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Abstract 
 

 

The iterative methods for solving system of nonlinear equation is presented and 

extension is made to include the so called SVD of a matrix for the positive 

eigenvalues of a matrix. By incorporating the use Lagrange interpolation formula, 

we are able to compute the square root of a matrix where the sign function of a 

matrix can be obtained cheaply. Particularly, we use the Schultz Hyper power 

method for approximating inverse of linear bounded operator in Hilbert space in 

speeding up Newton iteration for matrix square root. The discussed methods are 

amenable to Aerospace computation for polar decomposition for the direction 

matrix cosine. Details of above procedures form the peak of discussion. 

Keyword: Nonlinear systems, adaptive splitting, svd, matrix square roots, lagrange interpolation, Newton 

iteration. 

1. INTRODUTION 

The paper starts off with preliminary discussion on iterative solution of nonlinear systems of equations  
0)( =xF   .      (1.1) 

Using adaptive splitting, solution to system (1.1) may be found in exact arithmetic using any standard numerical iterative 
methods [1]. However, we often neglect the effects of square root of the resulting Jacobian matrix if such matrix has positive 

eigenvalues. Such computation is often facilitated by the aid of Singular value decomposition (SVD) in conjunction with 

Lagrange interpolation formula assuming no eigenvalues are on the left hand side of the real line. Such problems are often 

encounteredin diverse branches of dynamical systems and control theory [2].Computation of square root of a diagonalizable 

matrix with both positive and negative eigenvalues are major non trivial problems occurring in polar decomposition, an 

important aspect of Aeronautic space computation. 

Before proceeding further, we let nn RRF →:  be locally Lipschitz continuous. This means that F  is Fretchet differentiable 

almost everywhere. Then, the generalized Jacobianof F  at the vector nRx  will be given by the set: 








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→

)(lim)( /

,
k

Dxxx
xFxF

Fkj


,      (1.2) 

where, the term  , is the convex hull. 

The Newton iteration is then defined by 
( ) ( ))(1)1( k

k

kk xFAxx −+ −=
,(where, 

( ))(/ k

k xFA 
)         (1.3) 

The corresponding ball radius r  about a point 
nRx  is represented by  

( )  rxxxrxB cc −=,
.         (1.4) 

Additionally as is expected, the role ofLipschitz constant   gives a good measure on the rate of convergence in the fixed 

point iteration [3,4].This means that any decreasing sequence of such closed sets ...,321  xxx  eventually stabilizes. The 

base of the topology it generates consists of complements of hyper-surfaces ( ) ( ) ( ))(1 kkk xNxx −=+ for which ( ) ( ) + kk xx 1 and,

( ))( kxN  are the respective Newton corrections for each step which tends to zero vector as →k . Of special interest is that, 

the matrices kA are of Baire’s second category. That is, coefficients of ( ))(/ k

k xFA   are non-meagre. If this is the case, then 

)( kxA has a completely regular topological space that is F -Suslinprovided that F is analytic at the point
kx . 
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Thus nn RRF →: are both 
G - closed and 

rB complete in the sense of Cauchy sequence[5],e.g.,. Overall, the interest in this 

discussion precludes those of rare spaces although their occurrences are often met as well. 

We reference further a categorical statement in our presentation that a Frechet space, a sequentially complete (Df) space  to 

which adaptation of iterative methods succumb in line with Grothendieck, the strong or weak dual countable inductive limit 

of metrizable locally convex spaces are webbed.  

We draw inspiration from [6] with the following theorems for verifications of initial conditions for the system of Equation 

(1.1) for any meaningful iterative Newton-Like processes. These are influenced by the Kantorovich,Borsuk’s and Miranda 
theorems respectively.  

Theorem 1.1, Standard Kantorovich Theorem [6]: Let nn RRDf →:  be differentiable in the open convex set D . 

Assume that for some point Dx )0( the Jacobian
( ))( 0/ xf is invertible with ( )( ) 0/ xf , ( )( ) ( )( ) 

− 010/ xfxf . 

