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Abstract 
 

 

In this paper we present a class of third derivative generalized backward 

differentiation formulas (TDGBDF) which is based on the linear multistep 

formulas (LMF). The class of methods developed herein and applied as boundary 

value methods(BVMs) has good accuracy and stability properties suitable for stiff 

initial value problems (IVPs) in ordinary differential equations (ODEs). The 

stability properties of the TDGBDF are discussed. The TDGBDF are 

𝑨𝒗,𝒌−𝒗 −stable and 𝟎𝒗,𝒌−𝒗 −stable with (𝒗, 𝒌 − 𝒗) −boundary conditions for all 

values of 𝒌 ≥ 𝟐 with order𝒑 = 𝒌 + 𝟐 where𝒌is the steplength. 

 

Keywords:  Linear Multistep Formulas, Boundary Value Methods,  Av,k−v −stable  

1. INTRODUTION 

Stiffness exhibited by most differential equations of the form: 

𝑦'=𝑓(𝑥, 𝑦) ,   x ∈ [𝑡0 , T],   𝑦(𝑥0) = 𝑦0 ,        (1.1) 

has remained intractable by many ODE methods. Several authors discussed problems of stiffness([1 - 6]). A potentially good 

numerical method for the solution of stiff systems of ODEs must have good accuracy and infinite region of absolute 

stability([7]).Backward differentiation formulas proposed in[8]and implemented in[9] are famous for their suitability for the 

integration of stiff differential equations.Methods for stiff ODEs were considered in [5, 10 - 23] and others. In this paper we 
introduce a new class of TDGBDF with good accuracy and stability properties suitable for stiff differential equations. The 

paper is organized as follows. In Section 2, we recall the main facts about BVMs.  Section 3 is devoted to the derivation and 

the analysis of the proposed class of methods. The computational aspects for the implementation of the methods are given in 

Section 4 to demonstrate how the class of methods are applied as BVMs to (1.1) while in Section 5 numerical experiments 

are carried out to show the efficiency of this class of methods and finally we gave the conclusion of the paper in Section 6. 
 

2. Boundary Value Methods (BVMs) 
The numerical solution of the IVP (1.1)is usually obtained by using the k-step LMF  

∑ αjyn+j =
k
j=0 h∑ β

j
fn+j

k
j=0                                          (2.1) 

Where yn denotes the discrete approximation of the solution 𝑦(𝑥𝑛) at𝑥 = 𝑥𝑛and 

ℎ = (𝑇 − 𝑡0)/𝑁and𝑓𝑛 = 𝑓(𝑥𝑛 , 𝑦𝑛). Ifk1 and k2 are two integerssuch that k1  +  k2  =  k and  k1  are the conditions at the 

initial points and k2  are given conditions at the final points. Then one may impose the k conditions for the LMF (2.1) by 

fixing the first k1(≤ k) values of the discrete solution,  y0, y1, … , yk1−1 and the last k2  =  k − k1 values,yN−k2+1, . . . , yN 

yielding the discrete method  

∑ 𝛼𝑖+𝑘1𝑦𝑛+𝑖

𝑘2

𝑖=−𝑘1

= ℎ ∑ 𝛽𝑖+𝑘1𝑓𝑛+𝑖

𝑘2

𝑖=−𝑘1

 ,               𝑛 = 𝑘1, … , 𝑁 − 𝑘2, 

𝑦0, 𝑦1,… , 𝑦𝑘1−1,     𝑦𝑁−𝑘2+1, … , 𝑦𝑁fixed                        (2.2) 

In this case the given continuous IVP(1.1) is approximated by means of a discrete boundary value problem. The resulting 

class of methods is referred to as BVMs with (k1,  k2 )-boundary conditions. For k1  =  k and thereforek2 =  0, one has the 

initial value methods (IVMs). So the class of IVMs is a sub class of BVMs for ODEs based on LMF ([24]). 

The continuous problem (1.1) provides only the initialvaluey0. According to [24],toimplement (2.2) as a BVM, the  k − 1 

additional values 𝑦1,… , 𝑦𝑘1−1,     𝑦𝑁−𝑘2+1, … , 𝑦𝑁 are obtained by introducing a set of  k − 1 additional equations which are 
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derived by a set of  k1 − 1 additional initial methods  

∑αi
(j)yi =

k

i=0

h∑β
i
(j)fi

k

i=0

 

j = 1,… , k 1 − 1                                                               (2.3) 

and   𝑘2  final methods 

∑αk−i
(j)yN−i =

k

i=0

h∑β
k−i

(j)fN−i

k

i=0

 

j = N − k2 + 1,… , N                                                            (2.4) 

The equations (2.2), (2.3) and (2.4) form a composite scheme assumed to be of the same orderwhere(2.3) and (2.4) are 

the most suitable set of additional methods. 
 

