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Abstract 
 

 

The response of a prestressed Rayleigh beam with uniform cross-section and finite 

length supported by a two-parameter Vlasov foundation subjected to a partially 

distributed moving load is studied in this paper. The governing differential equation 

are obtained and are solved by paying attention on the boundary condition of the 

problem at the clamped-clamped end of the beam resting on a two-parameter 

foundation. The governing equation of the problem is evaluated using generalized 

Finite Integral Transform in conjunction with variation of parameters and Fresnel 

sine and Fresnel cosine identities. Numerical results are presented both in figures 

and graphs to demonstrate the behaviour of the beam-foundation system for various 

values of the foundation parameters of the problem of the moving load. Hence, this 

further confirms that certain parameters of the moving load must always be taken 

into consideration for accurate and safe assessment of the response to moving load 

which plays a vital role in structural design. 
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1. INTRODUTION 

In recent years considerable attentions has been given to the response of elastic beams resting on elastic subgrade which is 

one of the structural engineering problems of theoretical and practical interest Celep et al [1]. A large number of studies have 

been devoted to the subject. Most of the early works in this area were directed at the dynamic of structures under the moving 
loads. Moving loads have been idealized as moving concentrated loads which acts at a certain point in the structure and along 

a single line segment. These include the work of Krylov [2], Gbadeyan and Oni [3] Belotserkovskiy [4]. The dynamic 

response of a simply supported transverse beam by a concentrated moving load was studied by Stanisic and Hardin [5]. They 

developed an interesting technique which, however, cannot easily be applied to various boundary conditions which are of 

practical interest. Akin and Mofid [6] presented an analytic numerical method that can be used to determine the dynamic 

behaviour of beams carrying concentrated moving mass. The problems of dynamic behaviour of an elastic beam subject to a 

moving concentrated mass were also studied by Sadiku and Leipholz [7]. Gbadeyan and Oni [8] presented a more versatile 

technique which can be used to determine the dynamic behaviour of beams having arbitrary end supports. It is remarked at 

this juncture that the elastic parameter of the beams in all the work discussed hitherto, are assumed constant. Although, the 

above completed works were impressive, only concentrated moving loads were considered. However, such loads do not 

represent the physical reality of the problem formulation. As a matter of fact, concentrated load do not exists physically. 

Moving loads are actually distributed over a small segment or over the entire length of the structure. To this end,Isede and 
J.A. Gbadeyan [9] carried out the analysis of a variable cross-section Timoshenko beam subjected to a moving partially 

distributed load. Finite element method with Lagrangian interpolation function was used to model the structure. Other recent 

works involving uniformly distributed moving mass model were carried out by Kargarnov in and Younesian [10], Wu [11], 

Bogacz and Czyczula [12]. More recently, Andi et al [13] investigate the dynamic behaviour of a finite simply supported 

uniform Rayleigh beam under travelling distributed loads resting on a one-parameter Winkler foundation. Generally 

speaking, Winkler foundation model assumed the foundation reaction to be proportional to the vertical displacement of the  
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foundation at the same point. However, the Winkler model has various shortcomings due to the independence of the springs. 

Because the springs are assumed to be independent and unconnected to each other, no interaction exists between the springs. 

In order to eliminate the deficiency of Winkler model, improved theories have been introduced on refinement of Winkler’s 

model by visualizing various types of interconnections such as shear layers and beams along the Winkler springs [14]. These 

theories have been attempted to find an applicable and simple model of representation of foundation medium.  

In this paper, the response of a clamped-clamped Rayleigh beam will be obtained.  The beam is subjected to partially 

distributed load and rested on a more reliable two-parameter elastic foundation known as Vlasov foundation. 

 

2. Theoretical formulation 

The problem of the flexural motion of a prestressed finite uniform Rayleigh beam resting on bi-Parametric Vlasov foundation 

to an arbitrary number of uniforms partially distributed moving masses moving at non-uniform velocities is considered. The 

Rayleigh beam has a constant cross sectional area and the mass M is assume to touch the beam at time 0=t and travel across 

it with a non-uniform velocity such that the motion of the contact point of the moving load is given by  

2
0 2

1)( atctxtf ++=        (1) 

where 0x  is the point of application of force ),( txP at the instance 0=t , c  is the initial velocity and a  is the constant 

acceleration of motion. 

