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Abstract 

 
The use of multiple auxiliary characteristics like auxiliary attributes and 

variables has been confirmed to improve the efficiency of estimators in 

two-phase sampling. The three ways of utilizing auxiliary characteristics 

(full, partial and no information cases) have provided flexibility in the 

usage of these auxiliary characteristics. Literature has developed mixture 

ratio estimator for Partial Information Case I (PIC-I) considering both 

auxiliary characteristics as PIC simultaneously in two-phase sampling. 

However, the estimator becomes unnecessary if there is only PIC in either 

of the two auxiliary characteristics. This article has proposed two PIC 

(PIC-II and PIC-III) estimators considering either one of the auxiliary 

characteristics as PIC at each point in time in two-phase sampling. 

Theoretical and empirical comparison of the estimators showed that the 

proposed partial information case estimators (PIC-II and PIC-III) are 

efficient over estimators in PIC-I and No Information Case (NIC). R 

statistical software was used in the empirical analysis. Finally, the 

proposed estimator schema was able to abridge lengthy estimators. 

 

Keywords/Phrase: partial information case, mixture ratio estimator, two-phase sampling, auxiliary 

attributes, auxiliary variables. 

 

1.0. Introduction 

Amongst the survey statisticians, the use of auxiliary information has been established and been in use towards 

improving the estimation on the study variable. The use of auxiliary information is highly recommended when 

there is high correlation between the study and the auxiliary information. Two-phase sampling, among other 

sampling techniques, maximizes the advantages of auxiliary information (utilization of auxiliary information). 

The use of auxiliary information at the pre-selection stage was initiated in [1, 2] while Cochran [3] was the first to 

coin ratio estimator at the post-selection stage. The use of ratio estimator in two-phase sampling towards 

estimating the study variable uses the auxiliary information at the estimation stage. The application of highly 

correlated multi-auxiliary variables (more than one auxiliary variable) in ratio estimation method with improved 

result over no auxiliary or one auxiliary variable was pioneered in [4]. 

The works of [5, 6] were summarized in [7] into four ways which auxiliary information may be available in two-

phase sampling (availability of auxiliary information). Among these four ways are when exact values of the 

parameters are not known but their estimated values are known (called No Information Case) and the values of all 

the parameters of auxiliary variables may be known (called Full Information Case). The third information case 

called Partial Information Case (PIC) was introduced in [8]. This is the combination of both full information and 

no information cases into ratio and regression estimation methods.  
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These three cases provide the flexibility in the usage of auxiliary information depending on the various forms of 

availability of such auxiliary variables. 

A new auxiliary characteristic about the population could be dichotomous property (present or absent) which is 

also, highly correlated with the study variable. The use of such dichotomous characteristic, called auxiliary 

attribute, in Sample Survey has revealed improvement on the estimation of the study variable. Among the 

literatures that have utilized auxiliary attributes to obtain improved estimators over the singular use of auxiliary 

variable and over non-usage of auxiliary variable include [9, 10, 11, 12, 13]. Mixture estimator uses the 

combination of auxiliary attributes and variables towards the improvement of an estimator. Generalized mixture 

ratio estimators in two-phase sampling with the combination of multiple auxiliary variables and attributes 

following the prior three ways of the availability of the auxiliary variables (full, no and partial information cases) 

was proposed in [14]. It was ascertained that estimators developed in [14] gained efficiency over the reviewed 

estimators of [12]. 

Mixture regression estimation in two-phase sampling by assuming partial information case in both auxiliary 

attributes and variables was established in [15]. However, this Partial Information Case I (PIC-I) will not be 

compatible in the situation where there is no partial information case in both the auxiliary attributes and variables 

simultaneously. The solution to this challenge was provided in [16] in the proposed partial information cases 

(PIC-II and PIC-III) by assuming partial information case in auxiliary attributes or variables non-simultaneously. 

Similarly, partial information case (PIC-I) for mixture ratio estimator in two-phase sampling was developed in 

[14]. It is ascertained that this estimator has the same challenge as that of [15]. Hence, this article employs the 

method used in [16] to establish two additional partial information cases (PIC-II and PIC-III). These proposed 

estimators will be used when there is partial information case state in either the auxiliary attributes or variables of 

the concerned estimator. 

Finally, the mean square errors of the proposed estimators were established following [17] approach of presenting 

mean square error. 

It is observed that with the mixture use of auxiliary attribute and variable in an estimator, such estimator becomes 

lengthy to express and may affect the understanding of such estimator. Hence, estimator schema is introduced to 

abridge any lengthy estimator for full, partial and no information cases. 

