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Abstract 
 

 

The problem of determining the stresses and angular displacement in a hollow 

cylindrical material under torsional shear wave propagation is considered. The 

cylinder under consideration is made up of Mooney Rivlin material of order one. The 

analysis of the model resulted into a linear second order partial differential equation. 

Monge’s method was used in solving the linear second order partial differential 

equation. The method of solution adopted provided a closed form solution for the 

determination of the angular displacement and stresses at any cross section. 
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1. Introduction 

The problem of azimuthal shear wave propagation in an elastic hollow circular cylinder is of considerable importance in engine 

mountings, seismic isolators sonar, ultrasound, and application of nonlinear elasticity to the modeling of some biological 

tissues. A reasonable  amount of researches have be on done on torsional shear wave propagation with different strain energy 

function. Ertepinar and Erarslanoglu [1] considered the polynomial form of the strain-energy proposed by Levinson and 

Burgess. Haughton [2] obtained the same solution for g(R)  for class of strain energy function considered by Agarwal. 

Polignone and Horgan [3] worked on azimuthal shear wave using the generalized Blatz-ko material .Haddow and Jiang [4] 

considered on the condition which a strain energy function must satisfy for an azimuthal shear waves to occur in a hyperelastic 

material, they established that Azimuthal shear cannot be separated into two uncoupled systems, which govern the propagation 
of pure azimuthal shear waves and pure radial longitudinal waves, respectively. This means that the simultaneous propagation 

of a finite amplitude pure azimuthal shear wave and a pure radial longitudinal wave is not admitted in any compressible, 

isotropic, hyperelastics solids which admit the propagation of a finite amplitude pure azimuthal shear wave. Beatty and Jiang 

[5] and Jiang and Ogden [6] obtained the same results in their work. According to Selim [7] in his paper “Torsional wave 

propagation in an initially stressed, dissipative cylinder” the study reveals that the damping of a medium has strong effect in the 

propagation of torsional waves. The velocity of such waves depends on the presence of initial stress. Akbarov and Guliev [8] 

assumed the inner and outer cylinder to be made of incompressible neo-Hookean materials. They presented numerical result on 

the influence of the prestrains in the inner and outer cylinder on wave dispersion are presented and discussed. They also 

established that the pretension of the cylinder increases the wave velocity. Haddow and Erbay [9] investigated the possibility of 

the simultaneous propagation, in the R direction of a pure longitudinal wave and a finite amplitude pure axial transverse wave. 

Abo-el-nour and Fatimah [10] in their work investigated some aspect of dispersion relation of magnetic field. The result shows 

that the effect of the primary magnetic field is to increase the value of the material constants. Horgan and Saccomandi [11] 
investigated on Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. Simmonds  

and Warne [12] worked on Azimuthal shear of compressible or incompressible, rubberlike, polar orthotropic tubes of infinite 

extent. Haddow [13] studied Nonlinear waves in hyperelastic solids. Erumaka [14] investigated on finite deformation of a class 

of Ogden solid under anti-plane shear. Ogden [15] worked on non-linear elastic deformation . The available literature reveals 

that it is has been difficult to obtain an analytic solution for the resulting non-linear second order partial differential equations. 

In this work we show how the application of Monge’s method can ease this problem. 

The present study is to determine the angular displacement and stresses caused by torsional force in propagating a wave in a 

hollow cylindrical material. In this work we consider moore rivlin material of order one whose strain energy function is of the 

form. 

     W =
μ1

2
( I1 − 3) −  

μ2

2
( I2 − 3)                                                                                                ( 1)

where μ
1
and μ

2
are material constants related to the distortional response and are determined from experimental data.   
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FORMULATION OF THE PROBLEM:  

Let the open region 𝐷0 = {(R, Θ, Z), a ≤ R ≤ b ,     0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ h} denote the cross section of a right circular hollow 
cylinder with inner radius a and outer radius b in its undeformed configuration. The hollow circular cylinder is subjected to azimuthal 

shear force of magnitude 𝜌. The resulting deformation is a one-to-one axisymmetric deformation which maps the point with 

cylindrical polar coordinate (R, Θ, Z) in the undeformed configuration 𝐷0 to the point (r, θ, z)in the deformed region 𝐷.  
The deformation equations for the propagation of an Azimuthal shear wave in a cylindrical Mooney Rivlin hollow material is given by 

r = R   , θ = Θ + g(R, t)   , z = Z                                                                                                 (2)       
where  r is the radius of the cylinder in the deformed configuration and R is the undeformed radius and g(R, t)  is the angular displacement. 

