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Abstract 
 

 

In this paper, we perturb an unstable deterministic first order neutral delay 

differential equation with positive and negative coefficients by an Ito-type 

Brownian white noise. It is then established that the presence of noise forces the 

new system of stochastic neutral delay differential equation (SNDDE) to become 

almost sure exponentially stable. This is achieved by replacing the noise scaling 

parameter with a sufficiently strong non-integral expression thereby forcing the 

SNDDE to be almost surely exponentially stable whereas the classical version still 

remains unstable. 
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1.0     Introduction 
In recent decades, there has been much interest in studying stability of differential equations. It is much more robust to 

investigate the stability of stochastic differential equations and neutral delay differential equations than the stability of 

ordinary differential equations without delay because of the fact that these classes of equations arise in many areas of applied 

mathematics, engineering, population dynamics, etc. For recent results on stabilization of solutions of dynamical systems, we 

refer the reader to the important works found in  [1 - 7]. 

 In purely stochastic setting, stabilization of solutions of dynamical systems were modeled in [8 – 10] and some references 

therein. In [9], the authors investigated the stabilization of a system of deterministic differential equation using Levy white 

noise as follows: The authors stochastically perturbed a deterministic differential equation of the form 

( )
( )( ) ( )1−= txp

dt

tdx
 

By a Brownian motion and an independent compensated Poisson process into a stochastic differential equation  
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On ( ) ( )= dh

d MGwherextx ,00
, for  kh 1 . The integer 0r stands to separate compensated small 

jumps from large jumps so that N represents small jumps and it is an adaptedFt −  Poisson measure on 

  Nkk ,0\ →+   is the compensator of N defined by  ( ) ( ) ( )dtdyVdydtNdydtN −= ,,  for some Levy measure 

V. Where ( )  ( ) ( ) ( )tBtBtBtBB Kt .,..,, 210 == 
 is an k – dimensional adaptedFt − Brownian motion defined on the 

quadruplet ( )  ,,,, 0 PtFF t where ( )PF ,,  is a probability space and ( )  0ttF  is its filtration. The suitable 

functions ( )( ) d

k MED ,,  are such that  ( ) ( )yEyyDy →→ ,  are measurable maps from

( ) ( )→ dd

k MDandM . The authors presented a result which runs as follows: 
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Suppose that the following conditions are satisfied for all  
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Then the sample Lyapunov exponent of the solution of Eq. (2) exists and satisfies 

( ) ( )







+−−−+−
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almost surely (a.s) for any maxmin0 ,0  andwherex  are the minimum and maximum eigen values of the dd 

symmetric positive definite matrix D respectively. In particular, the trivial solution of Eq. (2) is almost surely exponentially 

stable provided that the following relationship is satisfied: ( ) .01
2

maxmin +−−−+ 


 Logk  

Other results on stochastic stabilization to which the reader is referred can be found in [11 – 13]. Although, stabilization of 

dynamical systems (functional and non-linear differential equations), has been well developed during the last few decades, 

one can easily observe from existing literature that not much effort has been devoted to the study of stochastic stabilization of 

neutral differential equations to the best of the authors’ knowledge. 

The main aim of the present paper is to perturb a deterministic neutral delay differential equation (NDE) by a Brownian white 

noise of Ito-type into a stochastic neutral delay differential equation (SNDDE) so that with the choice of a sufficiently large 

non-integral noise scaling parameter, the presence of the Brownian motion is able to stochastically stabilize the system in an 

almost sure exponential sense. The unstable behavior which might have been exhibited by the original deterministic neutral 

delay differential equation is exterminated by the presence of multiplicative Brownian white noise.   

 

2. NOTATIONS AND PRELIMINARIES: 

We consider and propose to investigate the stability conditions for a deterministic neutral delay differential system of the 

form 
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where Eq. (5) is not identically zero. By solution of Eq. (4), we refer to a function 

 ( ) ( ) ( ) ( )rtxtRtxthatsuchttsomefortCx −−− 0100 ,,
 
is continuously differentiable on  ),0t  and such that 

Eq. (4) is satisfied for  .1tt 
 In the present effort,

 Eq.(4) is perturbed by a Brownian white noise into a stochastic neutral 

delay differential equation of the form: 

( ) ( ) ( )( )  ( ) ( ) ( ) ( )  ( )( ) ( ) ( )6, tdBttXuhdttXtQtXtPrtXtRtXd +−+−−=−−   

On  Ttt ,0 . Eq. (6) has its initial data 

( ) ( )   ( ) ( )7,,0,0: 0

2

00
0

ttforTLtX d

Ft
−−==   

By Eq. (7), we mean that   is an −
0t

F measurable  ( ) valuedC d −− ,0,  random variable such that 
2

E , where 

ddddd PR →→ +:;: ;    
 

mdddddd handQ 

++ →→ ::  are smooth functions so that Eq. (6) has a unique solution for 

any given initial datum and ( )tB  is a k- dimensional Brownian motion which represents an Ito-type white noise. Moreover, 

we let the functions hQP ,, satisfy the local Lipchitz condition and the linear growth condition and also request that R is 

Lipchitz continuous with Lipchitz coefficient less than 1, that is, there exists ( )1,0L  such that  

( ) ( ) dyxallforyxLyRxR −− ,, , then there exists a unique solution for the SNDDE (6). 
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Definition 1: 

Let ( )   →− TtX ,:, 0  be an ( )  adaptedtF Tt −0  stochastic process which satisfies Eq. (6) together with its 

initial data ( ) ( ) 0: 00 −== tX , then ( ),tX  is called a strong solution of Eq. (6) if we request for any 

other solution ( ),tY  such that  

( ) ( )  ( ) 1,:,, 0 =−= TttYtX  , then ( ),tX  is called a path-wise unique solution of Eq. (6). 