 

2.0 Preliminaries 

2.1 Notation and Assumption 

Considering 𝑁 as the population size and 𝑛1 and 𝑛2  as the first and second phase sample sizes (using simple 

random sampling without replacement) respectively for where 𝑛1 > 𝑛2. Hence, presenting 

𝜃1 = (
1

𝑛1
−
1

𝑁
);  𝜃2 = (

1

𝑛2
−
1

𝑁
)   ;for 𝜃1 < 𝜃2     

Let 𝑥(1)𝑖 and  𝑥(2)𝑖 be the 𝑖𝑡ℎ  auxiliary variable at the first and second phase sampling respectively. 𝑦2 be the 

study variable at the second phase sampling. Then 

𝑦2 = (𝑌 + 𝑒𝑦2);  𝑥(1)𝑖 = (𝑋𝑖 + 𝑒𝑥(1)𝑖) ;  𝑥(2)𝑖 = (𝑋𝑖 + 𝑒𝑥(2)𝑖);𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑝           (1) 

where 𝑒𝑦2, 𝑒𝑥(1)𝑖  , 𝑒𝑥(2)𝑖  are the mean sampling errors and are very small, such that  

𝐸(𝑒𝑦2) = 𝐸(𝑒𝑥(1)𝑖) = 𝐸(𝑒𝑥(2)𝑖) = 0       (2) 

Similarly, considering 𝜏𝑖𝑗 as a complete dichotomous property about the population which is presented as  

𝑓(𝑥) = {

1,       𝑖𝑠 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑛𝑔 𝑖𝑡ℎ 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠. 𝑗 = 1,2, … , 𝑛

0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

𝜏𝑗 = value of 𝑗𝑡ℎ auxiliary attribute with the assumption that the complete dichotomy is recorded for each 

attribute. Let 𝐴𝑗 = ∑ 𝜏𝑖𝑗
𝑁
𝑗=1   and  𝑎𝑗 = ∑ 𝜏𝑖𝑗

𝑛
𝑗=1   be the total number of units in the population and sample 

respectively possessing attribute 𝜏𝑗.  Let 𝑃𝑗 =
𝐴𝑗

𝑁
    and 𝑝𝑗 =

𝑎𝑗

𝑛
 be the corresponding population and sample 

proportion possessing attribute 𝜏𝑗. Similarly, 

𝑝(1)𝑖 = (𝑃𝑖 + 𝑒𝜏(1)𝑖);      𝑝(2)𝑖 = (𝑃𝑖 + 𝑒𝜏(2)𝑖)      (3) 

for   𝐸(𝑒𝜏(1)𝑖) = 𝐸(𝑒𝜏(2)𝑖) = 0        (4) 
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and    𝐶𝑦
2 =

𝑆𝑦2
2

𝑌
2 ;     𝐶𝜏1

2 =
𝑆𝜏1
2

𝑃2
;      𝜌𝑦𝑥 =

𝑆𝑦𝑥

𝑆𝑦𝑆𝑥
 

2.2 Some other useful results 

Similarly, the following results are also necessary in establishing the mean square errors of our proposed 

estimators. 

𝐸(𝑒𝑦2)
2
= 𝜃2𝑌

2
𝐶𝑦
2    ; 𝐸(𝑒𝑥(2)𝑖)

2
= 𝜃2𝑋𝑖

2
𝐶𝑥𝑖
2    ;       𝐸(𝑒𝑦2𝑒𝑥(2)𝑖) = 𝜃2𝑌𝑋𝑖𝐶𝑦𝐶𝑥𝑖𝜌𝑦𝑥𝑖 

𝐸 (𝑒𝑥(1)𝑖𝑒𝑥(1)𝑗) = 𝜃1𝑋𝑖𝑋𝑗𝐶𝑥𝑖𝐶𝑥𝑗𝜌𝑥𝑗𝑥𝑖                        𝑓𝑜𝑟 𝑖 ≠ 𝑗 

𝐸 (𝑒𝑥(1)𝑖𝑒𝑥(2)𝑗) = 𝜃1𝑋𝑖𝑋𝑗𝐶𝑥𝑖𝐶𝑥𝑗𝜌𝑥𝑗𝑥𝑖                            𝑓𝑜𝑟 𝑖 ≠ 𝑗 

𝐸(𝑒𝑦2𝑒𝑥(1)𝑖) = 𝜃1𝑌𝑋𝑖𝐶𝑦𝐶𝑥𝑖𝜌𝑦𝑥𝑖 

𝐸 (𝑒𝑦2(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)) = (𝜃1 − 𝜃2)𝑌𝑋𝑖𝐶𝑦𝐶𝑥𝑖𝜌𝑦𝑥𝑖 

𝐸 (𝑒𝑥(2)𝑖(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)) = (𝜃1 − 𝜃2)𝑋𝑖
2
𝐶𝑥𝑖
2  

