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Abstract

The iterative methods for solving system of nonlinear equation is presented and
extension is made to include the so called SVD of a matrix for the positive
eigenvalues of a matrix. By incorporating the use Lagrange interpolation formula,
we are able to compute the square root of a matrix where the sign function of a
matrix can be obtained cheaply. Particularly, we use the Schultz Hyper power
method for approximating inverse of linear bounded operator in Hilbert space in
speeding up Newton iteration for matrix square root. The discussed methods are
amenable to Aerospace computation for polar decomposition for the direction
matrix cosine. Details of above procedures form the peak of discussion.
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1. INTRODUTION
The paper starts off with preliminary discussion on iterative solution of nonlinear systems of equations

F(x)=0 . (1.1)

Using adaptive splitting, solution to system (1.1) may be found in exact arithmetic using any standard numerical iterative
methods [1]. However, we often neglect the effects of square root of the resulting Jacobian matrix if such matrix has positive
eigenvalues. Such computation is often facilitated by the aid of Singular value decomposition (SVD) in conjunction with
Lagrange interpolation formula assuming no eigenvalues are on the left hand side of the real line. Such problems are often
encounteredin diverse branches of dynamical systems and control theory [2].Computation of square root of a diagonalizable
matrix with both positive and negative eigenvalues are major non trivial problems occurring in polar decomposition, an
important aspect of Aeronautic space computation.

Before proceeding further, we let F:R" — R" be locally Lipschitz continuous. This means that F is Fretchet differentiable
almost everywhere. Then, the generalized Jacobianof F at the vector x e R" will be given by the set:

F (0 = a{xﬁ'j?:]@; P )}, (1.2)

where, the term ¢« , is the convex hull.
The Newton iteration is then defined by

X&) = x(k) —NlF(X(k)) ,(where, A e F/(X(k))) (1.3)
The corresponding ball radius ' about a point X € R" is represented by
B(x,r):{xc‘ Hx—xCH<r}l (1.4)

Additionally as is expected, the role ofLipschitz constant & gives a good measure on the rate of convergence in the fixed
point iteration [3,4]. This means that any decreasing sequence of such closed sets x, - x, o x, o..., eventually stabilizes. The

base of the topology it generates consists of complements of hyper-surfaces x**9 = x®) — N (x*)) for which x qx® » gand,
N(x")) are the respective Newton corrections for each step which tends to zero vector as K — oo . Of special interest is that,
the matrices A, are of Baire’s second category. That is, coefficients of A e F’(x")) are non-meagre. If this is the case, then
A(x*) has a completely regular topological space that is F -Suslinprovided that F is analytic at the point X, .
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ThusF :R" — R"are both G, - closed and B, complete in the sense of Cauchy sequence[5].e.g.,. Overall, the interest in this

discussion precludes those of rare spaces although their occurrences are often met as well.

We reference further a categorical statement in our presentation that a Frechet space, a sequentially complete (Df) space to
which adaptation of iterative methods succumb in line with Grothendieck, the strong or weak dual countable inductive limit
of metrizable locally convex spaces are webbed.

We draw inspiration from [6] with the following theorems for verifications of initial conditions for the system of Equation
(1.1) for any meaningful iterative Newton-Like processes. These are influenced by the Kantorovich,Borsuk’s and Miranda
theorems respectively.

Theorem 1.1, Standard Kantorovich Theorem [6]: Let f:D <= R" —» R" be differentiable in the open convex set D .

f ’(x(o))f1 f (x(o))

f/(x(o))*l(f '(u)- f /(v)j‘ < kHu _VH for all

Assume that for some point x© < D the Jacobian f/ (x*)) is invertible Witth/(xm)]‘gﬁ, <

Assuming further there be a Lipschitz constant x>0, for f’ such that ‘

u,veD.If h=;pc S%and B(x®,p_ )< D, where 5 =lfvﬂleh .then f hasazero X" in B(x©, 5 ). Moreover, this
K
zero is the unique zero of f inB(x®, p JUB(x®, p, )N D, where 5 = L¥¥1=2h and the Newton iterates X" with
+ ﬂ’(’
(64D — 5 () _ § /(X(k))*l f (X(k)) (15)
are well defined , remain in é(xw), pf) and converge to X .
Theorem 1.2, Borsuk’s Theorem [6]: Assume that there is a symmetrisation of zeros of f around the disk D .Let g < r" be

open, bounded, convex and symmetric with respect to x% € B .Let f :B - R"be a continuous mapping, for which f (x) =0
on &B and that f(x +t)=pf (x©) —t), where >0 andall xX® +teaB. Then f hasazeroinB.