Definition 2.1 

Consider a polynomial𝑝(𝑧), such that 𝑝 is a function of a complex variable z, calculated by the formula: 

𝑝(𝑧) =∑𝛼𝑗𝑧
𝑘−𝑗

𝑘

𝑗=0

= 𝛼0𝑧
𝑘 + 𝛼1𝑧

𝑘−1 +⋯+ 𝛼𝑘       (𝛼0 ≠ 0) 

The zeros of the polynomial 𝑝(𝑧) are denoted by𝑧𝑖, 𝑖 = 1,… 𝑘. If the zeros 𝑧𝑖 are simple for all values of𝑖, their 

multiplicities are equal to one. 

The polynomial 𝑝(𝑧) is called the Schur polynomialif for all values of 𝑖 = 1,…𝑘  the condition |𝑧𝑖| < 1 is satisfied. 

The polynomial 𝑝(𝑧) is called the Von Neumann polynomialif for all values of𝑖 = 1, …𝑘  the condition |𝑧𝑖| ≤ 1 is 

satisfied ([25]). 
 

Definition 2.2 ([5]) 

A polynomial 𝑝(𝑧)of degree  k = k1  +  k2 is a 𝑆𝑘1𝑘2-polynomial if its roots are such that|𝑧1| ≤ |𝑧2| ≤ ⋯ ≤ |𝑧𝑘1| <

 1 < |𝑧𝑘1+1| ≤ ⋯ ≤ | 𝑧𝑘  |andit is a 𝑁𝑘1𝑘2- polynomial if |𝑧1| ≤ |𝑧2| ≤ ⋯ ≤ |𝑧𝑘1| ≤  1 < |𝑧𝑘1+1| ≤ ⋯ ≤ | 𝑧𝑘  |being 

simple the roots of unit modulus. 

Observe that for k1  =  k and  k2 =  0 a 𝑁𝑘1𝑘2-polynomial reduces to aVon Neumann polynomial land a𝑆𝑘1𝑘2–

polynomial reduces to a Schurpolynomial.  

Let 𝜌(𝑧) = ∑ 𝛼𝑗𝑧
𝑗𝑘

𝑗=0  and 𝜎(𝑧) = ∑ 𝛽𝑗𝑧
𝑗𝑘

𝑗=0  denote the two characteristic polynomials associated with the LMM (2.2). 

Thus∏(𝑧, 𝑞) = 𝜌(𝑧) − 𝑞𝜎(𝑧), q= ℎ𝜆, is the stability polynomial when (2.2) is applied on𝑦 ′ = 𝜆𝑦, 𝑅𝑒(𝜆) < 0. Then we 

have the following definitions, see [5]: 
 

Definition 2.3 

A BVM with (k1,  k2 )-boundary conditions is 𝑂𝑘1𝑘2-stable if𝜌(𝑧)is a  𝑁𝑘1𝑘2- polynomial. 

Observe that 𝑂𝑘1𝑘2-stability reduces to the usual zero-stability from Definition 2.2 for LMM whenk1  =  kand  k2 =  0. 
 

Definition 2.4 

(a) For a giving𝑞 ∈ ℂ, a BVM with(k1,  k2 )-boundary conditions is (k1,  k2 )-absolutely stable if ∏  (𝑧, 𝑞) is a𝑆𝑘1𝑘2-

polynomial. Again, (k1,  k2 )-absolute stability reduces to the usual notion of absolute stability when k1  =  k and 

k2  = 0 for LMM. 

(b) Similarly, one defines the region of (k1,  k2)-absolute stability of the method as 

      𝐷𝑘1𝑘2 = {𝑞 ∈ ℂ ∶  ∏(𝑧, 𝑞) 𝑖𝑠𝑎𝑆𝑘1𝑘2–polynomial}. Here∏(𝑧, 𝑞) is a polynomial of type      (k1, 0, k2) 

(c) A BVM with (k1,  k2) - boundary conditions is said to be 𝐴𝑘1𝑘2-stable ifℂ− ⊆ 𝐷𝑘1𝑘2. 
 