𝐸 (𝑒𝑥(1)𝑖(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)) = 0 

𝐸(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)
2
= (𝜃2 − 𝜃1)𝑋𝑖

2
𝐶𝑥𝑖
2  

𝐸 ((𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖) (𝑒𝑥(1)𝑗 − 𝑒𝑥(2)𝑗)) = (𝜃2 − 𝜃1)𝑋𝑖𝑋𝑗𝐶𝑥𝑖𝐶𝑥𝑗𝜌𝑥𝑖𝑥𝑗                𝑓𝑜𝑟 𝑖 ≠ 𝑗 

𝐸(𝑒𝑦2𝑒𝜏(2)𝑖) = 𝜃2𝑌𝑃𝑖𝐶𝑦𝐶𝜏𝑖𝜌𝑦𝜏𝑖 

𝐸 (𝑒𝜏(2)𝑖𝑒𝜏(2)𝑗) = 𝜃2𝑃𝑖𝑃𝑗𝐶𝜏𝑖𝐶𝜏𝑗𝜌𝜏𝑗𝜏𝑖        𝑓𝑜𝑟 𝑖 ≠ 𝑗 

𝐸(𝑒𝜏(1)𝑖 − 𝑒𝜏(2)𝑖)
2
= (𝜃2 − 𝜃1)𝑃𝑖

2𝐶𝜏𝑖
2  

𝐸 (𝑒𝜏(2)𝑖(𝑒𝜏(1)𝑖 − 𝑒𝜏(2)𝑖)) = (𝜃1 − 𝜃2)𝑃𝑖
2𝐶𝜏𝑖

2  

𝐸 ((𝑒𝜏(1)𝑖 − 𝑒𝜏(2)𝑖) (𝑒𝜏(1)𝑗 − 𝑒𝜏(2)𝑗)) = (𝜃2 − 𝜃1)𝑃𝑖𝑃𝑗𝐶𝜏𝑖𝐶𝜏𝑗𝜌𝜏𝑗𝜏𝑖        𝑓𝑜𝑟 𝑖 ≠ 𝑗 

𝐸 (𝑒𝜏(2)𝑖 (𝑒𝜏(1)𝑗 − 𝑒𝜏(2)𝑗)) = (𝜃1 − 𝜃2)𝑃𝑖𝑃𝑗𝐶𝜏𝑖𝐶𝜏𝑗𝜌𝜏𝑗𝜏𝑖        𝑓𝑜𝑟 𝑖 ≠ 𝑗 

According to [17] 

(1− [

∑ (−1)𝑖+1|𝑅𝑦𝑥𝑖|𝑦𝑥⏟
𝑞

𝜌𝑦𝑥𝑖
𝑞
𝑖=1

|𝑅|𝑥⏟
𝑞

]) =

|𝑅|𝑦𝑥⏟
𝑞

|𝑅|𝑥⏟
𝑞

= (1 − 𝜌𝑦.𝑥⏟
𝑞

2 ) 

 

2.3 Mixture Ratio Estimator in Two-phase Sampling. 

2.3.1 Full Information Case (FIC) 

The estimated population mean of a generalized mixture ratio estimator in two-phase sampling using multi-

auxiliary attributes and variables when information on all the auxiliary attributes and variables are available from 

the population was established in [14]. This is called Full Information Case (FIC) and presented as𝑡1 = 𝑦̅2 ∗

∏ (
𝑋̅𝑖

𝑥̅(2)𝑖
)
𝛼𝑖

𝑘
𝑖=1 ∏ (

𝑃𝑖

𝑝(2)𝑗
)

𝛽𝑗
𝑞
𝑗=𝑘+1                                                                                   (5) 

The corresponding Mean Square Error (MSE) is presented as 

𝑀𝑆𝐸(𝑡1) = 𝜃2𝑌
2
𝐶𝑦
2 (1 − 𝜌

𝑦(𝑥⏟,𝜏⏟)
𝑞

2 )                             

2.3.2 No Information Case (NIC) 

When the population information of all the auxiliary variables and attributes are not available, hence, the 

estimated population mean of the mixture ratio estimator using multi-auxiliary variables and attributes in two-

phase sampling is presented in [14] as 

𝑡2 = 𝑦̅2 ∗∏(
𝑥̅(1)𝑖
𝑥̅(2)𝑖

)

𝛼𝑖𝑘

𝑖=1

∏ (
𝑝(1)𝑗

𝑝(2)𝑗
)

𝛽𝑗
𝑞

𝑗=𝑘+1

                                                                               (6) 
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The corresponding Mean Square Error (MSE) is given as 

𝑀𝑆𝐸(𝑡2) = 𝑌
2
𝐶𝑦
2 [𝜃2 + (𝜃1 − 𝜃2)𝜌𝑦.𝑥⏟

𝑘

2 + (𝜃1 − 𝜃2)𝜌𝑦.𝜏⏟
𝑞

2 ] 

