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Abstract 

 

 

In this paper, we want to see the relationship between the local Hardy spaces 

(𝑯𝑷) and real Hardy spaces (𝒉𝑷)and the boundary behavior of functions in 

the Hardy spaces on the Disc, unit circle and on the Half-plane. We are 

concerned with Hardy spaces of vector-valued functions on the disk and on 

the unit circle. This paper will also gives a concrete answer to the following 

questions " Given a continuous function f on T , does there exist a harmonic 

function U defined on D  such that f is the boundary function of U? If yes, is 

U unique? 

 

Keywords:  Holomorphic functions, Lebesgue spaces, Orthogonal projection, Topological spaces, Dirichlet problem, 

Cauchy integral, Hardy spaces. 

 

1.0     Introduction 
 

The turn century brought forth a vast blooming in the field of analysis as functions spaces were equated with vector spaces, 

and given appropriate norms for their respective fields of study. The classical Lebesgue spaces, however, have very little 

regularity; at the extreme are complex analytic (holomorphic, regular, monogenic) functions [1]. Analytic functions are 

infinitely differentiable and locally converge to their Taylor series. The infinitely differentiable functions on a bounded set 

are known to form a Frechet space that is, a topological vector space which embeds into an infinite sequence of normed 
spaces, and whose topology is given as the limit of this sequence. But there is no norm which gives the same topology. A 

moment of insight can perhaps be had if we recall that an analytic function on a domain is harmonic on said domain, and a 

classical question in the study of Harmonic functions is the Dirichlet problem. In real analysis Hardy spaces are certain 

spaces of distributions on the real line, which are (in the sense of distributions) boundary values of the holomorphic functions 

of the complex Hardy spaces, and are related to the 
pL  spaces of functional analysis. For  p1  these real Hardy 

spaces 
pH  are certain subsets of 

pL , while for 1<p  the 
pL  spaces have some undesirable properties, and the Hardy 

spaces are better behaved. Today the 
pH  spaces and their local version 

ph  are important function spaces where it is 

possible to develop the analysis below the threshold 1=p  that bounds the 
pL  Lesbesgue spaces[2,3]. 

I. Behavior of Lebesgue spaces )( pL  

Theorem 1.1 (Holder’s Inequality) : If p and q are real numbers greater than 1 such that 1=
11

qp
+  and if )(pLf   and 

)(qLg  then )(1 Lfg  and 
qp gffg ||||.|||||||| 1  

Theorem 1.2 (Minkowski’s Inequality) : Let  p1 , then for ),(, dXLgf p  

(a) 0|||| pf  if 0=|||| pf  then 𝑓 = 0. 

(b) 
pp ff ||||||||||    for .C  

(c) 
ppp gfgf |||||||||||| ++ . 
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Any 𝐿𝑝 spaces must satistify both the Holder’s and Minkowski’s Inequality. The two theorems will be needed to prove some 

very important result. The proof of Theorem 1.1 and Theorem 1.2 can be found in [4]. 
 

II. Introduction to 𝑯𝒑 spaces 

Definition 2.1: For  p1  the Hardy space 
pH  is defined as the space of all analytic functions f in  

1}|<:|{= zz CD   

for which the norm 

ppit

r
p dtreff

1
2

0
1<0

)|)(|
2

1
(sup=|||| 






 

is finite[5,6]. The space 
H  consists of all bounded analytic functions f in D  and the norm is now [6] 

.|)(|sup=||||
1|<|

zff
z

  

Notation 

For )(DHf   and [0,1)r  

)|)(|
2

1
(exp=)|)(|

2

1
(exp=),(

2

0
0 













dreflogdreflogrfM ii ++

− 
 

Where  

|,0})(|log{max|=)(|log  ii refref+

  

− <<0)|)(|
2

1
(=)|)(|

2

1
(=),(

1
2

0

1

pdrefdrefrfM ppippi

p 












 

.|(|sup=),(
),[





irefrfM
−

  

For )(DHf   and ](0,p  set  

).,(lim=),(sup=||||
1[0,1)

rfMrfMf p
r

p
r

p
−→

 

For ](0,p  set  

)}.<||:||)({=  p

p fHfH D  

Further, set  

}.<||:||)({= 0  fHfN D  

.<<0whenever  ,  psNHHH sp

 
We were able to see the behaviour of Hardy spaces as p increases. The higher the value of p the bigger the space becomes[7]. 