Assuming further there be a Lipschitz constant ,0 for  
/f  such that ( )( ) ( ) ( )( ) vukvfufxf −−

− //10/  for all 

Dvu , .If 
2

1
=h and ( )( ) DxB −

−

,0 , where 



h211 −−

=−

, then f  has a zero 
*x  in ( )( )−

−

,0xB . Moreover, this 

zero is the unique zero of f in ( )( ) ( )( ) DxBxB  +−

−

 ,, 00 , where 



h211 −+

=+

 and the Newton iterates 
*x  with  

( ) ( ) ( )( ) ( )( )kkkk xfxfxx
1/1 −+ −=       (1.5) 

are well defined , remain in ( )( )−
−

,0xB  and converge to 
*x . 

Theorem 1.2, Borsuk’s Theorem [6]: Assume that there is a symmetrisation of zeros of f  around the disk D .Let nRB   be 

open, bounded, convex and symmetric with respect to 
( ) Bx 0

.Let nRBf →
−

: be a continuous mapping, for which 0)( xf

on B  and that ( )( ) ( )( )txftxf −+ 00  , where 0  and all ( ) Btx +0 . Then f  has a zero in B . 

Miranda Theorem [6]: Let ( )( ) nn RRxBf →

−

,: 0  be a continuous mapping. Assume that  
( )( )
( )( )

;
,0

,0
)(

0,

0,
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xf

i

i

i

for ni ,...,2,1=  

Then f  has at least one zero 
*x in ( )( )rxB ,0



−

. 

We situate the theorem of [7]to discriminate points of singularities in a system (1.1): 

Lemma 1.2 [7]: Let A  be a singular M - matrix, and let NMA −=  denote the weak regular splitting. Assuming there is 

0x  such that OAx  ,and 1)(0 =Bind  where )(Bindi
 is an index parameter. It holds that NMIB 1−−=  is a singular M -

matrix . 

Consequently following, we have that a weak regular splitting satisfies ( ) 11 =− NM  and ( ) 11

1 =− NMind .A graph compatible 

weak regular splitting [8] whose matrix A is a singular M -matrix, where NMA −= is given by: 

(a) ( ) 11 =− NM , (b) )()( 0

1

1 AmultNMmult − , and (c) )()( 0

1

1 AindNMind − . 

The rest of the paper is categorized in the form: Section2 gives commonly used iterative linear solvers - Jacobi, Gauss-Siedel 

and Successive over relaxation (SOR) methods. We relate that, SOR parameter can be estimated from ratio of the norm of 

errors of two successive Gauss-Siedel steps as iteration process approaches infinity and synchronized this with method due to 
Young of 1958 as reported in [8],aquite significant advantage in numerical computation. Thus, the number of steps to achieve 

numerical accuracy in the execution of SOR method is discussed. In section3, the SVD of a matrix is brought into discussion 

in collaboration with lagrange interpolation formula for computation of a matrix square root, an important step in the 

formation of matrix sign function. Numerical example is demonstrated in section4 and conclusion is given based on the 

strength of our findings. 
 

0.2  Commonly Used Iterative Solvers for Linear System. 

Commonly used iterative solvers forEquation(1.3) are the Jacobi,Gausss-Siedel and Successive over relaxation methods and 

their various modifications [9,10] all based on fixed point theorem. 

To this end, the matrix A  is split in the following way 

ULDA −−= , and ( )nnaaadiagD ...,,, ,2211= , L = strictly Lower diagonal matrix,U strictly upper diagonal matrix respectively. 

Basic stationary iterative method usually is in the form: 
( ) ( ) ( )( ) .,...,2,1,0,11 =−+= −+ kAxbMxx kkk ) ,          (2.1) 

based on matrix splitting NMA −= , it is set that: 
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AMINMB 11 −− −== .For a preconditioned iteration to a linear system  

bMAxM 11 −− = ,              (2.2) 

is described as follows: Firstly, convergence criterion for Jacobi iterative method is that, ( )( ) 11 +− LUD . 