Assume that ( ) ( ) ( )thandtQtP ,00,0,0,0 
  

such that the SNDDE (6) has the solution ( ) 0tX  corresponding to 

the initial datum ( ) 00 =tX , then this solution ( )tX  is called a trivial solution or equilibrium position of the SNDDE (6). 
 

Definition 2: 

The trivial solution ( )00 ,: xttX  of the SNDDE (6) is said to be almost surely exponentially stable if the sample Lyapunov 

exponent is negative. More specifically, the trivial solution is almost surely exponentially stable if  

( ) ( )80,:
1

00 
→

xttXLog
t

SupLim
t

 

where the left hand side of Eq. (8) is called the sample Lyapunov exponent and as such if Eq.(8) holds one says that the state 

of the SNDDE (6) is insensitive to  significantly small changes in the initial state or parameters of the system in an almost 

sure exponential sense. 

The following is a special case of the result found in Mao [15] Theorem 4.3.3 

 

Proposition 1: 

Suppose that there exists a positive-definite function  )( ) andtCV + ,,0

21,2 constants 0,,0,0 321  p  
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  In particular, if 23 2  , then the trivial solution of Eq. 

(6) is almost surely exponentially stable. 
 

ASSUMPTIONS: 

The following assumptions are useful for the proof of the main result:  

A1: We request the existence of a symmetric positive – definite matrix M and constants thatsuchwith  2,,  

( ) ( )

( ) ( ) ( )( )

( ) ( ) .,0,,3

,,2
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22

2

dTT
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A2:  There exists a pair of constants 0,0  W such that  

    ( ) ( )90,  tforWet t  

Assumption A1 guarantees that for any sufficiently large noise scaling parameter u, the trivial solution of the SNDDE (6) is 

almost surely exponentially stable and as such, the SNDDE (6) is the stochastically stabilized system of the deterministic 

neutral delay differential equation(4) which is generally unstable. 

Our approach, here is to attempt to replace the noise scaling parameter u by a finite expression, (i.e. u ), that satisfies 

A2 thereby forcing the SNDDE (6) to be a. s. ( )dL + ,  self- stabilized in an almost sure exponential sense. ( )t  in 

assumption A2 is called the convergence rate function. 
 

3. ALMOST SURE EXPONENTIAL STOCHASTIC SELF – STABILIZATION: 

    In this section, we shall propose to stabilize the deterministic neutral delay differential equation. To be able to achieve this, 

the retarded arguments are assumed to be sufficiently small in which case the results of the system without delays may 

become similar to those with delays. Here, we choose to replace the noise scaling parameter u with a non-integral expression 

given by 
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( ) ( ) ( )10
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Where ( ).  is a continuous valueddn − 
 function defined on + which satisfies Eq.(9). We then establish that the 

stochastic neutral delay differential equation 
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is a.s. exponentially stable. The choice of the parameter u, in the SNDDE (6) is appropriate, provided that the expression is 

made finite, that is, ( ) ( ) 


sxsSup
ts


0

. Moreover, we shall apply the idea that if the retarded arguments ,, r  are 

sufficiently small, then the stability behavior of differential equations with delays is similar to those of differential equations 

without delays, (see Driver et al [14]). The following which is called the exponential martingale inequality will be useful for 

the proof of the main result. It is a special case of the result found in Mao [15].  

Proposition 1: 
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We introduce the stopping time ( ) ( ) ( )
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positive probability. Applying Ito formula to 
( )txde , we get 

 

 

 

 

 
 

 

We note from the concept of multi-dimensional Ito integrals, that the integral in Eq. (13) is purely an valuedd −   

continuous martingale in respect to the filtration 
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Applying the idea of Eq. (14) and Eq. (15), we see that 
( ) txde  is a non-negative martingale on 

( ) ( ) 10| =
txdeEwitht  

and as such, by the Doob’s sub -martingale inequalities, we get that 
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which gives Eq. (12) by letting →d as required. 

We now establish that if the noise scaling parameter is finite then the presence of Brownian white noise can stochastically 

self stabilize the SNDDE (6) in an almost sure exponential sense 
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Theorem 1: 

Assume that assumptions A1 and A2 hold. Let the time delays be sufficiently small.  
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Moreover, for all 
dx 0

, the solution of Eq. (11) must fulfill the condition  
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and hence the Eq. (11) is almost surely exponentially stable. 

 

Proof: 

On the contrary, let us assume that Eq. (14) does not hold, then there exist some 00 x  such that given *
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By Borel Cantelli lemma, we see that for almost all  
*w   there exists a random integer  ( )w2  such that for all  
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By substituting Eq. (20) into Eq. (19) and applying A1 we now have for the random integer 2 that 
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By definition, for every 
*w  there exists a random number ( )w3  such that 
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where ( )Mmin  is the smallest Eigen value of  the symmetric positive - definite matrix M. We have from the inequalities 

(21) and (22) and almost all 
*w , that there exists a random number ( )w4  such that  
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Applying A2 for almost all  
*w , we have  
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which is a contradiction, by the definition of  
*  and as such, 
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in Eq. (18) must hold true and hence Eq.(16) and Eq.(17) follows which implies that 

( ) .0,:
1

00 
→

xttXLog
t
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t

and the result follows. 

 

CONCLUSION: 

Whereas the deterministic neutral delay differential equation (4) still remains unstable, the presence of the Brownian white 

noise in the SNDDE (6) introduces an almost sure exponential self stabilization. This is necessitated by the choice of a 

sufficiently strong noise scaling parameter which is established to be finite, provided that the stated assumptions hold. This a. 

s. exponential self stabilization was motivated by the presence of the Brownian noise which cannot occur in the deterministic 

equation, where noise is absent. 
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