3. Derivation And Analysis Of The Third Derivative Generalized Backward Differentiation Formulae (TDGBDF) 

The third derivative backward differentiation formula(TDBDF) 

∑𝛼𝑗𝑦𝑛+𝑗

𝑘

𝑗=0

= ℎ𝛽𝑘𝑓𝑛+𝑘 + ℎ
2𝛾𝑘𝑓𝑛+𝑘

′  + ℎ3𝛿𝑘𝑓𝑛+𝑘
′′                                             (3.1) 

where𝑓𝑛+𝑘,𝑓𝑛+𝑘
′ ,𝑓𝑛+𝑘

′′  are the first, second and third derivatives functions respectively, is 𝐴 − stable for step numberk= 

2(1)4 are 𝐴(𝛼) − stable for k = 1, k =5(1)9 and unstable for 𝑘 ≥ 10 ([21]). 

Following the idea of [5, 14] we rewrite the TDBDF (3.1) as 

∑𝛼𝑗𝑦𝑛+𝑗

𝑘

𝑗=0

= ℎ𝛽𝑖𝑓𝑛+𝑖 + ℎ
2𝛾𝑖𝑓𝑛+𝑖

′  + ℎ3𝑓𝑛+𝑖
′′                                                      (3.2) 
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where 𝑖 = 0,1,2,… , 𝑘 𝑎𝑛𝑑𝛿𝑘has been normalized to 1. For  𝑖 = 𝑘 the TDBDF (3.2)is used as IVM.But for𝑖 ≠ 𝑘it is used 

as BVM and we gain the liberty of choosing the values of 𝑖 for whichmethod (3.2) has the most suitable stability 

properties. Specifically for the choice of 𝑖 = 𝑣 such that: 

𝑣 = {

𝑘+2  

2
  𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑘

𝑘+3

2
  𝑓𝑜𝑟 𝑜𝑑𝑑 𝑘

                                                                        (3.3) 

The formula (3.2) becomes  

∑𝛼𝑗𝑦𝑛+𝑗

𝑘

𝑗=0

= ℎ𝛽𝑣𝑓𝑛+𝑣 + ℎ
2𝛾𝑣𝑓𝑛+𝑣

′  + ℎ3𝑓𝑛+𝑣
′′                                                     (3.4) 

where 𝛼𝑗 , 𝛽𝑣and𝛾𝑣 are parameters to be determined by imposing the formula (3.4) to reach its highest possible order 

which is  𝑘 + 2 . The class of methods(3.4) which is𝑂𝑣,𝑘−𝑣 −stable and 𝐴𝑣,𝑘−𝑣 −stable for all values of   k ≥ 2 is called 

the TDGBDF and must be used with (𝑣, 𝑘 − 𝑣) boundary conditions ([5, 14, 24, 26]).In other to obtain the parameters of 

the class of methods (3.4) we rewrite (3.4) as : 

∑𝛼𝑗𝑦(𝑥 + 𝑗ℎ)

𝑘

𝑗=0

= ℎ𝛽𝑣𝑦
′(𝑥 + 𝑣ℎ) +  ℎ2𝛾𝑣𝑦

′′(𝑥 + 𝑣ℎ) +  ℎ3𝑦 ′′′(𝑥 + 𝑣ℎ)             (3.5)               

where𝑦𝑛+𝑗 = 𝑦(𝑥 + 𝑗ℎ) ,𝑓𝑛+𝑣 = 𝑦
′(𝑥 + 𝑣ℎ),𝑓′

𝑛+𝑣
= 𝑦′′(𝑥 + 𝑣ℎ) and  

𝑓′′
𝑛+𝑣

= 𝑦′′′(𝑥 + 𝑣ℎ). Expanding (3.5) in Taylors series and applying the method of undetermined coefficients yields a 

system of linear equations from which the coefficients 𝛼𝑗 , 𝛽𝑣and𝛾𝑣 are determined as the solutions of the resulting 

system of linear equations ([27, 28]). The coefficients of (3.4) are reported in table 1. 