Different iterative methods are obtained from system (2.1) in the form: 

Setting as: 

DM = , it is the Jacobi iterative method, LDM −= , it is Gauss-Siedel method, for ( )LIDM 


−=
1 , we have the Successive 

Over relaxation method. 

Thus, Gauss-Siedel method also called the Single Step Method (SSM) is given by the equation: 
( ) ( ) bUxxLD kk +=− +1)(          (2.3) 

Equivalently, we rewrite Equation (2.3) in the form: 
( ) ( ) ( ) ( ) ( )  ( ) ( )kkkkkkk vxxbDUxDLxDxx +=−+++= −−+−+ 11111         (2.4) 

General standard form of Equation (2.4) is given by  
( ) ( ) ( )kkk vxx +=+1

                                          (2.5) 

As is standard, we often write Equation (2.5) in the form: 
( ) ( ) ( ) ( ) ( )kkkkk DxbUxLxDxDx  −+++= ++ 11 . 

Thus, it follows that 
( ) ( ) ( )( ) ( ) ( ) bLDxUDLDx kk 111 1

−−+ −++−−=         (2.6) 

A simplified form of Equation (2.6) is setting ID = . In this case, we have the consequences: 
( ) ( ) ( )( ) ( ) ( ) bLIxUILIx kk 111 1

−−+ −++−−=         (2.7) 

The iteration matrix for Equation (2.7) is that  

( ) ( )( )UILIL  +−−=
−

1
1 . 

The term 20  is called Over-relaxation parameter. Various over relaxation methods are in force viz: for 1  , it is 

under relaxation method; 1= , it is single step method; 1 , it is over relaxation method. 

In case of Gauss-Siedel method (Single Step Method), the convergence is implied by 





ij

ijii aa
, ni ,...,2,1= . Using the ideas due to Young of 1958 as reported in [8]it is that for a consistently ordered matrix 

and for real eigenvalues of Jacobi iteration matrix ( )LUDB += −1 for which ( ) 1B , Successive Over relaxation method 

converges if  

( )2
11

2

B
b




−+
=

, and,
( )( )

( )

( )

2

2
11

1














−+
=−=

B

B
H bb






, where ( ) ULIH
1−

−= . 

More fundamentally is that for ],1[ b  in the SOR method, there follows: 

( ) ( )
2

22 14
2

1

2 







−−+= 


 b

        (2.8) 

Where from, ( )

( )










−+
=

1          (2.9) 

Recently, methods for estimating values of b using Gauss-Siedel iterative sequence  n

kkx
1=
can be computed [4] and other 

references therein. For a considerable value of k , using notation
−

−= xxe kk )(  as the error for which ( )0ee kk

= , 

( ) ( )kkk xxd −= +1
, we then have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )00011 1 deeIeexx kkkkkk

 =−=−=−=− ++ . 

For a large →k , the estimate 
( ) ( )

( ) ( )1

1

1
max

−

+

 −

−
=

k

i

k

i

k

i

k

i

ni
k

xx

xx
c

                (2.30) 

gives the approximate value of ( )  .We thus can estimate  from Equation (2.5). The overall gain from estimate for kc

in Equation (2.6) is that the value for  

( ) ( )  









−−−+

=
−

2

1
22

/111

2

kk cc 


,        (2.31) 
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can be obtained cheaply without further calculation. 

We see from the error ( ) ( ) ,)0()0( eIed kk −== 
that ( ) ( ) ( )kk dIe

1−
−= 

 . Using this connection, it holds that 

( )

( )
( )

 −
 kk de

1

1 . 

Finally, the number of iterations required to achieve the above can be computed from 
( )
( )B

k b



 

ln

ln 
=             (2.32) 

 

3.0 The SVD and Computation of a Matrix Sign Function, where lies The Lagrange Interpolation Formula? 

The singular values decomposition (SVD) of a nm  matrix is an important tool for solving not only the rank of a matrix but 

alsoacts as a gateway providing many numerical solutions to linear systems. Its efficiency ranges from applications in least 

squares problems -such as image reconstruction from missing data [9,10] to polar decomposition, an important tool in 

numerical analysis and aerospacecomputations for the direction cosine [11]. 