Equation (2) describes a superimposed pure wave propagation in the R direction and linearly polarized in the Θ direction results in a time 

dependent deformation. The deformation gradient tensor F̅ associated with equation (2) is given by 

F̅ =     (
1 0 0

rgR 1 0
0 0 1

)                                                                                                                          (3) 

The left Cauchy-Green deformation gradient tensor B̅ is given by  

B̅ = F̅F̅T = (
1 rgR 0

rgR (rgR)2 + 1 0
0 0 1

)                                                                                               (4)  

The Left Cauchy-Green tensor is a second order tensor and it is symmetric, then it has three principal strain invariants 

 I1 , I2 and I3 given by 

I1 =  3 + (rgR)2 = I2 , I3 =  1                                                                                                           (5) 

Stress Tensor  τ̅: The stress tensor for incompressible material is given by  

τ̅ = −PI + 2W1B̅ − 2W2B̅−1                                                                                                              (6) 

Where I is unit tensor, P is the hydrostatic pressure and  W( I1 , I2 , I3) is the strain energy density function.  Wi =
∂W

∂Ii
, i = 1,2,3 

Using equations (4) and (5) in (6) we obtain 

τ̅ = −P (
1 0 0
0 1 0
0 0 1

) + μ
1

(
1 rgR 0

rgR (rgR)2 + 1 0
0 0 1

) − μ
2

(
(rgR)2 + 1 −rgR 0

−rgR 1 0
0 0 1

)              (7) 

The components of the stress tensors are 

𝜏𝑟𝑟 = −𝑃 + 𝑘1 + 𝑘2(rgR)2                                                                                                                 (8a) 

𝜏𝑟𝜃 = 𝜏𝜃𝑟 = 𝑘3rgR                                                                                                                                (8b) 

𝜏𝑟𝑧 = 𝜏𝑧𝑟 = 0                                                                                                                                          (8c) 

𝜏𝜃𝜃 = −𝑃 + 𝑘4(rgR)2                                                                                                                           (8d) 

𝜏𝜃𝑧 = 𝜏𝑧𝜃 = 0                                                                                                                                          (8e) 

𝜏𝑧𝑧 = −𝑃 + 𝑘1                                                                                                                                          (8f) 

Where 𝑘i; i = 1,2,3, 4 are constants.  
The equations  of motion in cylindrical polar coordinates (r,θ,z) is given by  
𝜕𝜏𝑟𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
+

𝜕𝜏𝑟𝑧

𝜕𝑧
+

1

𝑟
(𝜏𝑟𝑟 − 𝜏𝜃𝜃) + 𝜌𝑏𝑟 = 𝜌𝑎𝑟           

𝜕𝜏𝜃𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝜃𝜃

𝜕𝜃
+

𝜕𝜏𝜃𝑧

𝜕𝑧
+

2

𝑟
𝜏𝑟𝜃 + 𝜌𝑏𝜃 = 𝜌𝑎𝜃                                                                           

𝜕𝜏𝑧𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑧𝜃

𝜕𝜃
+

𝜕𝜏𝑧𝑧

𝜕𝑧
+

1

𝑟
𝜏𝑧𝑟 + 𝜌𝑏𝑧 = 𝜌𝑎𝑧                                      

Where 𝑏𝑟 , 𝑏𝜃 𝑎𝑛𝑑  𝑏𝑧  𝑎𝑟𝑒 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒 𝑎𝑛𝑑 𝑎𝑟   , 𝑎𝜃  𝑎𝑛𝑑 𝑎𝑧   are the components of the acceleration. 
The non- zero component of  equation of motion  is the azimuthal component, which reduces to 
𝜕𝜏𝜃𝑟

𝜕𝑟
+

2𝜏𝑟𝜃

𝑟
= 𝜌𝑎𝜃                                                                                                                              (9) 

𝑁𝑜𝑤   
𝜕

𝜕𝑟
=

𝜕

𝜕𝑅

𝜕𝑅

𝜕𝑟
=

𝜕

𝜕𝑅
(

1

𝜕𝑟
𝜕𝑅

) =
1

𝑟̇

𝜕

𝜕𝑅
 

Hence equation (14) becomes 
𝜕𝜏𝑟𝜃

𝜕𝑅
+

2𝑟̇

𝑟
𝜏𝑟𝜃 = 𝑟̇𝜌𝑎𝜃                                                                                                                         (10)  

From the deformation equation  (2) and using the discussions above we have equation (10) as 

𝑘3rgRR + 3𝑘3gR = 𝜌g𝑡𝑡                                                                                                                     (11)    
Monge method of solution 

Equation (11) is the equation for the determination of stresses and displacement in an incompressible cylindrical section of Mooney Rivlin 

material of order one undergoing an azimuthal shear wave propagation 
Equation (11) can be written as 

𝑘3rgRR − 𝜌g𝑡𝑡 = − 3𝑘3gR                                                                                                               (12) 
 The standard form of the Monge equation is given see (Raisinghania 16) as 

𝑅⋆𝑟 + 𝑆𝑠 + 𝑇𝑡⋆ = 𝑉                                                                                                                             (13) 

where 𝑅⋆,S,T and V are functions of  R, t, w, p, and q. 
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  𝑟 = g𝑅𝑅  , 𝑠 = g𝑅𝑡 , 𝑡⋆ = g𝑡𝑡                                                                                                                  (14)  
𝑅⋆𝑑𝑝𝑑𝑡 + T𝑑𝑞𝑑𝑅 − 𝑉𝑑𝑅𝑑𝑡 = 0                                                                                                      (15) 