The equation of motion describing the lateral displacement of the Rayleigh beam is given by the 

fourth order partial differential equation  
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where EI is the flexural rigidity of the structure, N is the axial force, 
0R  is the rotatory inertia factor,  is the mass per unit 

length of the beam,G  is the shear modulus, K is the elastic foundation stiffness, ),( txV is the transverse displacement, M is 

the transverse distributed load, x  is the spatial coordinate and t is the time, )(H is the Heaviside function.   

    

The boundary conditions of the structure under consideration is arbitrary and the initial conditions without any loss of 

generality is taken as 

t
xV

xV
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Since the load is assumed to be of mass M  and the time t is assumed to be limited to that interval of time within the mass on 

the beam, that is 

Ltf  )(0         (4) 
 

3. Analytical procedures 

Equation (2) is a fourth order partial differential equation which has some coefficients which are not only variable but also 

singular.In this section, a general approach is developed in order to solve the initial value problem. The approach involves 

expressing the Heaviside function as a series form and then reducing the modified form of the equation above using the 

generalized finite integral transform. The resulting transformed differential equation having some variable coefficients is then 

simplified using modified Struble’s asymptotic technique. 
 

3.1 The generalized finite integral transform 

For the dynamical systems, the governing equation is a fourth order partial differential equation with variable and singular 

coefficients. The Generalized Finite Integral Transform is employed to remove the singularities in the governing equations 

and to reduce it to a sequence of second order ordinary differential equations with variable coefficients. The generalized finite 

integral transform is defined by 
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where )(xUm  is any function chosen such that the pertinent boundary conditions are satisfied. An appropriate selection of 

functions for beam problems are beam mode shapes. Thus, for a uniform beam, the mth normal mode of vibration 
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is chosen as a suitable kernel of the integral transform (3.13), where
mmm CBA ,, are constants and the mode frequencies m

can be determined using appropriate classical boundary conditions. 

Applying the generalized finite integral transform (5), equation (2) becomes 
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It is noted that integrals (12) are singular and in order to handle these singularities, use is made of the Fourier series 

representation for the Heaviside unit step function namely: 
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Simplifying (12) in conjunction with (13), equation (9) after some simplifications and rearrangements yields 
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Equation (14) is the transformed equation describing the problem of transverse vibration of Rayleigh beam on Vlasovelastic 

foundation and traversed by uniform partially distributed masses moving at varying velocities. In what follows, two cases of 

equation (14) are considered. 

3.2 Solution of the transformed governing equation 

Case I: The Moving Force Uniform Rayleigh Beam Problem 

The differential equation describing the behaviour of a uniform Rayleigh beam on a Vlasov elastic subgrade to a moving 

force moving at variable velocity may be obtained from equation (14) by setting 0
0
= . In this case, one obtains
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Equation (19) is a model, in which the inertia effects of the moving load is considered negligible and only its force effects are 

of interest. Evidently, an exact analytical solution to the equation is not feasible.  Though the equation is amenable to 

numerical technique, an analytical approximate method is desirable as solutions so obtained often shed light on vital 

information about the dynamical system. To this end a modification of the asymptotic method due to Struble’s often used in 

treating weakly homogeneous and non-homogeneous nonlinear oscillatory systems is resorted to. Hence equation (19) is 

rearranged to take the form 
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By this technique, one seeks the modified frequency corresponding to the frequency of the free system due to the presence of 

the effect of rotatory inertia. An equivalent free system operator defined by the modified frequency then replaces equation 

(20). Thus, we set the right hand side of (20) to zero and considered a parameter 1  for any arbitrary ratio
* , defined 

as 
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Substituting equation (23) in the homogeneous part of equation (20) one obtains 
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When  is set to zero in equation (20) a situation corresponding to the case in which the rotatory inertia effect is regarded as 

negligible is obtained, then the solution of (20) can be written as 
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where
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where ),( tm and ),( tm are slowly varying functions of time. 