In some cases, the nonlinear system of Equation (1.1) may have more number of equations than the unknowns which the 

system can accommodate. Then, for such a matrix nmRA  , nm  ,has an SVD in the form: 

=AVU H  ,    (3.1) 

where, mmRU  ,  nnRV   are unitary matrices for which 








=

OO

OD

, 

( )kdiagD  ,...,, 21= , 0...21  r and, r  is the rank of matrix A . 

Via least squares approach, the equivalent problem leads to the form 

)()( xfAxAA TT = . (3.2a) 

On the other side, we may first reduce the matrix A  to upper triangular form by QR decomposition. Thus the induced QR
method is given by 

nm
O

R
QA 








= ,

     (3.2b) 

By further introduction of SVDfor R , would yield that T

R VUR = implying that 

TVUA = ,








=

O

U
QU

R .      (3.3) 

Supposing A has full rank, in view of Equation (3.2a) the generalized solution to system of equation  

bAx =  , (3.4) 

 Where mnm RbRA   , will be written in the form: 

  
= = =

−
+ +===

n

i
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i

n

i

i

i

T

i

ii

i

T

i

ii

i

T

i

i

T

reg v
su

fv
bu

fv
bu

fbUVX
1 1 1 





(3.5) 

The term 
nnR   is a diagonal matrix with well-known filter factors if  on the diagonal while extra term

i

T

i su



, corresponds 

to noise s which prevents the over determined system from blowing up [12,13]. 

We compute the square root of the successive Jacobian matrix from system of Equation(1.1) as follows: 

Algorithm 3.1 

(i) Define  =)(F ; )(F  being the principal branch of 2

1

  for square root function. 

(ii) From the spectrum of A  i.e. n ...,,, 21 , we form a polynomial interpolation )0( i  

( )
( )
( )


= −

−
=

n

ij
j ij

i

ifP
1

)(





           (3.6) 

(iii) Form )()()( APPAF ==   

(iv) Thus AAF =2)(  as expected. 

We should expect that )()( 1−= AFrankAFrank  and −+ == FFFF ,  are self-dual operators for any non-singular matrix A . 

The main idea in the above discussion is the principal square root of a matrix A  whose eigenvalues lie in the open right half 
plane. This principal square root whenever it exists is a polynomial in the original matrix. 

Definition 3.1[12]: The Jordan Canonical Form 
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Let 
nnCA   matrix, there is a non singularmatrix ( ) ( )( )imim i

JJdiagJATT  ,...,
1

1 ==− ,  

Where  

( ) ii

i

mm

i

i

i

i

im CSIJ


+=






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














= 









1

..

1

1
, 

the Jordan blocks. The numbers nmmm p =+++ ...21
 are unique and the matrix S is Nilpotent.  

The form  ( ) ( )( )imim i
JJdiagJATT  ,...,

1

1 ==−  is called the Jordan Canonical form of A . 

Furthermore, we also compute that ( ) JTAT −=−−1 . In other words, ( ) ( ) ( )( )iJfdiagJfTAfT −=−=−−1  so that, )()(  ff =−  and 

this leads to ( ) ( ) ( )( )zff iii 1)( −=− . The same analysis goes for ( ) ( )
ii mm JfJf =− . 

Using definition (3.1),we now state the following assertion analogous to[11,12]. 

Supposing F  be defined on the spectrum of 
nnCA   and assume further that A   has the Jordan Canonical form as stated 

above, then 

( )11 )()()( −− == TJfTdiagTJTfAf i
 , where, defined that  
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f
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
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)1(
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)!1(
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    (3.7) 

Particularly, for the Jordan block iJ , we realize that the interpolating conditions are ( ) ( )( ) 1:0;)()( −== ii

k

i

k mkfP   in the 

Hermit interpolating polynomial, and that: 

( ) ( )
( ) ( )( )

( )
( )!1

...
!2

))()()(

1

1
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///
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iiii
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t
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t
ftfftP

i

i




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   (3.8) 

In passing, we reconcile the Lagrange interpolating polynomial with the Hermite formula in the form: 

( )( ) ( ) 
= 

−

=









−








−=

s

i ik

k

n

k

k

ii

k

i tt
k

tP
i

1

1

0

)(

!