Miranda Theorem [6]: Let f: éw(x(o)’g)g R" — R" be a continuous mapping. Assume that

£ 00 >0 VXeBL*(x‘O),r) fori=12,...,n
<0 vxeB (X r)

Then f hasat least one zero X in B.(x,r).

We situate the theorem of [7]to discriminate points of singularities in a system (1.1):

Lemma 1.2 [7]: Let A be a singular M - matrix, and let A=m —N denote the weak regular splitting. Assuming there is
x > 0 such that Ax > O ,andind,(B) =1 where inqd, (B) is an index parameter. It holds thatB=1-M™N is a singular M -

matrix .
Consequently following, we have that a weak regular splitting satisfies p(M ’1N)=1 andindl(M ‘1N):1.A graph compatible
weak regular splitting [8] whose matrix A is a singular M -matrix, where A= M — N is given by:

@ p(M*N)=1, () mult,(M*N) > mult, (A), and (c)ind, (M *N) <ind, (A).
The rest of the paper is categorized in the form: Section2 gives commonly used iterative linear solvers - Jacobi, Gauss-Siedel
and Successive over relaxation (SOR) methods. We relate that, SOR parameter can be estimated from ratio of the norm of
errors of two successive Gauss-Siedel steps as iteration process approaches infinity and synchronized this with method due to
Young of 1958 as reported in [8],aquite significant advantage in numerical computation. Thus, the number of steps to achieve
numerical accuracy in the execution of SOR method is discussed. In section3, the SVD of a matrix is brought into discussion
in collaboration with lagrange interpolation formula for computation of a matrix square root, an important step in the
formation of matrix sign function. Numerical example is demonstrated in section4 and conclusion is given based on the
strength of our findings.

2.0 Commonly Used Iterative Solvers for Linear System.

Commonly used iterative solvers forEquation(1.3) are the Jacobi,Gausss-Siedel and Successive over relaxation methods and
their various modifications [9,10] all based on fixed point theorem.

To this end, the matrix A is split in the following way

A=D-L-U,andp= diag(a,, ay, ,...a, ) L = strictly Lower diagonal matrix,U strictly upper diagonal matrix respectively.

Basic stationary iterative method usually is in the form:
x€D —x® M Ab-Ax®) k=0L2...), (21
based on matrix splitting A= M — N, it is set that:
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B=M N =1—M ™A Forapreconditioned iteration to a linear system

MTAx=M b, (2.2)

is described as follows: Firstly, convergence criterion for Jacobi iterative method is that, p(D,l(U + L))<1.
Different iterative methods are obtained from system (2.1) in the form:

Setting as:

M =D, itis the Jacobi iterative method,M =D - L, it is Gauss-Siedel method, for :ED(I — L), We have the Successive
«

Over relaxation method.

Thus, Gauss-Siedel method also called the Single Step Method (SSM) is given by the equation:

(D-L)x® Y =ux® +p (2.3)
Equivalently, we rewrite Equation (2.3) in the form:
x = x®© 4 D x D 1 UK £ D —x W f= x®) 4y ® (2.4)
General standard form of Equation (2.4) is given by
x 1) = x ) 4 o) (2.5)

As is standard, we often write Equation (2.5) in the form:
Dx®Y = Dx® + @l x** + @Ux® + wb — Dx™.
Thus, it follows that

x4 = (D-L)*(1-0)D+ U XY +&(D-wl) ™ b (2.6)
A simplified form of Equation (2.6) is setting D = | . In this case, we have the consequences:
X6 = (1 —ol) (- @)l + U XY + (1 —l) b 2.7)

The iteration matrix for Equation (2.7) is that

L, =(1-ol)(1-0)l +aU)-

The term O < w < 2 is called Over-relaxation parameter. Various over relaxation methods are in force viz: forew <1 , it is

under relaxation method; e =1, it is single step method; o > 1, it is over relaxation method.

In case of Gauss-Siedel method (Single Step Method), the convergence is implied by

>y I =12,...,n. Using the ideas due to Young of 1958 as reported in [8]it is that for a consistently ordered matrix
j#i

and for real eigenvalues of Jacobi iteration matrix B =Dp~*(U + L)for which p(B)<1, Successive Over relaxation method
converges if
2 , and,

U ey ,))=0,-1= 7P(B)
14 1—p(B)2 P(H( h)) 5 —1 [qu/LpW

More fundamentally is that for @ € [1, a)b] in the SOR method, there follows:

p(wb){ﬂ‘i\/m}z (2.8)

’
ail

T whereH = (1 -L)'U.