Accordingto[29] in order to analyze the stability of the specific method,we applied the test problems: 

𝑦′ = 𝜆𝑦,       𝑦′′ = 𝜆2𝑦, 𝑦′′′ = 𝜆3𝑦 

to the class of methods (3.4) to yield the characteristics equation: 

∑𝛼𝑗𝑧
𝑗

𝑘

𝑗=0

− (𝑞𝛽𝑣 + 𝑞
2𝛾𝑣 + 𝑞

3)𝑧𝑣 = 0,         𝑞 = 𝜆ℎ, 𝑞 ∈ ℂ                       (3.6) 

where𝑣 is defined as in (3.3). Inserting z= 𝑒𝑖𝜃, (3.6) gives us three roots describing the stability regions for the odd and 

even values of kgiven in figures 1 and 2 respectively. 
In accordance with [2, 30] we define the local truncation error associated with (3.4) as the linear difference operator, 

𝐿(𝑦(𝑥); ℎ) = ∑𝛼𝑗𝑦(𝑥 + 𝑗ℎ)

𝑘

𝑗=0

− ℎ𝛽𝑣𝑦
′(𝑥 + 𝑣ℎ) − ℎ2𝛾𝑣𝑦′′(𝑥 + 𝑣ℎ) − ℎ3𝑦′′′(𝑥 + 𝑣ℎ) 

Assuming that 𝑦(𝑥) is sufficiently differentiable, by Taylor’s series expansionof𝑦(𝑥 + 𝑗ℎ) ,𝑦 ′(𝑥 + 𝑣ℎ),𝑦′′(𝑥 + 𝑣ℎ) and 

𝑦′′′(𝑥 + 𝑣ℎ) the𝐿(𝑦(𝑥); ℎ) is obtain in the form 

ℒ(𝑦(𝑥); ℎ) = 𝐶0𝑦(𝑥) + 𝐶1ℎ𝑦
′(𝑥) + 𝐶2ℎ

2𝑦′′(𝑥) +⋯+ 𝐶𝑞ℎ
𝑞𝑦𝑞(𝑥) + ⋯                    (3.7) 

𝑤ℎ𝑒𝑟𝑒

𝐶0 =∑𝛼𝑗

𝑘

𝑗=0

𝐶1 = [∑𝑗𝛼𝑗

𝑘

𝑗=0

− 𝛽𝑣]

𝐶2 = [∑
𝑗2𝛼𝑗

2!

𝑘

𝑗=0

− 𝑣𝛽𝑣 − 𝛾𝑣]

⋮

𝐶𝑞 = [∑
𝑗𝑞𝛼𝑗

𝑞!

𝑘

𝑗=0

−
𝛽𝑣𝑣

𝑞−1

(𝑞 − 1)!
−
𝛾𝑣𝑣

𝑞−2

(𝑞 − 2)!
−

𝑣𝑞−3

(𝑞 − 3)!
]

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

         (3.8) 

The TDGBDF (3.4) is said to be of order  𝑝  if 

𝐶0 = 𝐶1 = 𝐶2 = ⋯ = 𝐶𝑝 = 0, 𝐶𝑝+1 ≠  0 

Therefore, 𝐶𝑝+1is the error constant (EC) and 𝐶𝑝+1ℎ
𝑝+1𝑦𝑝+1(𝑥)is the principal local truncation error atthepoint𝑥. The 

error constant and the order of the TDGBDF (3.4) are given in Table 1. 
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Table 1 Coefficient List of the TDGBDF for k = 1, 2, …, 10 
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𝒌 𝒗 𝒑 α0 α 1 α 2 α 3 α 4 α 5 α6 α 7 α 8 α 9 α10 β v γ v 𝑪𝒑+𝟏 