1
)( 

      (3.9) 

Where it is set that : 

( )
( )

( )


−
=

ik

n

k

i
kt

tf
t




. 

We move to form an iterative Newton method for the square root of this matrix. 

Taking kZ  to be approximation to 2

1

A and forming the perturbation to 
kk EZZ += , we have that 

( ) 222

kkkkkkkk EXEEZZEZA +++=+=         (3.10) 

Ignoring the additional term
2

kE  , we obtain that 

2

1 , kkkkkKkk ZAZEEZEZE −=++=+
 (3.11) 

Combining together the above ideas we see that iteration for obtaining square root of A is given by the equation 

( )AZZZ kkk

1

1
2

1 −

+ +=
     (3.12) 

 Equation (3.10) is the well-known Newton iteration for computing square root of a diagonalizable matrix. 

To compute the square root of the matrix A  we adopt the Newton iteration in the sense of [12, 14], a modified version of 

Equation (3.11) in the form  

( ) ( )1

1

1

1
2

1
;

2

1 −

+

−

+ +=+= kkkkkk ZYYYZZ     (3.13) 

where IYAZ == 00 , , and, 2

1

2

1

lim;lim

−

→→
== AYA k

kk

. We used Schultz Hyper Power method [15]to approximate the inverse of 

the matrix 
1−A in  Equation (3.13)in the form: 

( ) ( ) .,...1,0,221 =−=−=+ iXAXIAXIXX iiiii
   (3.14) 

In method 3.14, the
22

1

0

2
,

p

HAX



+

==
, where 0...21  p  are obtained  fromSVD of A and +− → AA 1  as →i . 
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The matrix sign function is computed by the equation 

Sign 2

1

2 )()(
−

= AAA           (3.15) 

The spectral projectors corresponding to eigenvalues in the right and left hal-plane are  

( )( )AsignIP =
2

1     (3.16) 

Finally, we state that given infinite power series 



=

=
0

)(
i

i

i zazf
 with radius of convergence r , the matrix 




=

=
0

)(
i

i

i zaAf
 converges 

if r  , and )(A =  is the spectral radius of A . If r , the matrix series diverges. The case r= requires further 

investigation. 

Using additional information, we state the following properties concerning matrix A : 

)log(

)(
)(log

A
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,and log
1)(...,

432
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432
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, where 0)(Remin Ak

k
 . 

)sin(

)cos(
)(,

)cos(

)sin(
)( sincos

A

AA
AK

A

AA
AK 

.Thus A  with no eigenvalues on 
−R  has  

kk AA )log(2)log( 2

1

= , where the value of k  can be chosen such that 
k

A 












2

1

log
can be easily computed. 

4.0 Numerical Example.  

PROBLEM 1. 





















=

10957

91068

5657

78710

A

 

The tabulated results are presented in Table 1. 
Table 1 : Computing  Square root of a Matrix and simultaneously its inverse with positive eigenvalues  by Newton iteration method 

No. of iteration   k 
2

1

NewtA  2

1
−

NewtA  

1 
 

 
 
2 
 
 
3 
 
 

 
4 
 
 
5 
 
 
 

6 
 
 
7 
 
 
8 
 

 
 