2 2
Where from,  p(3,)+0-1 (2.9)

~

op(3,)
Recently, methods for estimating values of @, using Gauss-Siedel iterative sequence {Xk }E:lcan be computed [4] and other

references therein. For a considerable value ofk, using notatione* =x® —x as the error for Whichekzsze(o),

d* = x® —x®) we then have

Xk _x) — gl ) — (3 1) = 3 (3, ~1)e® = Fd©.

For a large k —> o0, the estimate

et — x| (2.30)

=m
Ci L|a<?1( k) X_(kfl)‘

x(

gives the approximate value of p(Sw).We thus can estimate £ from Equation (2.5). The overall gain from estimate for C,

in Equation (2.6) is that the value for
- 2 1 (2.31)

= 1
[1+ [1—((:k ~0-1) llo’c, )F]
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can be obtained cheaply without further calculation.
We see from the error d*) = 3e® = (3, — 1) that e = (3, —1)*d" . Using this connection, it holds that

1
e, < 2oL

Finally, the number of iterations required to achieve the above can be computed from

_np(3.,) (2.32)
In p(B)

3.0 The SVD and Computation of a Matrix Sign Function, where lies The Lagrange Interpolation Formula?
The singular values decomposition (SVD) of am x n matrix is an important tool for solving not only the rank of a matrix but
alsoacts as a gateway providing many numerical solutions to linear systems. Its efficiency ranges from applications in least
squares problems -such as image reconstruction from missing data [9,10] to polar decomposition, an important tool in
numerical analysis and aerospacecomputations for the direction cosine [11].
In some cases, the nonlinear system of Equation (1.1) may have more number of equations than the unknowns which the
system can accommodate. Then, for such a matrix A< R™", M > N ,has an SVD in the form:
U"AV =X, (31)
where,U e R™™, V ¢ R™ are unitary matrices for which { ,
D o
o o

D =diag(o,, 0, , ...,0, ), 0, >0, >...>0, >0 and, r is the rank of matrix A.

Via least squares approach, the equivalent problem leads to the form

(AT A)x=AT f(x). (3.2a)

On the other side, we may first reduce the matrix A to upper triangular form by QR decomposition. Thus the induced QR
method is given by

A Q[g]' msn  (3:2b)

By further introduction of SVDfor R , would yield thatR =U,, >V " implying that
A=UZVT,, :Q[LCJ)RJ. (3.3)

Supposing A has full rank, in view of Equation (3.2a) the generalized solution to system of equation
Ax=b,(34)
Where Ae R™",b e R"will be written in the form:

W =VOS U= if vfif 22+ if”s (3.5)

Theterm @ € R™" isa diagonal matrix with well-known filter factors fi on the diagonal while extra termu/'s, corresponds
O

to noise S which prevents the over determined system from blowing up [12,13].

We compute the square root of the successive Jacobian matrix from system of Equation(1.1) as follows:

Algorithm 3.1

1
(i) Define F(1) =4/ ; F(4) being the principal branch of A? for square root function.

(ii) From the spectrum of Aie. 4, 4,,...,4,, we form a polynomial interpolation (4, > 0)
) (3.6)
=f
(4 )H(—H b

j#i
(iii) Form F(A) = P(4) = P(A)

(iv) Thus F(A)® = A as expected.

We should expect that rank F(A) = rank F(A™) and F = F*,F = F~ are self-dual operators for any non-singular matrix A .

The main idea in the above discussion is the principal square root of a matrix A whose eigenvalues lie in the open right half
plane. This principal square root whenever it exists is a polynomial in the original matrix.
Definition 3.1[12]: The Jordan Canonical Form
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Let Ae C™" matrix, there is a non singularmatrix T AT = J =diag(J,, (4 ), .- J,, (4 )
Where

I (4)= . =21 +SeC™™
1
A

the Jordan blocks. The numbers m, +m, +...+ m, =n are unique and the matrix S is Nilpotent.