To obtain the modified frequency, equations (26) and its derivatives are substituted into equation (24) and neglecting terms 
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retaining terms to )(O only. 
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where
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mfD  and mf are constants. 

Therefore, when the inertia effect of the moving mass is considered, the first approximation to the homogeneous system is 
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represents the modified natural frequency due to the effect of the rotatory inertia. It is observed that when 0= , we recover 

the frequency of the moving force problem when the rotatory inertia effect of the beam is considered negligible. Thus, to 

solve the non-homogeneous equation (20), the differential operator which act on ),( tmV and ),( tkV are replaced by the 

equivalent free system operator defined by the modified frequency
bj
 , thus, using (32), equation (20) can be written as 

 mmmmmmmbjbj SinhCCoshBSinACosPtmVtmV
dt

d
 +++−=+

02

2

2

),(),(
 

( ) ( )

( ) ( )



++−++−

++−+++

2

0

2

0

2

0

2

0

2

1

2

1

2

1

2

1

atctx
L

SinhCatctx
L

CoshB

atctx
L

SinAatctx
L

Cos

m

m

m

m

m

m

m




     (34) 

where  
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The general solution of equation (34) with the initial conditions gives expression for ),( tmV which on inversion yields 
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where )(xC and )(xS are the well-known time-dependent  Fresnel integrals defined by 
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The equation (36) represents the transverse displacement response to forces moving at variable velocities of a prestressed 

uniform Rayleigh beam resting on Vlasov elastic foundation and having arbitrary end support conditions. 

 

Case II:  The Moving Mass Uniform Rayleigh Beam Problem 

In this case, the mass of the moving load is considered commensurable with that of the structure and as such, the inertia effect 

of the moving load is not negligible. All the components of inertia terms are retained in the governing equation (14) and the 

solution of the entire equation is sought. This is termed the moving mass problem. An exact closed form solution is not 

possible; hence an approximate analytical method due to Struble is resorted to. It is remarked at this junction that neglecting 

the terms representing the inertia term of the moving mass, we obtain equation (20). The homogeneous part of this equation 

can be replaced by a free system operator defined by the modified frequency bj  due to the presence of the effect of rotatory 

inertia. To this end, equation (14) can be written in the form   
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As in the previous case, an exact analytical solution to the above equation is not possible. Thus, the same techniqueused in 

case I is employed to obtain the modified frequency due to the presence ofmoving mass, namely 
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This is analogous to equation (34). Thus, using similar argument as in moving force ),(
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tmV can be obtained and on inversion 
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 (43) 

Equation (43) represents the transverse displacement response to distributed masses, moving with non-uniform velocity of a 

highly prestressed Rayleigh beam resting onVlasovelastic subgrade. Equation (43) is valid for all variants of classical 

boundary conditions. 
 

4. Applications 

In this section, we shall illustrate the foregoing analysis by two practical examples. Particularly we shall consider classical 

boundary conditions such as clamped-clamped end conditions and clamped-free end conditions. 
 

4.1  Clamped-Clamped End Conditions 

In this case, both deflection and slope vanish. Thus 
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Applying (45) to (8) yields 
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The frequency equation becomes 

1=mmCoshCos          (48) 

It follows from (48) that 

99561.10,85320.7,73004.4 321 ===      (49) 

The expression for kkk CBA ,,  and the corresponding frequency equation are obtained by a simple interchange of m with 

k in equation (47) and (48). Thus, the general solutions of the associated moving force and moving mass problems are 

obtained by substituting equations (47) and (48) into equations (36) and (43) respectively to obtain the displacement response 

to a moving force and moving mass respectively of a clamped-clamped uniform Rayleigh beam resting on a Vlasov elastic 

foundation.             
            