1 2 3 
−
6

7
 

6

7
 

         6

7
 −

9

7
 

15

28
 

2 2 4 3

4
 

−12 45

4
 

        21

2
 −

9

2
 

1

10
 

3 3 5 
−
2

9
 

9

4
 

−18 575

36
 

       85

6
 −

11

2
 

1

20
 

4 3 6 
−
1

18
 

3

4
 

−9 245

36
 

3

2
 

      55

6
 −

5

2
 −

1

140
 

5 4 7 3

160
 −

2

9
 

3

2
 

−12 2737

288
 

6

5
 

     259

24
 −

13

4
 −

1

280
 

6 4 8 1

160
 −

4

45
 

3

4
 

−8 1435

288
 

12

5
 −

1

20
 

    217

24
 −

7

4
 

1

1260
 

7 5 9 
−

2

875
 

1

32
 −

2

9
 

5

4
 

−10 251243

36000
 

2 
−
1

28
 

   5989

600
 −

47

20
 

1

2520
 

8 5 10 
−

3

3500
 

3

224
 −

1

9
 

3

4
 −

15

2
 

15807

4000
 

3 
−
3

28
 

1

252
 

  5449

600
 −

27

20
 −

1

9240
 

9 6 11 1

3024
 −

9

1750
 

9

224
 −

2

9
 

9

8
 

−9 200453

36000
 

18

7
 −

9

112
 

1

378
 

 5819

600
 −

37

20
 −

1

18480
 

10 6 12 1

7560
 −

2

875
 

9

448
 −

8

63
 

3

4
 −

36

5
 

59059

18000
 

24

7
 −

9

56
 

2

189
 −

1

2240
 
5489

600
 −

11

10
 

1

60060
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Figure 1: Stability regions of TDGBDF for k odd (k = 3, 5, …, 29) 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 2: Stability regions of TDGBDF for k even (k = 2, 4,…, 30) 
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4. IMPLEMENTATION PROCEDURE 

In this section,the implementation procedure for the proposed class of methods (of order 6 and 7) as BVMs in the sense of [5, 

14] is given.The class of methods (3.4) requires (𝑣 − 1, 𝑘 − 𝑣) initial and final additional methods for its implementation 

(Note: 𝑣 − 1 initial methods since 𝑦0 is already provided by the problem to be solved). The methods (3.4) are used alongside 

the following additional initial methods which we defined generally as: 

∑𝛼𝑗
∗𝑦𝑛+𝑗

∗

𝑘

𝑗=0

= ℎ𝛽𝑖𝑓𝑖 + ℎ
2𝛾𝑖𝑓𝑖

′ + ℎ3𝑓𝑖
′′;           𝑖 =  1, 2,… , 𝑣 − 1                    (4.1) 

And final methods given generally as: 

∑𝛼𝑗
∗𝑦𝑛+𝑗

∗

𝑘

𝑗=0

= ℎ𝛽𝑖𝑓𝑖 + ℎ
2𝛾𝑖𝑓𝑖

′ + ℎ3𝑓𝑖
′′;           𝑖 =  𝑣 + 1,… ,𝑁                       (4.2) 

The TDGBDF of order 6 is 𝐴3,1 −stableand03,1 −stable with (3,1) boundary conditions. It therefore requires 2 initial 

methods and 1 final method (where 𝑘 = 4 𝑎𝑛𝑑 𝑣 = 3) for its implementation. The TDGBDF of order 6 is given as: 

−
1

18
𝑦𝑛 +

3

4
𝑦𝑛+1 − 9𝑦𝑛+2 +

245

36
𝑦𝑛+3 +

3

2
𝑦𝑛+4 =

55

6
ℎ𝑓𝑛+3 −

5

2
ℎ2𝑓𝑛+3

′ + ℎ3𝑓𝑛+3
′′         (4.3) 

We rewrite the main method (TDGBDF of order 6) as ([5, 14]): 

  −
1

18
𝑦𝑛−3 +

3

4
𝑦𝑛−2 − 9𝑦𝑛−1 +

245

36
𝑦𝑛 +

3

2
𝑦𝑛+1 =

55

6
ℎ𝑓𝑛 −

5

2
ℎ2𝑓𝑛

′ + ℎ3𝑓𝑛
′′          (4.4) 

          𝑛 = 3,… ,𝑁 − 1 

We use (4.4) together with the following initial methods (n = 0) obtained from (4.1): 

𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑒𝑡ℎ𝑜𝑑: −
3

2
𝑦0 −

245

36
𝑦1 + 9𝑦2 −

3

4
𝑦3+

1

18
𝑦4 =

55

6
ℎ𝑓1 +

5

2
ℎ2𝑓1

′ + ℎ3𝑓1
′′  (4.5) 

𝑠𝑒𝑐𝑜𝑛𝑑 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑒𝑡ℎ𝑜𝑑:                       
1

8
𝑦0 − 4𝑦1 + 4𝑦3 −

1

8
𝑦4 =

15

2
ℎ𝑓2 + ℎ

3𝑓2
′′               (4.6) 

and final method obtained from (4.2) given below: 

3

32
𝑦𝑁−4 −

8

9
𝑦𝑁−3 +

9

2
𝑦𝑁−2 − 24𝑦𝑁−1 +

5845

288
𝑦𝑁 =

415

24
ℎ𝑓𝑁 −

25

4
ℎ2𝑓𝑁

′ + ℎ3𝑓𝑁
′′         (4.7) 

