
83 
 

Transactions of the Nigerian Association of Mathematical Physics 

Volume 5,(September and November, 2017), pp83 –86  

© Trans. of NAMP 

 

Axial Shear Wave Propagation In An Incompressible Cylindrical Solid of a Mooney Rivlin 

material of order one. 

Nwagwu I.O. 

Department of Mathematics, Federal University of Technology Owerri, Nigeria. 

 

Abstract 
 

 

The problem of axial shear wave propagation in an incompressible cylindrical 

solid  of a Mooney Rivlin material of order one was considered. The analysis of the 

model resulted into a linear second order partial differential equation for the 

determination of the stresses and axial displacement. Monge’s method was used in 

solving the linear second order partial differential equation. The Monge’s 

subsidiary equations reduced the linear second order partial differential equation 

into a linear ordinary separable equation. The method of solution adopted 

provided a closed form solution for the determination of the axial displacement 

and stresses at any cross section. 
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1. INTRODUTION 

The vibration and wave application characteristics of rubberlike solids are important for practical applications in sonar, 

ultrasound, engine mountings, seismic isolators and in modeling of some biological tissues.  Haddow and Erbay [1] 

considered a condition which a strain energy function must satisfy for an axial shear waves to occur. They established that a 

necessary condition for the propagation of a pure axial shear wave to be admitted is that static pure shear is admitted and a 

sufficient condition for static pure axial shear to be admitted is that propagation of a pure axial shear wave is admitted. They 

also investigated the possibility of the simultaneous propagation, in the radius direction of a pure longitudinal wave and a 
finite amplitude pure axial transverse wave. Their results correspond with that of Haddow and Mioduchowski [2], Jiang and 

Beatty [3,4]. Jiang and Ogden [5] also obtained the same result in their work. In the work of Akbarov and Guliev [6], 

axisymmetric longitudinal wave propagation in a finite prestretched compound circular cylinder made of an incompressible 

material, they assumed that the inner and outer cylinder were made of incompressible neo-Hookean materials. Numerical 

result on the influence of the prestrains in the inner and outer cylinder on wave dispersion are presented and discussed. It is 

established that the pretension of the cylinder increases the wave velocity. Abo-el-nour and Fatimah [7] in their work 

investigated some aspect of dispersion relation of flexural waves propagation in a transversely isotropic hollow circular 

cylinder of infinite extent placed in a primary magnetic field.  The result shows that the effect of the primary magnetic field is 

to increase the value of the material constants. According to Selim [8] damping of the medium has strong effect in the 

propagation of torsional waves and the velocity of such waves depend on the presence of initial stress. Dai and Wang [9] 

considered the stress wave propagation in piezoelectric reinforced by inextensible fibres. Rivlin [10] obtained an exact 

solution for an incompressible isotropic linearly elastic materials of the Mooney-Rivlin material, his result corresponds with 
that of Green and Zerna [11], and Ogden [12]. The same problem for incompressible materials was examined in [13]. Exact 

solution for some linear cases have been obtained in [14] for a class of neo-Hookean materials 

The present investigation is to determine an analytic solution to the non linear case resulting from  the axial displacement, 

caused by axial force in propagating a wave in a cylindrical incompressible solid material under axial shearing loading. In 

this work we use cylindrical material whose strain energy function is of the form 

W =
μ

1

2
( I1 − 3) −  

μ
2

2
( I2 − 3)                                                                                                                               (1.1) 

where μ
1
and μ

2
are material constants related to the distortional response and are determined from experimental data. 
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2. Formulation of The Problem 

Cylindrical polar coordinates of a material point in the spatial and material reference configurations are denoted by (r, θ, z) 

and (R, Θ, Z) , respectively where  

  0 ≤ R ≤ a , 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ h . 
The axial shear wave propagation that takes a point from the undefined to the defined configuration is given by 

r = R   , θ = Θ  , z = Z + w(R, t)                                                                                                       (2.1)                                                                                 
Where  r is the radius of the cylinder in the deformed configuration and R is the undeformed  radius and w(R, t) is the axial 

displacement. The deformation equation (2.1)  describes a superimposed pure wave propagating in the R direction and 

linearly polarized in the Z direction which is a time dependent deformation, so the superposed wave is to be transverse. 