5. Comments on closed form solutions 

In an undamped system, it is pertinent to establish conditions under which resonance occurs.  This phenomenon in structural 
and highway engineering is of great concern to researchers or in particular, design engineers because, it magnifies the 

amplitude of vibration in relatively undamped systems and can cause catastrophic failure in improperly constructed structures 

including bridges, buildings and airplanes – a phenomenon known as resonance disaster.     

For the resonance of other classical boundary conditions, equation (36) clearly shows that the uniform elastic beam resting on 

Vlasov elastic foundation and traversed by partially distributed forces moving with variable speed reaches a state of 

resonance whenever  
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while equation (43) shows that the same beam under the action of moving mass experiences resonance effect whenever 
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From equation (40),  
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which implies 
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Equations (51) and (53) show that for the same natural frequency, the critical speed for the same system consisting of a 

uniform Rayleigh beam resting on Vlasov elastic foundation and traversed by a moving partially distributed force is greater 

than that traversed by a moving partially distributed mass. Thus resonance is reached earlier in the moving partially 

distributed mass system than in the moving partially distributed force system. 
 

6. Numerical results and discussion. 

We shall illustrate the foregoing analysis in this paper by considering a uniform Rayleigh beam of length L= m192.12 , 

modulus of elasticity 2/10101.3 mNE = , the moment of inertia 431087698.2 mI −=  and the mass per unit length of the 

beam mkg /291.2758= . The values of the foundation stiffness K varied between 
3/0 mN and 3/4000000 mN , axial 

force N is varied between N0 and N6102 and shear modulus G is varied between mN /0 and mN /103 5 . The 

transverse deflections of Rayleigh beam are calculated and plotted against time for various values of foundation stiffness K, 

axial force N, shear modulus G and rotatory inertia R0.   

Figure 1 displays the deflection profile of a clamped-clamped uniform Rayleigh beam under the action of partially distributed 

forces moving at variable velocity for various values of foundation stiffness K and fixed values of axial force N=20000, shear 

modulus G=10000 and rotatory inertia correction factor R0=0.5. The figure shows that as the foundation stiffness K increases, 

the transverse displacement of the uniform Rayleigh beam decreases. Similar results are obtained when the clamped-clamped 

beam is subjected to partially distributed masses travelling at variable velocity as shown in figure 5. For various travelling 

time t, the transverse displacement of the beam for various values of axial force N and for fixed values of foundation stiffness 

K=40000, shear modulus G=10000 and rotatory inertia correction factor R0=0.5 are shown in figure 2. It is observed that 

higher values of axial force N reduce the transverse displacement of the beam. The same behaviour characterizes the 

deflection profile of the clamped-clamped beam under the action of partially distributed masses moving at variable velocity 
for various values of axial force N as shown in figure 6.  
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In figure 3 the response amplitudes of the clamped-clamped uniform Rayleigh beam to partially distributed forces travelling 

at variable velocity for various values of shear modulus G and for fixed values of foundation stiffness K=40000, axial force 

N=20000 and rotatory inertia correction factor R0=0.5 is displayed. It is seen from the figure that as the values of shear 

modulus increases, the response amplitude of the clamped-clamped uniform Rayleigh beam under the action of partially 

distributed forces travelling at variable velocity decreases.  Similar results are obtained when the clamped-clamped beam is 

subjected to a partially distributed masses travelling at variable velocity as shown in figure 7. Also in figure 4, the deflection 

profile of clamped-clamped uniform Rayleigh beam under the action of uniform partially distributed forces is displayed. It is 

clearly shown that as we increase the values of rotatory inertia correction factor R0, the deflection profile of the uniform beam 

reduces for fixed values of foundation stiffness K, axial force N and shear modulus G. Figure 8 displays the response 

amplitude of the clamped-clamped Rayleigh beam to partially distributed masses travelling at variable velocities for various 
values of rotatory inertia correction factor R0  and  for fixed values of foundation stiffness K=40000, axial force N=20000 and 

shear modulus G=10000. It is seen from the figure that as the values of rotatory inertia correction factor increases, the 

response amplitude of the clamped-clamped uniform beam under the action of partially distributed masses travelling at 

variable velocities decreases. 