The TDGBDF of order 7 is 𝐴4,1 −stableand04,1 −stable with (4,1) boundary conditions. It requires 3 initial methods and 1 

final method (where 𝑘 = 5 𝑎𝑛𝑑 𝑣 = 4). The TDGBDF of order 7 is given as: 

3

160
𝑦𝑛 −

2

9
𝑦𝑛+1 +

3

2
𝑦𝑛+2 − 12𝑦𝑛+3 +

2737

288
𝑦𝑛+4 +

6

5
𝑦𝑛+5 

=
259

24
ℎ𝑓𝑛+4 −

13

4
ℎ2𝑓𝑛+4

′ + ℎ3𝑓𝑛+4
′′                                       (4.8) 

As before we write the main method (TDGBDF of order7) as: 
3

160
𝑦𝑛−4 −

2

9
𝑦𝑛−3 +

3

2
𝑦𝑛−2 − 12𝑦𝑛−1 +

2737

288
𝑦𝑛 +

6

5
𝑦𝑛+1 

=
259

24
ℎ𝑓𝑛 −

13

4
ℎ2𝑓𝑛

′ + ℎ3𝑓𝑛
′′                                              (4.9) 

𝑛 = 4,… ,𝑁 − 1 

The method (4.9) is used together with the following initial methods (n = 0) obtained from (4.1) 

𝑓𝑖𝑟𝑠𝑡:    −
6

5
𝑦0 −

2737

288
𝑦1 + 12𝑦2 −

3

2
𝑦3 +

2

9
𝑦4 −

3

160
𝑦5 =

259

24
ℎ𝑓1 +

13

4
ℎ2𝑓1

′ + ℎ3𝑓1
′′    (4.10) 

2𝑛𝑑:                     
3

40
𝑦0 − 3𝑦1 −

49

18
𝑦2 + 6𝑦3 −

3

8
𝑦4 +

1

45
𝑦5 =

49

6
ℎ𝑓2 + ℎ

2𝑓2
′ + ℎ3𝑓2

′′          (4.11) 

3𝑟𝑑:                 −
1

45
𝑦0 +

3

8
𝑦1 − 6𝑦2 +

49

18
𝑦3 + 3𝑦4 −

3

40
𝑦5 =

49

6
ℎ𝑓3 − ℎ

2𝑓3
′ + ℎ3𝑓3

′′          (4.12) 
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And the final method given below is obtained from (4.2): 

−
6

125
𝑦𝑁−5 +

15

32
𝑦𝑁−4 −

20

9
𝑦𝑁−3 +

15

2
𝑦𝑁−2 − 30𝑦𝑁−1 +

874853

36000
𝑦𝑁 

=
12019

600
ℎ𝑓𝑁 −

137

20
ℎ2𝑓𝑁

′ + ℎ3𝑓𝑁
′′                                         (4.13) 

The methods are implemented as BVMs efficiently by combining the main methods and the additional methods as 

simultaneous numerical integrators for IVPs and BVPs. In particular, for linear problems, we can solve (1.1) directly from the 

start with Gaussian elimination partial pivoting.For nonlinear problems, we can use a modified Newton-Raphson method. In 

each case, the main method and the additional methods are combined as BVMs to give a single matrix of finite difference 

equations which simultaneously provides the values of the solution and the first derivatives generated by the sequences 

{𝑦𝑛}, {𝑦′
𝑛
}, 𝑛 =  0, . . . , 𝑁, where the single block matrix equation is solved while adjusting for boundary conditions ([31]). 

4.1 IMPLEMENTATION (NUMERICAL EXPERIMENT) OF TDGBDF (4.3) AND (4.8) 

The following stiff problems are considered to examine the accuracy of themethods of order p=6 (4.3) and 7 (4.8) 

implemented as block methods.  