The form TAT = J = diag(Jm () .3, (4 )) is called the Jordan Canonical form of A..
Furthermore, we also compute thatT*(— A)r =—J . In other words, T (- AJT = f(-J)=diag(f (- J,)) SO that, f (-1) =+f (1) and

this leads to f /(~1) = +(~1)' f V(z). The same analysis goes for f(-9, )=f(3, )-

Using definition (3.1),we now state the following assertion analogous to[11,12].
Supposing F be defined on the spectrum of A € C™" and assume further that A has the Jordan Canonical form as stated
above, then
f(A)=Tf (J)T‘l:Tdiag(f(Ji)T‘l) , Where, defined that
/ f"0 () 3.7
O 3.7
f(3,)= F(4) oo

Particularly, for the Jordan block J;, we realize that the interpolating conditions are p® (4)= (2 )k =0:m 1 in the
Hermit interpolating polynomial, and that:

(=AY, jog =2l (38)

PO = f(2)+ ' ()t -2))+ (%)

2! (m, —1)!
In passing, we reconcile the Lagrange interpolating polynomial with the Hermite formula in the form:
s n-1 3.9
P() =z{[z%¢m Xt-z.)k]n«—ak ﬂ 39

Where it is set that :

)
WO sy

ki

We move to form an iterative Newton method for the square root of this matrix.
1

Taking Zk to be approximation to A? and forming the perturbationto z =z, +E, , we have that
A=(Z,+E, )V =2?+Z,E +E X, +E}  (3.10)

Ignoring the additional term Ek2 , We obtain that

E. =Z +E., Z,E +EZ =A-Z2(3.11)

Combining together the above ideas we see that iteration for obtaining square root of A is given by the equation
Zos :%(zk +Z.'A) (3.12)

Equation (3.10) is the well-known Newton iteration for computing square root of a diagonalizable matrix.
To compute the square root of the matrix A we adopt the Newton iteration in the sense of [12, 14], a modified version of
Equation (3.11) in the form

Z, :%(zk Y)Y =%(Yk +z7) G

1 -1
where z, =AY, =1, and, jm = Az: limY, = A2 - We used Schultz Hyper Power method [15]to approximate the inverse of
k—o

k-

the matrix A™in Equation (3.13)in the form:
Xia = X(21 = AX;)=(21 = X,A)X,,i=01,.... (3.14)

In method 3.14, the

X, = g = 2 ,Wheregl>02>”_>ap>o are obtained fromSVD of Aand A* — A" as | — .
[ T2 2

1 P
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The matrix sign function is computed by the equation

. 1
Sign(a) = AA?) 2 (3.15)
The spectral projectors corresponding to eigenvalues in the right and left hal-plane are
P, :%(I +sign(A)) (3.16)
Finally, we state that given infinite power series (@=Sas with radius of convergence I, the matrix F(A)= ia.zi converges
i=0 i=0
if p<r ,and ,=p(a) is the spectral radius of A. If 5> r, the matrix series diverges. The case p = I requires further
investigation.
Using additional information, we state the following properties concerning matrix A :
K, (A)> K(A) ,and log Az AT A
log =

Hlog(A)H (I+A):A—7+?—T+...,p(A)<l'

lo 3 v, Where mi .
T2 0-A0 AT min Re 2, (A) >0

[sinCA|A]
[cos(A)]

lcos(a)||A] . Thus A with no eigenvalues on R™ has

K oo (A) 2

» K (A) 2

1
log( A) = 2" log( A2)* , where the value of K can be chosen such that Iog[ A;jk can be easily computed.

4.0 Numerical Example.
PROBLEM 1.

10 7 8 7
Az 7 5 6 5

8 6 10 9

7 5 9 10

The tabulated results are presented in Table 1.
Table 1 : Computing Square root of a Matrix and simultaneously its inverse with positive eigenvalues by Newton iteration method