 

Theorem 2.1: For functions in  pH p ),1(D , the radial limit.  

)(lim=)(
1

it

r

it refef
→

 

exists almost everywhere in t (Fatou’s theorem), and indeed )(TpLf  , where  

1}|=:|{= zz CT   

Moreover  

)(

1
2

0
||=:||)|)(|

2

1
(=||||

T
p

L

ppit

p fdteff 



 

We normally identify f with f , and can just regard 
pH  as the subspace of those )(TpL  functions for which negative 

Fourier Coefficients vanish [7], that is  

0<0=)(
2

1 2

0
ndteef intit −





 

0}.<  0=)(:)({:=)( nnfLfH pp  TT
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Then a function  

n

n

n

zaf 


0=

:  

can be naturally identified with the power series  

n

n

n

zazf 


0=

=)(  

defining an analytic function f on D [8,9]. 

 

Definition 2.2: Let ][1,p  and 
pHf  . Then  

)(lim=)(
1

it

r

it refef
−→

 

exists for almost all ][0,2t  and, moreover the following hold: 

(1)  )(TpLf   

dteferePrefzf ititii )(),(
2

1
=)(=)(

2

0






 
 

.=,
)(21

1
=

||

||1
=),(

2

2

2

2




i

it

it rez
rtrcos

r

ze

z
ezP

+−−

−

−

−

 

𝑢(𝑟𝑒𝑖𝑡) = ∫ 𝑓(𝑒𝑖𝑡)
.

T 2

2

)(21

1

rtrcos

r

+−−

−


𝑑𝑡

 
Another way of writing the same identity is  

𝑢(𝑧) = ∫ 𝑓(𝑒𝑖𝑡)𝑃(𝑒−𝑖𝑡𝑧)𝑑𝑡
.

T
       (1) 

Observe now that (1) makes sense for f continuous and defines a harmonic function u on D( we can also verify the mean 

value theorem using the fact that P is harmonic). 

Moreover, the identity, ,1)(12=)( 1 −− −zRezP shows that P is harmonic in D  

 (2)  
pp ff ||=||||||  

 (3)  *][= fPf  

 (4)  Let C  be the positively oriented unit circle. Then  

D
C


− zdw

zw

wf

i
zf ,

)(

2

1
=)(


 

 (5)  If <p , then  

dtefdtref pitpit

r

|)(|=|)(|lim
2

0

2

0
1


−→



 

0.=|)()(|
2

1
lim

1

dtefef pitit

r

−−−→




 

(6)  The limit  )(lim=(
1

) it

r

it efef
−→

 exists for almost all ).[0,2t  

(7)  If 2=p , then  .||=||||=|||| 2

)(2

2

0=

2

)(2 TD Ln

n
H

faf 


 

 

III. Relationship between 𝑯𝒑, 𝒉𝒑 and 𝑳𝒑 spaces 

Here, we will like to see the connection between real Hardy space, local Hardy spaces and Lesbesgue spaces and how they 
can be use interchangeably.  

Definition3.1: If  <<),1( phu p D , then there exists ][0,2Lf   with  
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)()(),(
2

1
=)(

2

0
Dpit hdttfezPzu 




 

Where, the Poisson kernel is a function of the open disk given by   

2

2

2

2

)(21

1
=

))(1(1

1
=

||

||1
=),(

rtrcos

r

ezze

zz

ze

z
ezP

ititit

it

+−−

−

−−

−

−

−
− 

 

Same holds if =p . If 1=p  there exists a finite signed measure on ][0,2  such that  

)()(),(
2

1
=)( 1

2

0
DhtdezPzu it  





 
Theorem 3.1:   Let 1],[0,2  pLf   and let 

 

dttftPzureu r

i )()(
2

1
=)(=)(

2

0
− 






 

Then )()(  freu i →  almost everywhere in   as 
 ii ere →  

 

Proof 

It is clear that if 1>, phu p , then  

1as)()( →→ rfreu i 
 

almost everywhere for some ][0,2Lf   and  dttfezPzu it )(),(
2

1
=)(

2

0



 

Theorem 3.2: Let  pHF p <,0 . Then   

(1) For almost every t, the limit 

)(lim=)( zFeF
itez

it

→

 exists. The function )(=)( iteFtf  is in 
pL  and if )(=1,> fPFp .  