9 





















5000.55000.45000.25000.3

5000.45000.50000.30000.4

5000.20000.30000.35000.3

5000.30000.45000.35000.5
 





















4708.34655.22217.17889.1

4655.23684.36484.10459.2

2217.16484.17756.11210.2

7889.10459.21210.23648.3  





















7268.26926.16918.00769.1

6926.15461.21117.12620.1

6918.01117.13051.16198.1

0769.12620.16198.15735.2
 





















5676.25258.15720.09190.0

5258.13665.29964.00874.1

5720.09964.01919.15198.1

9190.00874.15198.13998.2  





















5591.25172.15651.09110.0

5172.13568.29914.00776.1

5651.09914.01820.15169.1

9110.00776.15169.13892.2  





















5591.25172.15651.09110.0

5172.13567.29914.00776.1

5651.09914.01818.15170.1

9110.00776.15170.13891.2  





















5591.25172.15651.09110.0

5172.13567.29914.00776.1

5651.09914.01818.15170.1

9110.00776.15170.13891.2  





















5591.25172.15651.09110.0

5172.13567.29914.00776.1

5651.09914.01818.15170.1

9110.00776.15170.13891.2  





















5591.25172.15651.09110.0

5172.13567.29914.00776.1

5651.09914.01818.15170.1

9110.00776.15170.13891.2  





















−−

−−

−−

−−

5000.15000.10000.50000.3

5000.10000.35000.80000.5

0000.55000.85000.345000.20

0000.30000.55000.20000.13  





















−−

−−

−−

−−

0292.19655.05283.25389.1

9655.08816.13984.44541.2

5283.23964.49744.176210.10

5389.14541.26210.108852.6  





















−−

−−

−−

−−

8320.07083.03805.18744.0

7083.03741.15052.22763.1

3805.15052.23524.100469.6

8744.02763.10469.60811.4  





















−−

−−

−−

−−

7639.06081.09555.06253.0

6081.01899.17991.18419.0

9555.07991.15221.73430.4

6253.08419.03430.40443.3  





















−−

−−

−−

−−

7512.05874.08717.05751.0

5874.01542.16585.17565.0

8717.06585.19610.60044.4

5770.07597.00172.48471.2  





















−−

−−

−−

−−

7512.05874.08717.05751.0

5874.01542.16585.17565.0

8717.06585.19610.60044.4

5751.07565.00044.48394.2  





















−−

−−

−−

−−

7512.05874.08717.05751.0

5874.01542.16585.17565.0

8717.06585.19609.60044.4

5751.07565.00044.48393.2  





















−−

−−

−−

−−

7512.05874.08717.05751.0

5874.01542.16885.17565.0

8717.06585.19609.60044.4

5751.07565.00044.48393.2  





















−−

−−

−−

−−

7512.05874.08717.05751.0

5874.01542.16585.17565.0

8717.06585.19609.60044.4

5751.07565.00044.48393.2
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We have also presented results for Lagrange method (3.6) in the form 

 

( )

( )

( )

( )IAAA

IAAA

IAAA

IAAAAPAf

5475.986771.1459909.34
0173.961

1

1922.12334.117158.34
5577.80

1

2605.08539.25142.31
1732.156

1

0332.02049.37114.4
60.4281

1
)()(

23

23

23

23

−+−−

−+−+

−+−−

+−−==
 

Thus 





















===

5439.25034.15573.09002.0

5034.13414.29821.00652.1

5573.09821.01743.15062.1

9001.00652.15062.13739.2

)()( 2

1

LLL AApAf

 

Therefore, we computed that 0467.02

1

2

1

=− NewtL AA . 

5.0 Conclusion.  

The paper discussed commonly used iterative methods for solving system of nonlinear equation. Estimating a relaxation 

parameter for Successive Overrelaxation method (SOR) from the Gauss-Siedel iterative method was stressed. The described 

method may be found useful in the fast sweeping method as in the Eikonal equation, linearized steady compressible Euler 

equation, nonlinear hyperbolic sPDE  and, fast marching method for the ordered upward wind problem. Particularly in the 

paper, special emphasis was placedon computing square root of a positive diagonalizable matrix using two different 

approaches namely, 

(i) Lagrange interpolationmethod, and (ii) Newton iterative formula. 

In the case of Newton iterative method, we used the Schultz Hyper Power formula to approximate the inverse linear bounded 

operator in Hilbert space. 

The norm bound for the 
0467.02

1

2

1

=− NewtL AA

 

was obtained, which is quite encouraging. The gain in the described method is 

that they are amenable to Aerospace computation as in polar decomposition for the matrix direction cosine. 
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