The deformation gradient tensor F̅ associated with equation (2.1) is given by 

F̅ =     (
1 0 0
0 1 0

wR 0 1
)                                                                                                                                (2.2) 

The left Cauchy-Green tensor  B̅ is given by  

B̅ = F̅F̅T = (
1 0 wR

0 1 0
wR 0 wR

2 + 1
)                                                                                                           (2.3) 

The Left Cauchy-Green tensor is a second order symmetric tensor . The  principal strain invariants 

are                                                                                                                          
I1 = 3 + wR

2 = I2; I3 = 1                                                                                          (2.4)   

2.1   Equation of motion: The equations of motion in cylindrical polar coordinates (r,θ,z) is given by   
𝜕𝜏𝑟𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
+

𝜕𝜏𝑟𝑧

𝜕𝑧
+

1

𝑟
(𝜏𝑟𝑟 − 𝜏𝜃𝜃) + 𝜌𝑏𝑟 = 𝜌𝑎𝑟                                                            (2.5) 

𝜕𝜏𝜃𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝜃𝜃

𝜕𝜃
+

𝜕𝜏𝜃𝑧

𝜕𝑧
+

2

𝑟
𝜏𝑟𝜃 + 𝜌𝑏𝜃 = 𝜌𝑎𝜃                                                                          (2.6)  

𝜕𝜏𝑧𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑧𝜃

𝜕𝜃
+

𝜕𝜏𝑧𝑧

𝜕𝑧
+

1

𝑟
𝜏𝑧𝑟 + 𝜌𝑏𝑧 = 𝜌𝑎𝑧                                                                             (2.7) 

Where 𝑏𝑟 , 𝑏𝜃 𝑎𝑛𝑑  𝑏𝑧 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒𝑠  𝑎𝑟   , 𝑎𝜃 𝑎𝑛𝑑 𝑎𝑧  are the components of the acceleration, 

the non –zero component of  the equation of motion is the axial component  and 𝜏𝑟𝑟 . 𝜏𝑟𝜃 , 𝜏𝑟𝑧 , 𝜏𝜃𝜃 , 𝜏𝜃𝑧 , 𝜏𝑧𝑧 are components of 
the stress tensor which for this deformation are symmetric. 

The stress tensor for incompressible material is given by 

τ̅ = −PI + 2W1B̅ − 2W2B̅−1                                                                                                      (2.8) 

where I is the unit tensor, P is the hydrostatic pressure in compression , W( I1, I2, I3) is the strain energy density function and 

  Wi =
∂W

∂Ii
, i = 1,2,3                                                                                                                     (2.9) 

Using equations (2.3) and (2.4) in (2.8) we obtain 

τ̅ = −P (
1 0 0
0 1 0
0 0 1

) + μ
1

(
1 0 wR

0 1 0
wR 0 wR

2 + 1
)  − μ

2
(

𝑤𝑅
2 + 1 0 −𝑤𝑅

0 1 0
−𝑤𝑅 0 𝑤𝑅

2 + 1
)                                              (2.10)   

Consequently the stress tensor are 

𝜏𝑟𝑟 = −𝑃 + 𝑘2𝑤𝑅
2 + 𝑘1                                                                                                              (2.11) 

𝜏𝑟𝜃 = 𝜏𝜃𝑟 = 0                                                                                                                               (2.12) 

𝜏𝑟𝑧 = 𝜏𝑧𝑟 = 𝑘3𝑤𝑅                                                                                                                          (2.13) 

𝜏𝜃𝜃 = −𝑃 + 𝑘1                                                                                                                             (2.14) 

𝜏𝜃𝑧 = 𝜏𝑧𝜃 = 0                                                                                                                                (2.15) 

𝜏𝑧𝑧 = −𝑃 + 𝑘1 + 𝑘1𝑤𝑅
2                                                                                                               (2.16) 

Where 𝑘1 = 𝜇1 − 𝜇2 , 𝑘2 = −𝜇2   ,  𝑘3 = 𝜇1 + 𝜇2 

Substituting equation (2.13), (2.15) and (2.16) in equation of motion , we find that the non-zero component of equation of 

motion is  

𝑘3𝑤𝑅𝑅 +
1

𝑅
(𝑘3𝑤𝑅) =  𝜌𝑤𝑡𝑡                                                                                                                                 (2.17) 

which reduces to 

𝑅𝑘3𝑤𝑅𝑅 + 𝑘3𝑤𝑅 =  𝑅𝜌𝑤𝑡𝑡                                                                                                                    (2.18) 

 

3.   Monge method of solution 

The equation for the determination of stresses and displacement in an incompressible cylindrical section of Mooney Rivlin 

material of order one undergoing an axial shear wave deformation is derived in (2.18)  

This equation can be written as              
𝑅𝑘3𝑤𝑅𝑅 −  𝑅𝜌𝑤𝑡𝑡  = −𝑘3𝑤𝑅                                                                                                                 (3.1) 

The standard form of the monge equation is given in  [15]  
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𝑅⋆𝑟 + 𝑆𝑠 + 𝑇𝑡⋆ = 𝑉                                                                                                                                 (3.2) 

where 𝑅⋆,S,T and V are functions of R, t, w, p, and q. 

𝑟 = 𝑤𝑅𝑅  , 𝑠 = 𝑤𝑅𝑡 ,   𝑡⋆ = 𝑤𝑡𝑡  , p = 𝑤𝑅  and  q = 𝑤𝑡                                                                                   (3.3)   
The monge subsidiary equations [15] are given by 

𝑅⋆𝑑𝑝𝑑𝑡 + T𝑑𝑞𝑑𝑅 − 𝑉𝑑𝑅𝑑𝑡 = 0                                                                                                                    (3.4) 

𝑅⋆(𝑑𝑡)2 − 𝑆𝑑𝑅𝑑𝑡 + 𝑇(𝑑𝑅)2 = 0                                                                                                                    (3.5) 

The relations which satisfy equation (3.4) and (3.5) are called intermediate integrals. 