(2) →− < if1|)()(|
2

0
prdttfreF pit



 if )()(,= tfeFp it → , in the weak*- topology of 
L

when 1→r . For each p<0 , we have  

p
L

p
H

fF ||=||||||  

(3) F is the Cauchy integral of its boundary function, i.e,  

ze

dteeF

z

dF

i
zF

it

itit

−− 
)(

2

1
=

)(

2

1
=)(

2

01|=|



 




 

Corollary 2.1: Every 
1HF  is the Poisson integral and Cauchy integral of its boundary function. 

 

Proof 

Let 
1HF  and fix 1<<0 s . For 

irez =  in   we have, 

dtseF
trcosr

r
sreF iti )(

)(21

1

2

1
=)(

2

2
2

0 −−+

−
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


 

When 1→s , we see that the left hand side converges to )( ireF  whereas, we have  

1|)()(||])()()[(
)(21
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Definition 3.2: An inner function is an 
H  function that has unit modulus almost everywhere on T . An outer function is a 

function 
1Hf   which can be written in the form  

))(
2

1
(exp=)(

2

0
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ree

ree
ref it

iit

iit
i











−

+
  

for Dire , where k is a real-valued integrable function and 1|=| . 

Definition 3.4: The classical Hardy Spaces ++ <<),0( pDH p
 are defined to consist of those functions f, holomorphic 

in the upper half plane 0}>:{= yiyxD ++  with the property that ),( yfM p
 is uniformly bounded for 0>y , where  

pp

p dxiyxfyfM

1

)|)(|(=),( +


−
 

Since 
pf ||  is subharmonic for )( + DHf p

, the function ),( yfM p
 decreases in )(0, .  
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by the mean value property. Integrating in polar coordinates around z, we then have 
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This shows that the absolute value of f(z) is less than or equal to the product of a constant and the norm of f. 

 

IV. Poisson Kernel and Poisson Integral 

Let CD→:h  be a harmonic function of the unit disc 1}|<:|{= zz CD  . As h is harmonic, it can be expressed 

uniquely up to a constant as the sum of a holomorphic and antiholomorphic function.  

gfh += ,    gf zz
 =0=  

Then as f and g are holomorphic and antiholomorphic respectively, they can be expressed as power series(convergent in the 

unit disk) in z and z  respectively [10].  
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The solution to the Dirichlet lies with an integral kernel called the Poisson kernel. The Poisson kernel is a function of the 

open unit disk by  
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V. The Dirichlet Problem  

Definition 5.1: The Dirichlet problem on D  consists in assgning a continuous function f on T  and seeking for a function u 

continuous on D  and harmonic in D , which coincides with f on T . In other words, we want to solve  





T

D

on=

in0=

fu

u
 

in )(DCu . The maximum modulus principle implies that a solution, if it exists is unique. In fact, one just has to observe 

that the difference of two solutions would be continuous on D , harmonic in D , and identically zero on T . 

Given a continuous function f on ,T  does there exist a harmonic function U defined on D  such that f is the boundary 

function of U ? If yes, is U unique? 
We will see that the answer to both questions is essentially yes (after we define what we mean by the limit of U).  If 

intit eef =)(  with Zn , the solution of Definition 5.1 easily found as  
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be its Fourier series. It is natural to construct  

n

n

n

n

znfznfzu )()(=)(
1=0=

−+


 

By the Fourier series  
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where the series converges uniformly on T  
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For real-valued function f, the function u is also real-valued. 

Dirichlet Problem on the Complex Plane C  



 −

T

D

on=

in0=

fu

u
 

Where f is a given function and T  is the boundary of the unit on the complex plane C . The unknown is the function 

CD→:u  It is ideal that u−  exists in the sense of the usual partial derivative. Given )(TCf  , we can find a unique 

solution )()(2 DD CCu   of the above problem. To prove the existence, it turns out that we can write the solution out in 

full.  
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For a complex plne, if given any real-valued function f, there exist a real-valued function u, and the function is unique. That 

is,  two different function f cannot have the same real-valued function u. 

Definition 5.2: A 
2C -function u defined on an open set 

nR  is called harmonic on   if its Laplacian u  defined as  
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is identically zero on  . A holomorphic function f is harmonic on its domain in 
2R . This follows from the fact that 
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2C (infact analytic) and the Cauchy-Riemann equation.  
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Since   is real. Anti-holomorphic functions are also harmonic. Harmonic functions are characterized by mean value 

property. 

