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Abstract 
 

 

The task of de-noising solution space to least squares problem as a result of huge 

condition number occurring as a result of unwanted noise present in the data on 

the right hand side in the linear system is discussed. We filtered out noise from 

solution set with smallest singular values spaces based on Tikhonov regularization 

parameter using the numerical tool box of Singular value Decomposition (SVD), 

and compare results with Cholesky Factorization and preconditioned conjugate 

gradient method (PCG) for the over determined nonlinear least squares problem 

which was narrowed down to linear least squares problem. Bounds for the 

singular values of pseudo- inverse matrix A is constructed using ideas due to 

Rump. 
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1. Introduction 

Least squares problem deals with challenges found in mathematical formulations which are rank deficient largely due to 
nonlinear model having more free parameters than the model can describe. Quite often the Gauss-Newton iteration comes as 

a hand tool for approximating solution to nonlinear system of equation [1-3].  

However, such resulting system of linear equation is already ill-posed due to noise present in the data. The nonlinear least 

squares problem is in the form: 
n
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Where, the current update of x is  

,...,.)2,1,0()()1( =+=+ ksxx kk

      (1.2) 

The function mn RDxRDF → ,:  is continuous on D  and nm  .The vector ks  which is invariant under linear 

transformation of the independent variable x  is computed as a minimiser of equation in the form: 

),...,2,1,0(),()( )()(/ =−= + kxFxFs kk

k     (1.3) 

Where, it is understood that  +)( )(/ kxF  is the Moore-Penrose inverse )( )(/ kxF , [4]. 

Practical experience shows that iteration (1.3) does not always have solution for all s since the resulting linear system is 

singular or nearly singular [5], there is thus need for introduction of    Tikhonov regularization parameter as defined in the 

equation (1.4) : 

( ) ,...,.)1,0(),()())]()([( )()(/1)(/)(/2 =+−= − kxFxFxFxFIs kkkTk

k   (1.4) 

The k is the Levenberg-Marquardt parameter at the current point. Without loss of generality, we hereby  make further 

adoption of notation as )( )(kxA representing Jacobian matrix )( )(/ kxF ,  and )( )(kxb = )()( )()(/ kTk xFxF . Equation (1.4) is rewritten 

in the form: 

( ) )())()(( )(1)()(2 kkTk

k xbxAxAIs
−

+−=   , (k=0,1,2,…,)   (1.5) 

We give theoretical foundation necessary for discussion in the paper below: 

The projection matrix += AAPA
 is Hermittian,

AP  is idempotent and, the range space 
AA PARPR )()( =  is the orthogonal 

projection onto )(AR .We then have that ( ) OAAAAAAAAAAAAAIA TTTTTTTTTT ==−=−=−
++++ . 
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From analysis due to [6], it is inferred that: 
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Wherefrom it is obtained that: ( ) ( ) 2
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  is well defined. In that case,
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For the perturbed data ( ) ( )bbxAA +−+ =min!; we can verify the ill-conditioning in the sense of [7] that 
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where  =angle between b and its projection onto ( )AR . 

Numerical analysts often use the LU decomposition or Cholesky Factorization in the Least squares problems. But due to the 

huge presence of noise in the measured data, solutions obtained by either LU decomposition or Cholesky Factorization 
sometimes become misleading as a result of high condition number  present in the Jacobian matrix. Experiences indicated 

that Pseudo-inverse of the matrix AAT
 by the aforementioned methods pushes the high condition number to the right hand 

side which is common in either the under- or over -determined system. Furthermore, in some cases this leads to cancellation 

of results due to dependency problems especially in the application of the methods in circular interval methods. 

We may resort to the method of QR -Cholesky-factorization in the form: ( )nnmm RRRQQRA  = ,, , where Givens 

rotation matrix is  
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The matrix ),,( qpQ  is a rotation matrix that is orthogonal and preserves length. We thus incorporate this Givens 

QR  -Cholesky –factorization into the linear least squares problem formulated in the form: 
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This has solution  
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We now have the case of unexpected occurrence in our discussion particularly, in the un-shifted QR algorithm, which holds 

that 

 ,...,.)3,2,1(,11 == ++ kRQR k

T

k

T

k
        (1.9) 

There is gain to be made in using forward QR method as two successive iterations of 
T

kR is equivalent to one iteration of 

basic QR  algorithm. To this end, it is set that: 
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( )kkkk

T
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which always yield the QR  factorization of A .This is further demonstrated with formation of product in reverse order: 
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Where is understood that: 
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The Givens QR -factorization method has several applications in Sciences and Engineering practices for example, in the 

eigenvalues based problems and inversion of matrices occurring in linear system solvers, particularly in the antenna beam 
formation and systolic matrix arrays resolution.  

The remaining section in the paper is arranged as follows: Section 2 discusses the singular values decomposition for problem 

1.1, the error perturbation analysis discussed in section 3.In section 4, construction bounds for Singular values of 
+A  in 

algorithmic form following carefully the ideas in [6]. We filtered out noise for the solution set from singular values spaces. 
 

0.2        The Singular values Decomposition for Problem 1.1 

We recollect that 
nRx

^

 is a solution to nonlinear least squares problem 1.1 whenever
ObxAAT =








−

^ . The existence of 

solution to such system is heavily dependent on the nature of spectral radius of the system matrix. Based on this fact, we 

often use the power iteration method to compute dominant eigenvalue and corresponding eigenvector- the fundamental mode 

of  

xBx =   ,     (2.1) 

where the matrix B  is the Tikhonov regularized matrix to equation(1.4) with the eigenvalue-eigenvector pair (eigen pair) 

being the Ritz pair [8]. 