Comparing (3.1) and (3.2), we have  

𝑅⋆ = 𝑘3𝑅,   𝑇 = −𝜌𝑅,   𝑆 = 0 , 𝑉 = −𝑘3𝑤𝑅                                                                                         (3.6) 

Consequently the subsidiary equations for our case become 

𝑘3R𝑤𝑅𝑅 dR𝑑𝑡 − 𝜌𝑅𝑤𝑡𝑡𝑑𝑡𝑑𝑅 + 𝑘3RdRdt = 0                                                                                    (3.7)   

𝑘3R(𝑑𝑡)2 − 𝜌𝑅(𝑑𝑅)2 = 0                                                                                                                                 (3.8) 
From (3.8), we have 

𝑑𝑅 = ± (√
𝑘3

𝜌
) 𝑑𝑡                                                                                                                                                (3.9) 

By using the two values of 𝑑𝑅 in equation (3.9) in (3.7),  we have the two equations 

𝑘3𝑅𝑤𝑅𝑅 (√
𝑘3

𝜌
) − 𝜌𝑅𝑤𝑡𝑡 (√

𝑘3

𝜌
) + 𝑘3𝑤𝑅 (√

𝑘3

𝜌
)=0                                                              (3.10)                  

−𝑘3𝑅𝑤𝑅𝑅 (√
𝑘3

𝜌
) + 𝜌𝑅𝑤𝑡𝑡 (√

𝑘3

𝜌
) − 𝑘3𝑤𝑅  (√

𝑘3

𝜌
)=0                                                          (3.11)        

Solving equations (3.10) and (3.11) simultaneously by subtracting (3.10) from (3.11), we have the single equation.   

𝑘3𝑅dp + 𝑘3pdR = 0   
dp

𝑝
+

dR

𝑅
= 0 

𝑝𝑅 = 𝑐 

𝑤𝑅 =
𝑐

𝑅
                                                                                                                                      (3.12) 

Equation (3.12) agreed with the result of [1]  

∫ 𝑑w

w

0

= ∫
𝑐𝑑R

R

R

0

 

Let  𝑅 = 𝑐𝑐𝑜𝑠𝜃 

𝑤 = ∫
−𝑐2𝑠𝑖𝑛𝜃𝑑𝜃

𝑐𝑐𝑜𝑠𝜃

𝜃

0

 

𝑤 = 𝐼𝑛𝑐𝑐𝑜𝑠𝜃 

Using the boundary condition  w(0) = 0 and 𝑅 (
𝜋

2
) = 0 

Therefore  c = 1 

𝑅 = 𝑐𝑜𝑠𝜃  𝑎𝑛𝑑 𝑤 = 𝐼𝑛𝑐𝑜𝑠𝜃                                                                                                   (3.13) 

Now 
𝑑𝑤

𝑑R
=

𝑑𝑤

𝑑θ

𝑑θ

𝑑R
=

𝑑𝑤

𝑑θ
∗

1

𝑑R
𝑑θ

 

Which on simplification gives 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡   
𝑑w

𝑑R
= secθ                                                                           (3.14  ) 

Therefore, shear strain 𝑤𝑅 = secθ  
The components of the stress tensors are  

𝜏𝑟𝑟 = −𝑃 + 𝑘2𝑤𝑅
2 + 𝑘1                                                                                                                                   (3.15)   

𝜏𝑟𝜃 = 𝜏𝜃𝑟 = 0                                                                                                                                                   (3.16) 

𝜏𝑟𝑧 = 𝜏𝑧𝑟 = 𝑘3𝑤𝑅                                                                                                                               (3.17) 

𝜏𝜃𝜃 = −𝑃 + 𝑘1                                                                                                                                   (3.18) 

𝜏𝜃𝑧 = 𝜏𝑧𝜃 = 0                                                                                                                                     (3.19) 

𝜏𝑧𝑧 = −𝑃 + 𝑘1 + 𝑘1𝑤𝑅
2                                                                                                                                   (3.20) 

Where 𝑘1 = 𝜇1 − 𝜇2 , 𝑘2 = −𝜇2   ,  𝑘3 = 𝜇1 + 𝜇2 and  𝑤𝑅 = sec𝜃 
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Fig 1: A graph of the equation (3.13) with Axial displacement plotted against radius. 

 

Conclusion  

In this work we considered an axial shear wave in an incompressible cylindrical solid of a Mooney Rivlin material  of order 

one given in equation (2.1). The analysis of the model resulted into a linear second order partial differential equation. 

Solving the linear second order partial differential equation we obtained equation of an analytic result (3.13). We obtained the 

shear strain as (3.14) by differentiating displacement with respect to the radius of the deformed cylinder. 
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