 

VI. The Cauchy Projection 

The Hardy space )(DpH  is a closed subspace of )(Dph . It is clear that the Poisson integral of a function(or measure) f on 

T  is holomorphic in D  if and only if 0=)(ˆ nf  for 0<n . If we define  
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In the case 2=p  we are working with Hilbert Spaces, and we want to describe the orthogonal projection from )(2 Dh  to 

)(2 DH , that we shall denote by C(for Cauchy) [8]. 
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*

→

 

then  

dt
ze

eu
zCu

it

it

−− 1

)(
=)(

*

T
 

Proof 

Since 10 }{}{   n

n

n

n zz  is an orthogonal basis of )(2 Dh , and 
0}{ n

nz  spans )(2 DH , if we write  

n

n

n

n

n

n

zazazu −



 +
1=0=

=)(  

It follow that  

n

n

n

zazCu 


0=

=)(  

Consider now the Fourier series of 
*u  

int

n

n

nit

n

n

it eaeaeu 
 ZZ

=)(=)(*
 

with convergence in the )(2 TL -norm. Since  

intn

n

n

it

r eraeCu 


0=

=)()(  

one obtain rCu)(  from 
*u  by multiplying each Fourier coefficient  



 

0<if0

0if
=)(ˆ*

n

nr
anu

n

n  

Consider, therefore the function  

it

intn

n

it

r
re

ereC
−




1

1
==)(

0=

 

called the Cauchy Kernel. Then  

)(ˆ)(ˆ=)()(̂ * nCnunCu rr
 

For every Zn , so that  
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dt
re

iteu
eCueCureCu

ti

i

r

i

r

i )
1

)(
=)(*=)()(=)(

(

*

*

−− 



T
 

dt
ze

eu
zCu

it

it

−− 1

)(
=)(

*

T
 

Observe that the above equation can be rewritten as a contour integral  

dw
zw

wu

i
zCu

−
)(

2

1
=))((

*

D
 

an expression resembling the Ordinary Cauchy Integral Formula. This is compatible with the fact that if u is already in 

)(2 DH (i.e it is holomorphic), we then have the identity, for 1<|<| rz  

dw
zw

wu

i
zu

−
)(

2

1
=)(


 

dtre
zre

eu
zu it

it

it

r

−−
)(

2

1
=)(




 

dt

e
r

z

eu
zu

it

it

r

)(1

)(
=)(

−−
T

 

where   is the circle of radius r oriented counter clockwise. Letting 1→r , one obtains  

)(=
1

)(
=)( zCudt

ze

eu
zu

it

it

−−T  

Since we are assuming that uCu = . The orthogonal projection of )(2 Dh  onto )(2 DH  corresponds, passing to boundary 

values, to the orthogonal projection *C  of )(2 TL  onto )(2 T+L , via the following commutative diagram  

)()( 2*2 TT +LCL  

P P    

)()( 22 DD HCh  

So  

r
r

fCfC )(lim=
1

* P
→

 

where the limit is meant in the 
2L -norm. We want to give an expression of 

*C  that does not involve the harmonic extension 

to the interior. The Lemma can be reduced to a more direct formula for the operator.  

)()(: 22 TT LLH →  

mapping f into  

fPHf r
r

*ˆlim=
1→

 

again in the 
2L -norm. The operator is bounded by conjugate Harmonic,  

trcosr

tdtrsin
efePfeHf tti

r

it

r
r

it

−+

−

→→
 21

2
)(lim=)(ˆ*lim=)(

2

)(

11 T
 

 

Conclusion 

In this paper, we were able to see the relationship between )(Dph  and )(DpH , study the boundary behaviour of functions 

in the Hardy spaces on the Unit Disc and on the Half-Plane. We discussed also a crucial point in the theory of Hardy spaces, 

the fact that for <<1 p  the conjugate harmonic function of an 
ph -function is also in 

ph .We were able to answer the 

question that given a continuous function f on T , does there exist a harmonic function U defined on D  such that f is the 

boundary function of U? If yes, is U unique? The Dirichlet problem has a solution for the unit disk. If f is a real-valued 

function, then U is unique.  
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