𝑅⋆(𝑑𝑡)2 − 𝑆𝑑𝑅𝑑𝑡 + 𝑇(𝑑𝑅)2 = 0                                                                                                     (16) 

The equations (12) and (13) are called Monge’s subsidiary equations and the relations which satisfy these equations are called 
intermediate integrals. 
Comparing (12) with (13), we have the following  

𝑅⋆ = 𝑘3r,   𝑇 = −𝜌,   𝑆 = 0 , V = − 3𝑘3gR                                                     (17) 
 

Consequently the subsidiary equations for our case become 

 𝑘3rg𝑅𝑅dR𝑑𝑡 − 𝜌g𝑡𝑡𝑑𝑡𝑑𝑅 + 3𝑘3gRdRdt = 0                                                           (18) 

𝑘3r(𝑑𝑡)2 − 𝜌(𝑑𝑅)2 = 0                                                                                                (19) 
From (19), we have 

𝑑𝑅 = ± (√
𝑘3r

𝜌
)𝑑𝑡                                                                                                      (20) 

By using the two values of 𝑑𝑅 in equation (20) in (18),  we have the two equations 

𝑘3r g𝑅𝑅 (√
𝑘3r

𝜌
) − 𝜌g𝑡𝑡𝑑𝑡 (√

𝑘3r

𝜌
) + 3𝑘3gR  (√

𝑘3r

𝜌
)=0                                          (21)                  

−𝑘3r g𝑅𝑅 (√
𝑘3r

𝜌
) + 𝜌g𝑡𝑡𝑑𝑡 (√

𝑘3r

𝜌
) − 3𝑘3gR  (√

𝑘3r

𝜌
)=0                                        (22)                                  

Solving equations (21) and (22) simultaneously by subtracting (21) from (22), we have the single equation 

r g𝑅𝑅dR + 3gR dR = 0             
Which is equivalent to 

 𝑅𝑑𝑝 + 3𝑝𝑑𝑅 = 0                                                                                                            (23) 

Where  𝑑𝑝 =  g𝑅𝑅dR, 𝑝 =  
𝑑g

𝑑R
 and from equation 2   r = R 

Equation (23) can be expressed as 
dp  

𝑝
 + 

3dR  

𝑅
= 0                                                                                                                (24) 

integrating equation (24) we have 

pR3  = c                                                                                                                               (25) 
Equation (25) simplifies to 

𝑝 =   
c  

𝑅3
                                                                                                                                (26) 

where c is a constants 
Equation (26) implies 
𝑑g

𝑑R
=   

c  

𝑅3
                                                                             

which integrate to 

∫ 𝑑g

g

0

= ∫
𝑐𝑑R

R3

R

0

 

Let 𝑅 = 𝑐𝑠𝑒𝑐𝜃 

g = ∫
𝑐2𝑠𝑒𝑐𝜃𝑡𝑎𝑛𝜃𝑑𝜃

c3sec2𝜃𝑠𝑒𝑐𝜃

𝜃

0

 

g =
1

4c
[1 − cos2𝜃] 

Using the boundary conditions   𝑅(0) = 1 𝑎𝑛𝑑  g(0) = 0  
Therefore  c = 1 

𝑅 = 𝑠𝑒𝑐𝜃     and    g =
1

4
[1 − cos2𝜃]                                                                                   (27) 

Now 
𝑑g

𝑑R
=

𝑑g

𝑑θ

𝑑θ

𝑑R
=

𝑑g

𝑑θ
∗

1

𝑑R
𝑑θ

 

Which on simplification gives 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡   
𝑑g

𝑑R
= cos3θ                                                                                (28) 

Azimuthal Shear Strain 𝛶 = RgR 

Therefore  𝛶 = RgR =    cos2θ                                                                                               (29) 
From (8) the components of the stress tensors are 

𝜏𝑟𝑟 = −𝑃 + 𝑘1 + 𝑘2(RgR)2                                                                                                     (30) 

𝜏𝑟𝜃 = 𝜏𝜃𝑟 = 𝑘3RgR                                                                                                                     (31) 

𝜏𝑟𝑧 = 𝜏𝑧𝑟 = 0                                                                                                                                (32) 

𝜏𝜃𝜃 = −𝑃 + 𝑘4(RgR)2                                                                                                                (33) 

𝜏𝜃𝑧 = 𝜏𝑧𝜃 = 0                                                                                                                                 (34) 
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𝜏𝑧𝑧 = −𝑃 + 𝑘1                                                                                                                               (35) 

Where 𝑘i; i = 1,2,3, 4 are constants. 
 

 
 

 

Fig 1: A graph of the equation (27) with angular displacement plotted against radius. 
 

CONCLUSION: We were able to obtain a solution for the angular displacement given as equation (27) which is caused by 

Azimuthal force in propagating a wave in an incompressible hollow circular cylinder whose strain energy function is given as (1). 
We obtained the shear strain as the product of the radius of the cylinder and the angular displacement gradient given as (29). 

Finally, we obtained the components of the stress at any cross section of the hollow cylinder. 
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