 

 
Figure 1: Transverse displacement of a clamped-clamped uniform Rayleigh beam under the actions of partially distributed forces travelling at 

variable velocity for various values of foundation stiffness K 
 

 

 
 

 

 

 

 
 

 
Figure 2: Deflection profile of a clamped-clamped uniform Rayleigh beam under the actions of partially distributed forces travelling at variable 

velocity for various values of axial force  
 

 

 
Figure 3: Transverse displacement of a clamped-clamped uniform Rayleigh beam under the actions of partially distributed forces travelling at 

variable velocity for various values of shear modulus G  
 

 

 

 

 

 

 

 
Figure 4: Response amplitude of a clamped-clamped uniform Rayleigh beam under the actions of partially distributed forces travelling at variable 

velocity for various values of rotatory inertia correction factor R0  
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Figure 5: Displacement response of a clamped-clamped Rayleigh beam under the actions of partially distributed masses travelling at variable 

velocity for various values of foundation stiffness K  

 

Figure 6: Deflection profile of a clamped-clamped uniform Rayleigh beam under the actions of partially distributed masses travelling at variable 

velocity for various values of axial force 
 

 
Figure 7: Transverse displacement of a clamped-clamped uniform Rayleigh beam under the actions of partially distributed masses travelling at 

variable velocity for various values of shear modulus G  
 

 
Figure 8: Response amplitude of a clamped-clamped uniform Rayleigh beam under the actions of partially distributed masses travelling at variable 

velocity for various values of rotatory inertia correction factor R0 

 
 

 

 
Figure 9: Comparison of the displacement response of moving force and moving mass cases for a uniform clamped-clamped Rayleigh beam for 

fixed values of 400000=K , 200000=N 100000=G 5.00 =R  

 

Figure 9 displays the comparison of the transverse displacement response of moving force and moving mass cases of the 

clamped-clamped uniform Rayleigh beam traversed by a moving load travelling at variable velocity for fixed values of 

K=400000, N=200000, G=100000 and R0=0.5. 
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7. CONCLUSION 

The problem of the dynamic response of a uniform Rayleigh beam resting on bi-parametric Vlasov foundation and traversed 

by partially distributed masses travelling at variable velocity has been investigated. Closed forms solutions of the governing 

fourth order partial differential equations with variable and singular coefficients of uniform Rayleigh beam moving mass 

problems are presented. The solution techniques is based on generalized finite integral transformation, the expansion of the 

Heaviside function in series form, a modification of Struble’s asymptotic method and Fresnel sine and Fresnel cosine 

integrals. Analytical solutions obtained are analysed and resonance conditions for the various beam problems are established. 

Results show that 

(i) as the axial force N increases, the amplitude of the uniform Rayleigh beam under the action of load moving at 

non-uniform velocity decrease. 

(ii) when the axial force N  is fixed, the displacements of the uniform Rayleigh beam resting on elastic foundation 

and traversed by masses travelling with variable velocity decrease   as the value of foundation moduli K  

increases for all variants of boundary conditions. 

(iii) for fixed values of foundation modulus K  , axial force N and shear modulusG , the  response amplitude for the 

moving mass problem is greater than that of the moving force problem for the illustrative end conditions 

considered. 

(iv) as the rotatory inertia correction factor 0R  increases, the transverse displacement response of the beam model 

decreases. 

(v) it has been established for the illustrative examples considered, the moving force solution is not an upper bound 

for the accurate solution of the moving mass cases in uniform Rayleigh beam under partially distributed loads. 

Hence, the non-reliability of moving force as a safe approximation to the moving mass problem is confirmed 

and finally, 

(vi) the critical speed for the same system consisting a uniform Rayleigh beam resting on bi-parametric Vlasov 

foundation and traversed by moving partially distributed mass is smaller than that traversed by a moving 

partially distributed force. 

Resonance is reached earlier in the moving distributed mass problem. Hence, an increase in structural damage sensitivity is 

noticed under the effect of moving partially distributed load. 
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