the evolving integrals            etcknmHkmHkmHII )...,,(),,(),........,(,,....... 171811441
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Use is made of the property of the Dirac Delta function as an even function to express it in Fourier cosine series namely: 
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Thus, in view of (18), using equation (19) in equation (15), after some simplification and rearrangements yields. 
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Equation (22) is the transformed equation governing the problem of non-uniform Rayleigh beam resting on a constant elastic 

foundation and transverse by a moving load. This second order differential equation is valid for all variants of the classical 

boundary conditions. In what follows, we shall consider boundary conditions such as simply supported boundary conditions 

as illustrative example. 

 

3.4 Simply-Supported Boundary Conditions. 

The deflection and bending moment at  and  vanish for a non-uniform Rayleigh beam having simple supports at 

both ends. 

,                                 (25) 

also, for normal modes 

,                (26) 

Similarly 

,           (27) 

Thus, it can be shown that 

0====== kkkmmm CBACBA                      (28) 

with the frequency equation 

 (29) 

which implies that 

and  . (30) 

Substituting, equations (25) to (30) into equation (24), one obtains  
 

Transactions of the Nigerian Association of Mathematical Physics Volume 5, (September and November, 2017), 101 –112 

( )
L

x
C

L

x
B

L

x
A

L

x
xV k

k
k

k
k

k
k

k


coshsinhcossin +++=

0

mL
=

( ) ( ) ( ) ( ) ( ) 



−−+= kmHkmHkmHkmH

EI
km ,,6,15,10

4
, 9876

0

0
1




( ) ( ) ( )  ( ) ( ) ( ) 



+−+−++ kmHkmHkmH

L
kmHkmHkmH

L
,3,5,8

3
,,5,46 144132

2

121110



0=x Lx =

( ) ( )tLZtZ ,0,0 == ( ) ( )
2

2

2

2 ,
0

,0

x

tLZ

x

tZ




==





( ) ( )LVV mm == 00 ( ) ( )
2

2

2

2

0
0

dx

LVd

dx

Vd mm ==

( ) ( )LVV kk == 00 ( ) ( )
2

2

2

2

0
0

dx

LVd

dx

Vd kk ==

0sinsin == km 

 mm =  kk =



106 
 

Transient Loads of Structurally Prestressed…         Saheed       Trans. Of NAMP 

( )
=
























−+++

1

331712

22
0

171

n

m tYI
m

L
II

L

m
rII 

 

 









−−++ 65491714

44

0

0 6510
4

IIII
L

mEI 



 

    ( )tYI
K

III
L

m
III

L

m
m





+



−+−+++−+ 1

0

6517494

42

9733814

43

9152463024



 

( ) ( )





















+++

+
+
















++++ 



=



=

tYIatctx
L

n
I

L

matc
tYIatctx

L

n
I m

n

m

n


129

2

0

1

5113

1

2

01
2

1
cos2

)(2

2

1
cos2




 

( ) ( ) ( ) +−−







++=












































++

+
+

− 


=

tGtGatctx
L

kMg
tYI

L

atctxn

I
L

matc
bam

n

2

0

0

113

1

2

0

12

222

2

1
sin

2

1

cos2
)( 






 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tGtGtGtGtGtGtGtGtGtGtGtGtG onmlkjihgfedc −−−+++−−++−

 

( ) ( ) ( ) ( ) ( ) 0=++++ tGtGtGtGtG Tsrqp

 (31) 

where the integrals ( 
1331,.........II ) when solved gives 

 (32) 

 (33) 

 (34) 

 (35) 

 (36) 

 (37) 

 (38) 

 (39) 

 (40) 

and          

 (41) 

Consequently, 









++








++=








++



=

2

0

2

0133

1

2

0
2

1
sin

2

1
sin2

2

1
cos2 atctx

L

m
atctx

L

n
LIatctx

L

n

n

    (42) 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 5, (September and November, 2017), 101 –112 











=



=

mk
L

mk

I

for
2

for0

1

( )












=

=
−

−

=

evenif,0

oddif,
2

22

5

mk

mk
km

kL

I



( )  ( ) 












=

=
+−−−

−

=

evenif,0

oddif,
11

4
22

17

mk

mk
kmkm

mLk

I



 
( )  ( ) 












=

=
−−+−

−+−

=

evenif,0

oddif,
11

12
22

22

33

mk

mk
kmkm

kmkL

I















=
−

=

2if,0

2if,
4

49

mk

mk
mL

I

( )  ( ) 












=

=
+−−−

−

=

evenif,0

oddif,
99

12
22

65

mk

mk
kmkm

mkL

I















=

=

2if,0

2if,
4

81

km

km
kL

I

 
( )  ( ) 















−−+−

−+−

=

evenif,0

oddif,
99

92
22

22

97

mk

mk
kmkm

kmkL

I



mknkmnmknkmn

LL
I

+==−−==+

−=
oror

113
44

 
( )  ( ) 2222

222

129

2

kmnkmn

kmnkL
I

−−+−

−+−
=




107 
 

Transient Loads of Structurally Prestressed…         Saheed       Trans. Of NAMP 

 

In view of equations (32) to (42)Simplifying and rearranging equation (31) yields 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 