Motivated by this idea we are led to describing the Singular value decomposition of the matrix nmRxA nm   ,)(  as 

follows. The matrix A is decomposed in the form 
TVUxA =)(     (2.2) 

Where 

( )nrrdiag  ,...,,,...,, 121 += .  

The rank of )(xA  is determined as ( )0.,..0,,...,, 21

^

rdiag = , wherefrom, 
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Because of expression given in equation (2.3) we then rewrite equation (1.5) in the form:  
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Further simplifications of equation (2.4) would yield that: 
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By further adoption of ideas from existing literature [9-10]  leads to the following result:  
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Further exposition of equation (2.6) for discussion shows that for the matrix of rank r , it is that  
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The terms nrr vvv ...,,, 21 ++  span the kernel, the Null space )(AN of A . We give the solution in the form: 

)(ANxx Ls +=
−

 ,   (2.8) 

Where, as usual, the term
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The Picard condition is that 0→buT

i
 at a faster rate compared to i . 

The contributory factor of regulation parameter   shows that for
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for → ,the sum  +2

i
.Therefore when the value of 0 , there will be an unwanted noise in the solution with 

high condition number. A similar analysis holds for the discrete least squares problems where only the right hand side is 

perturbed by noise. 

We construct the filter function for the Tikhonov regularization with sole aim to dampen out noise from the data: 

             bAAx )(
+=                                 (2.9) 

The term )(A  in equation (2.9), a filter function, is given in the form: 

22

2

2

1

1
1)(










+
=









+

−=

   (2.10) 

Practically, the definitive role of the filter function is to remove or dampen all eigenvalues close to zero from the right hand 

side. This can be illustrated for two different matrices [11-13] with diagonals )(   and )(f  whose entries are )( j  

and )( jf  . By defining the filtered solution as well as filtered right hand side by the equations 

bUVfx T)(=
 ,       (2.11) 

bUUAx T)(= 
,       (2.12) 

the residual is obtained as 
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  (2.13) 

The use of regularization [14] indicated that any noise component in the direction 
ju  will often be amplified by the factor

jj  /)(  whereas, for small 
sj '  the amplification of the noise caused by 0/)( →jj  . 

One immediately would ask what the gain is achievable in the described methods. As it were, the gain in the discussed 

methods for the solutions between the use of pseudo inverse and regularized solution differ largely by the quantity 
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0.3  Error Perturbation analysis for the least squares problem 

Firstly, we start with backward error analysis in order to show how data perturbations affect the solution. In other word, it is 

an interpretation of approximation result to exact solution of a nearby system 

bBx =                                  (3.1) 

for the matrix ( ) )()(,)()((2 xFxAbvectorthexAxAIB TT =+=  .  

If we solve system (3.1) correctly see e.g.,[15-17] as well as[10] by Cholesky method for RRB T=
−

 where R  is upper 

triangular matrix, the relative error for system ( 3.1) is at most   per component such that BBB −
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computed approximate solution 
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Practically, it is that for 0  , there holds that  
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0.4  Construction bounds for Singular values of 
+A  

The construction bounds for singular values of
+A  is in the form of algorithm using ideas due to [6]. 

The Algorithm 

Given a matrix 
nmRA   and   ,2,1p , 

1) If 1− 
p

T AAI  and 





−
−+

12

TAA
, endif and stop. 
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   Else perform the following operations. 

2) For 1k find a matrix 
kmRC   such that the error estimate 
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0.5  NUMERICAL EXPERIMENTS       

We illustrate with the aid of linear over determined system since nonlinear over-determined system can always be 

transformed to linear system. 

Consider problem 1 
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Using Filter function defined in equation (2.8) for the Tikhonov regularization method, we compute the following results as a 

comparison with those obtained from SVD, the PCG method and Cholesky factorization .We use MATLAB windows 2007 

and computed results are displayed in Table 1. 

Table 1 showing results computed by the described methods for Problem 1  

Theoretical Solution with 

tikhonov regularization 

parameter from Normal 

Equation Approach by Cholesky 

method for  Problem 1 

SVD Least squares 

approach method (2.7) for 

Problem1 

PCG method 

Without tikhonov 

regularization 

parameter  method 

Problem1 

The filtered Noise 

obtained from smallest 

singular value for 

Tikhonov method (2.8) 

for Problem1 

1.0000 

2.0000 

3.0000 

4.0000 

1.0031 

1.9998 

2.9978 

4.0000 

1.0000 

2.0000 

3.0000 

4.0000 

0.0162 

0.2045 

0.1090 

0.2566 
 

As expected the computed solutions given by the use of PCG and traditional Normal equation are the same. Whereas the 

result computed by the backward stable SVD method increased slightly higher than the results obtained from the use of 
Normal equation method and that of PCG. 

 

0.6  CONCLUSSION 

In the paper, after preliminary exposition for solving nonlinear least squares problems by Gauss-Markov’s method,an 

attention was paid to singular value decomposition for the resulting Overdetermined linear system of equation. We 

constructed bounds for the singular values of the rectangular matrix using closely the ideas due to [6].Sample numerical 

illustration was carried out on Overdetermined linear system.  
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We used the numerical tool box of Cholesky factorization, the singular value decomposition (SVD) applied on Tikhonov 

regularization method and compared results with preconditioned conjugate gradient (PCG) method for unregularized 
Tikhonov method. The computed results are quite in agreement compared to the method of SVD for solving overdetermined 

systems of equation since SVD is numerically backward stable. In addition we used a technique of Tikhonov regularization 

method to filter out noise associated with smallest singular  value space in the solution set of linear least squares problem. 
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