Problem 1:  Test Problem ([5]) 

𝑦 ′ = −𝜆𝑦          𝑦(𝑥0) = 𝑦0,𝜆 = 1, 100 

The exact solution is 𝑦 = 𝑒−𝜆𝑥 

Problem 2: Singularly Perturbed Problem ([29]) 

𝑦1
′ = −(2 + 104)𝑦1 + 10

4𝑦2 
2 ,  𝑦2

′ = 𝑦1 − 𝑦2 − 𝑦2
2   

𝑦1(0) = 1,    𝑦2(0) = 1 

The exact solution is𝑦1 = 𝑒
−2𝑥   ,     𝑦2 = 𝑒

−𝑥  

Problem 3: Van der Pol equations ([29])(nonlinear problem) 

𝑦1
′ = 𝑦2 ,         𝑦2

′ = −𝑦1 + 10𝑦2(1 − 𝑦1
2) 

 𝑦1(0) = 2,    𝑦2(0) = 0 

Problem 4: Robertson’sequation ([29])(nonlinear problem) 

𝑦1
′ = −0.04𝑦1 + 10

4𝑦2𝑦3 ,𝑦2
′ = 0.04𝑦1 − 3 ∗ 10

7𝑦2
2 − 104𝑦2𝑦3 ,     𝑦3

′ = 3 ∗ 107𝑦2
2 

𝑦1(0) = 1,    𝑦2(0) = 0,            𝑦3(0) = 0.                                              
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TDGBDF Order 6

exact solution

Figure 3ANumerical results for Problem 1 using Method (4.3)  𝜆 = 1,ℎ = 0.01 

 

Figure 3B Numerical results for Problem 1 using Method (4.3) 𝜆 = 100,ℎ = 0.01 
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TDGBDF Order 7

exact solution

Figure 3C Numerical results for Problem 1 using Method (4.8)  𝜆 = 1,ℎ = 0.01 

 

Figure 3DNumerical results for Problem 1using Method (4.8) 𝜆 = 100,ℎ = 0.01 
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Figure 4A Numerical results for Problem 2 using Method (4.3)   ℎ = 0.01 

 

Figure 5ANumerical results for Problem 3 using Method (4.3)   ℎ = 0.001 
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Figure 4B Numerical results for Problem 2 using Method (4.8)   ℎ = 0.01 

 

Figure 5B Numerical results for Problem3 using Method (4.8)   ℎ = 0.001 

 

Figure 6A Numerical results for Problem 4 using Method (4.3)  ℎ = 0.001 

 

Figure 6B Numerical results for Problem 4 using Method (4.8)  ℎ = 0.001 
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𝑥 Error in TDGBDF(4.3)  
|𝑦(𝑥𝑛) − 𝑦𝑛| 

Error in TDGBDF(4.8) 
|𝑦(𝑥𝑛) − 𝑦𝑛| 

1.0 2.415796612301085e-47 5.494524173111787e-48 

2.0 9.590247540521880e-89 2.154118286243749e-89 

3.0 1.010926307170304e-133 2.239941880438817e-134 

4.0 2.746354900394213e-175 6.008555881761614e-176 

5.0 2.400256887600033e-220 5.179272410583249e-221 

6.0 5.900748292865801e-262 1.257015286451657e-262 

7.0 4.803340357006191e-307 1.009007887963912e-307 

8.0 0.0000000000000000000 0.0000000000000000000 

9.0 0.0000000000000000000 0.0000000000000000000 

10.0 0.0000000000000000000 0.0000000000000000000 

 

 

 

 

 

 

 