=

++++
1

321

*

1

*

0 ,,
m

mmmmm tYtQtYtQtYtQtYkmtYkm  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) tGtGtGtGtGtGtGtGtGatctx
L

kMg
ihgfedcba −+−++−+−−








++= 2

0

0 2

1
sin





 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0=+++++−−−+++ tGtGtGtGtGtGtGtGtGtGtG Tsrqponmlkj
        (43) 

where                      ( ) 

















−+++= 331712

22
0

171

*

0

1
, I

m
II

L

m
rIIkm




                                (44) 

 

 

 

]                                                                                              (45) 






















++








+++=  2

0

2

01
2

1
sin

2

1
sin41

2
),,( atctx

L

m
atctx

L

kL
tmkQ

         (46)                     

( )

( )  ( ) 


















+−−−









++−+

+
−

+−=




=

2222

2

0

1

222

222

2

1
cos2

1
)(4),,,(

kmnkmn

atctx
L

n
kmn

km
mkatctnmkQ n





      

(47) 

and             
),,(

)(
),,( 12

222

3 tmkQ
L

matc
tmkQ

+
−=

 (48) 

At this juncture, it is pertinent to obtain the particular functions  that ensure zeros of the right hand sides of the boundary 

conditions for simply supported beam. thus, 

,   and             (49) 
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Solving the evolving integrals ( 5,.......1 NN ) in equations (51) to (56) thus:            (57) 

 (58) 

 (59) 
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substituting (49 to 62) into (43), simplified an arranged gives: 
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Equation (63) represents the transformed equation of the non-uniform Rayleigh beam simply-supported at both ends and 

having boundary and initial conditions which are time dependent. 

In order to solve equation (63), two cases are involved, namely 

1) Moving force problem, 

2) Moving mass problem. This case 2 because of the level of  difficulties posed may not be considered in this paper but in 

subsequent one. 

 

3.5   Simply Supported Non-Uniform Rayleigh Beam Traversed by Moving Force 

In this instance, the inertial effect of the moving mass M is neglected and we set  to zero in equation (63) to obtain 
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where                              (73) 

and                               (74) 

we consider a simply–supported beam, one of whose end , (say) is subjected to a sine-wave (undamped) transient 

displacement, starting from rest and the other end,  is subjected to a damped sine wave transient displacement starting 

from rest. Consequently, we have: 

 and           (75) 

Where:  are as defined earlier. 

( )tf1
, ,  and  were substituted into the initial conditions one obtains:  

and
  

                                              (76)
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It is also necessary to note that 
 

,                      (77) 

substituting equations (75) to (77) into (72) after simplifications and rearrangements, one obtains 
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Clearly, equation (78) is solved   Using the same procedure and argument in [7-10], it is straight forward to show that
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and on inversion yields 
 

 

 

       (83)                                              

where   ,         (84) 

, ,                       (85) 

But      

Consequently,                                (86)                      

where  is as given in equation (83). 

Equation (86) is the dynamic response of the non- uniform Rayleigh beam to moving force whose two simply–supported 

edges undergo displacements which vary with time. 
 

4.0 Discussion of the Analytical Solution 

If the undamped system such as this is studied, it is desirable to examine the response amplitude of the dynamical system 

which may grow without bound. This is termed resonance when it occurs. Equation (83) clearly shows that the simply 

supported elastic Rayleigh beams transverse by a moving force will be in state of resonance whenever 
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this implies, 
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5.0 Numerical Calculation and Discussion of the Results. 
To illustrate the analysis proposed in this work by considering a non-homogenous beam of modulus of elasticity E = 3.1×1010 N/m2, the 

moment of inertia I =2.87698×10-3 m4, 

the beam span L = 150m and the mass per unit length of the beam µ=2758.291 Kg/m. The values of foundation moduli are varied between 

0N/m3 and 400000N/m3, the values of axial force N is varied between 0 N and 4·0×108 N. 

The traverse deflections of the non-uniform Rayleigh beam are calculated and plotted against time for various values of rotatory inertia  or , 

axial force N and foundation stiffness K. 

Fig.1, displays the transverse displacement response to a moving force of simply supported non- uniform Rayleigh beam for various values 

of foundation modulli K and for fixed value of rotatory inertia or , and axial force  N. The graph shows that the response amplitude of the 

beam decreases as the values of the foundation modulli K increases. Fig 5.2 also shows the deflection profile due to moving force of a 

simply supported non-uniform Rayleigh beam for fixed value of foundation modulli K and axial force N and for various values of rotatory 

inertia 
or . 

 

 

 
Fig 2: Deflection profile of the simply supported non-uniform Rayleigh beam under a moving force for various values of 

rotatory inertia and for fixed value of foundation modulus K (40000) 
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The graph shows that the response amplitude of the beam decreases as the values of the   rotatory inertia correction factor 
or  

are increased. Furthermore, fig.3 shows the deflection profile of simply supported Non-Uniform Rayleigh beam under the 

action of moving force for various values of axial force N and fixed value of rotatory inertia 
or  and foundation modulus K. 

The graph shows that as the value of axial force N increases the displacement response of the beam decreases. 
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Fig.3.Deflection profile of simply supported Non-Uniform Rayleigh beam under the action of  
moving force for various values of axial force N and for fixed value of rotatory inertia r(1) and  

for fixed  value of foundation modulus K(40000). 
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