No. of iteration k % ,%
ANewt ANewt
1 5.5000 3.5000 4.0000 3.5000 13.000 — 20.5000 5.0000 — 3.0000
3.5000 3.0000 3.0000 2.5000 —20.5000 34.5000 —8.5000 5.0000
4.0000 3.0000 5.5000 4.5000 5.0000 —8.5000 3.0000 —1.5000
3.5000 2.5000 4.5000 5.5000 —3.0000 5.0000 —1.5000 1.5000
3.3648 2.1210 2.0459 1.7889 6.8852 —10.6210 2.4541 —1.5389
2 21210 1.7756 1.6484 12217 —10.6210 17.9744 —4.3964 2.5283
2.0459 1.6484 3.3684 2.4655 2.4541 — 4,3984 1.8816 — 0.9655
1.7889 1.2217 2.4655 3.4708 —1.5389 2.5283 —0.9655 1.0292
2.5735 1.6198 1.2620 1.0769 4.0811 — 6.0469 1.2763 —0.8744
3 1.6198 1.3051 1.1117 0.6918 —6.0469 10.3524 —2.5052 1.3805
1.2620 1.1117 2.5461 1.6926 1.2763 — 2.5052 1.3741 —0.7083
1.0769 0.6918 1.6926 2.7268 —0.8744 1.3805 —0.7083 0.8320
2.3998 1.5198 1.0874 0.9190 3.0443 — 4.3430 0.8419 —0.6253
1.5198 1.1919 0.9964 0.5720 —4.3430 7.5221 —1.7991 0.9555
4 1.0874 0.9964 2.3665 1.5258 0.8419 —1.7991 1.1899 —0.6081
0.9190 0.5720 1.5258 2.5676 —0.6253 0.9555 —0.6081 0.7639
2.3892 1.5169 1.0776 0.9110 2.8471 — 4.0172 0.7597 —0.5770
5 1.5169 1.1820 0.9914 0.5651 —4.0044 6.9610 —1.6585 0.8717
1.0776 0.9914 2.3568 1.5172 0.7565 —1.6585 1.1542 — 0.5874
0.9110 0.5651 1.5172 2.5591 —0.5751 0.8717 —0.5874 0.7512
2.3891 1.5170 1.0776 0.9110 2.8394 —4.0044 0.7565 —0.5751
15170 1.1818 0.9914 0.5651 —4.0044 6.9610 ~1.6585 0.8717
6 1.0776 0.9914 2.3567 1.5172 0.7565 —~1.65851.1542 —0.5874
0.9110 0.56511.5172 2.5591 ~0.57510.8717 ~0.5874 0.7512

2.8393 —4.0044 0.7565 —0.5751
—4.0044 6.9609 —1.6585 0.8717
0.7565 —1.6585 1.1542 —0.5874
—0.57510.8717 —0.5874 0.7512
2.8393 —4.0044 0.7565 —0.5751

2.3891 1.5170 1.0776 0.9110
7 1.5170 1.1818 0.9914 0.5651
1.0776 0.9914 2.3567 1.5172
0.9110 0.56511.5172 2.5591
2.3891 1.5170 1.0776 0.9110

8 1.5170 1.1818 0.9914 0.5651 —4.0044 6.9609 —1.6585 0.8717
1.0776 0.9914 2.3567 1.5172 0.7565 —1.6885 1.1542 —0.5874
0.9110 0.5651 1.5172 2.5591 —0.5751 0.8717 —0.5874 0.7512
2.3891 1.5170 1.0776 0.9110 2.8393 —4.0044 0.7565 —0.5751
1.5170 1.1818 0.9914 0.5651 —4.0044 6.9609 —1.6585 0.8717

9 1.0776 0.9914 2.3567 1.5172 0.7565 —1.6585 1.1542 —0.5874
0.9110 0.5651 1.5172 2.5591 —0.5751 0.8717 —0.5874 0.7512
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We have also presented results for Lagrange method (3.6) in the form

1

4281.60
1

T 156.1732

L (A -34.158A% +117.2334A-1.19221)
80.5577
1

" 961.0173

f(A)=P(A) =

(A*-4.7114 A% ~3.2049 A+0.03321 )

(A®-31.142A% + 25,8539 A—0.26051 )

(A®—34.9909 A% +145 6771 A~ 98.54751 )

Thus 2.3739 1.5062 1.0652 0.9001
% 1.5062 1.1743 0.9821 0.5573

fL(A) = pL(A) =Al= 1
.0652 0.9821 2.3414 1.5034
0.9002 0.5573 1.5034 2.5439

Therefore, we computed that —0.0467 -

1 1
2 2
AL - ANewl

5.0 Conclusion.

The paper discussed commonly used iterative methods for solving system of nonlinear equation. Estimating a relaxation
parameter for Successive Overrelaxation method (SOR) from the Gauss-Siedel iterative method was stressed. The described
method may be found useful in the fast sweeping method as in the Eikonal equation, linearized steady compressible Euler

equation, nonlinear hyperbolic PDE, and, fast marching method for the ordered upward wind problem. Particularly in the

paper, special emphasis was placedon computing square root of a positive diagonalizable matrix using two different
approaches namely,

Q) Lagrange interpolationmethod, and (ii) Newton iterative formula.
In the case of Newton iterative method, we used the Schultz Hyper Power formula to approximate the inverse linear bounded
operator in Hilbert space.

The norm bound for the

1 1

ALE - AEewt

that they are amenable to Aerospace computation as in polar decomposition for the matrix direction cosine.

_0.0467 Was obtained, which is quite encouraging. The gain in the described method is
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