𝑥 Error in TDGBDF(4.3)  
|𝑦(𝑥𝑛) − 𝑦𝑛| 

Error in TDGBDF(4.8) 
|𝑦(𝑥𝑛) − 𝑦𝑛| 

1.0 4.440892098500626e-16 1.609823385706477e-15 

2.0 4.996003610813204e-16 4.718447854656915e-16 

3.0 3.261280134836397e-16 4.024558464266193e-16 

4.0 1.526556658859590e-16 1.040834085586084e-17 

5.0 9.280770596475918e-17 9.540979117872439e-18 

6.0 4.206704429243757e-17 6.938893903907228e-18 

7.0 1.658829323902822e-17 3.903127820947816e-18 

8.0 7.968885967768458e-18 1.843143693225358e-18 

9.0 3.022213555803344e-18 2.846030702774449e-19 

10.0 1.131636017531745e-18 1.355252715606881e-20 

Errorin TDGBDF (4.3),    |𝑦(𝑥𝑛) − 𝑦𝑛| 
  𝑥 Error  𝑦1 Error  𝑦2 

1.0 1.840463059732400e-10 2.638990692638288e-10 

2.0 2.729638043375005e-11 1.010463102080195e-10 

3.0 3.416046959192620e-12 3.571543755187534e-11 

4.0 5.009221119497975e-13 1.367520333084293e-11 

5.0 6.258246687800700e-14 4.833577982310544e-12 

6.0 9.175104083338891e-15 1.850751323029254e-12 

7.0 1.146249982849842e-15 6.541577175778190e-13 

8.0 1.680476971405580e-16 2.504715727359719e-13 

9.0 2.099441635557973e-17 8.853112470549873e-14 

10.0 3.077922929287871e-18 3.389787907835673e-14 

Errorin TDGBDF (4.8),    |𝑦(𝑥𝑛) − 𝑦𝑛| 
𝑥 Error  𝑦1 Error  𝑦2 

1.0 1.772000601807378e-10 2.550769595544011e-10 

2.0 2.512047514446891e-11 9.573458692457848e-11 

3.0 3.541552034275197e-12 3.592972447341580e-11 

4.0 4.989202952686289e-13 1.348481395990753e-11 

5.0 6.109777397553251e-14 4.718898015398931e-12 

6.0 8.606149511569336e-15 1.771054223415058e-12 

7.0 1.053875957754077e-15 6.197570668470265e-13 

8.0 1.484485458811755e-16 2.326036498828676e-13 

9.0 2.091033510067494e-17 8.729919998701208e-14 

10.0 2.945455330861485e-18 3.276500978085378e-14 

𝑥 Error  𝑦1  Error  𝑦2  

1.0 1.215588347003305e-5 7.136742510016614e-7 
5.0 1.388622549969298e-4 5.210835873001307e-6 

10.0 2.329715397750842e-4 1.367511946799571e-5 

15.0 6.814405109059063e-4 7.564282396299582e-5 

20.0 1.923382861019896e-4 6.458919457996704e-6 

𝑥 Error  𝑦1  Error  𝑦2  

1.0 1.201686902208010e-5 7.049919770046875e-7 
5.0 1.386622152419470e-4 5.238733189000255e-6 

10.0 2.331138582791770e-4 1.368338897500543e-5 

15.0 6.812137981488942e-4 7.560609076999458e-5 

20.0 1.921876518860000e-4 6.449612969000595e-6 

TABLE 2A Absolute Error in Problem 1,  ℎ = 0.01,    𝜆 = 100 

 

TABLE 2B Absolute Error in Problem 1,  ℎ = 0.01,    𝜆 = 1 

 

Table 4A Errors in Problem 3 using the modulus of the solution of the 

TDGBDF (4.3) minus the solution of Ode15s, ℎ = 0.001.  Error𝑦𝑖 =
|𝑦𝑖(4.3) − 𝑦𝑖𝑂𝑑𝑒15𝑠|, 𝑖 = 1,2 

              TABLE 3A Absolute Error in Problem 2, ℎ = 0.01 

 

                 TABLE 3B Absolute Error in Problem 2, ℎ = 0.01 

 

 

Table 4B Errors in Problem3 using the modulus of the solution of the 

TDGBDF (4.8) minus the solution of Ode15s, ℎ = 0.001.  Error 𝑦𝑖 =
|𝑦𝑖(4.8) − 𝑦𝑖𝑂𝑑𝑒15𝑠|, 𝑖 = 1,2 
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|𝑦(𝑥𝑛) − 𝑦𝑛|  in Tables 2A, 2B, 3A and 3B denote the absolute error. The numerical results in figures 3A, 3B, 3C and 3D for 

problem 1 and figures 4A and 4B for problem 2 show that the TDGBDF is indistinguishable from the exact solutions. From 

figures 5A, 5B, 6A and 6B it can be seen that the proposed class of methods is very comparable with the Ode15s.As expected 

the method of order 7 (𝑘 = 5) performs better than the method of order 6 (𝑘 = 4), see Tables 2A, 2B, 3A, 3B, 4A, 4B, 5A 

and 5B. 
 

7. CONCLUSION 

The third derivative generalized backward differentiation formulas (TDGBDF) were developed using the Taylors series and method 

of undetermined coefficients. This class of methods (TDGBDF) is𝐴𝑣,𝑘−𝑣 −stable and 0𝑣,𝑘−𝑣 −stable with (𝑣, 𝑘 − 𝑣) −boundary 

conditions for all values of 𝑘 ≥ 2 with order𝑝 = 𝑘 + 2. The new methods are well suited for the solution of stiff IVPs in ODEs 
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