𝑀𝑆𝐸(𝑡2) = 𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦(𝑥⏟,𝜏⏟)

𝑞

2 ) + 𝜃2𝜌𝑦(𝑥⏟,𝜏⏟)
𝑞

2 ]   

2.3.3 Partial Information Case I (PIC-I) 

The estimated population mean of mixture ratio estimator in two-phase sampling when there are multi-auxiliary 

variables and attributes was presented by [14]. This estimator assumes that there is no information on (𝑟 +
1), (𝑟 + 2),… , 𝑘auxiliary variables and (ℎ + 1), (ℎ + 2), … , 𝑞 auxiliary attributes from the population. This 

estimator is termed Partial Information Case I (PIC-I). This estimator uses the second method of configuring 

partial information case out of the two ways expressed by [7] of presenting partial information case. The estimator 

is presented as: 

𝑡3 = 𝑦2 [∏(
𝑥̅(1)𝑖
𝑥̅(2)𝑖

)

𝛼𝑖𝑟

𝑖=1

(
𝑋̅𝑖
𝑥̅(1)𝑖

)

𝛽𝑖

] [ ∏ (
𝑥̅(1)𝑗

𝑥̅(2)𝑗
)

𝛼𝑗𝑘

𝑗=𝑟+1

] [ ∏ (
𝑝(1)𝑓
𝑝(2)𝑓

)

𝛾𝑓

(
𝑃𝑓

𝑝(1)𝑓
)

𝜆𝑓ℎ

𝑓=𝑘+1

] [ ∏ (
𝑝(1)𝑔

𝑝(2)𝑔
)

𝛾𝑔
𝑞

𝑔=ℎ+1

]         (7) 

The corresponding Mean Square Error (MSE) is further simplified as thus: 

𝑀𝑆𝐸(𝑡3) = 𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦.(𝑥⏟,𝜏⏟)𝑞

2 ) + 𝜃1 (𝜌𝑦.(𝑥⏟,𝜏⏟)𝑞
2 − 𝜌

𝑦.(𝑥⏟,𝜏⏟)ℎ

2 )] 

 

3.0 Methodology 

3.1 Introducing the Estimator Scheme 

This research observes that in two-phase sampling, expressing some estimators on a paper page could span 

through the breadth of such page. The length of some estimators could be a threat to the understanding of such 

estimators. To understand the properties of and the difference between estimators start by placing such estimators 

side-by-side for comparison. The quality of this side-by-side estimators comparison may reduce if such estimators 

are lengthy. Considering this challenge, this research has proposed ESTIMATOR SCHEMA to represent an 

estimator which will reduce the length of any estimator. 

Estimator schema, just like database schema in the Software Industry, is a blue-print which serves as guide about 

the concerned estimator. It is a diagrammatical representation of such estimator. The importance of estimator 

schema are to ease understanding, abridge any lengthy estimator and to make further modification of concerned 

estimator easy for samplers. 

An instance of a ratio estimator in two-phase sampling is: 

𝑡 = 𝑦2 ∗ [∏(
𝑥̅(1)𝑖
𝑥̅(2)𝑖

)

𝛼𝑖𝑟

𝑖=1

(
𝑋̅𝑖
𝑥̅(1)𝑖

)

𝛽𝑖

] ∗ [ ∏ (
𝑃𝑗

𝑝(2)𝑗
)

𝜆𝑗
𝑞

𝑗=𝑟+1

] 

The Schema for the estimator 𝑡 is presented as 

𝑡∗ =

[
 
 
 
𝑦2 ∗ 𝛼𝑖

+𝑟 ∗ 𝛽1.𝑖
+𝑟

⏟      
𝐴𝑉
𝑃𝐼𝐶

∗ 𝜆2.𝑗
+𝑞
⏟
𝐴𝐴
𝐹𝐼𝐶

⏞            
𝑅𝑎𝑡𝑖𝑜 (𝑃𝐼𝐶)

]
 
 
 
 

LINE 1: This explains that the estimator 𝑡 is a partial information case and the type of estimation method 

involved is ratio estimation method. 

LINE 2:  

* 𝛼, 𝛽, 𝑎𝑛𝑑 𝜆  are parameters to be estimated in the estimator. 

* 𝑖 𝑎𝑛𝑑 𝑗 are counters associated with the corresponding parameter. 𝑖 = 1,2,… , 𝑟,  𝑗 = 𝑟 + 1, 𝑟 + 2,… , 𝑞. 

* 1. 𝑖 : FIC with the first phase sample data available about the auxiliary characteristic. 

* 2. 𝑗: FIC with the second phase sample data available about the auxiliary characteristic. 

LINE 3: This is the type of auxiliary characteristics used. AV means Auxiliary Variable and AA means Auxiliary 

Attribute. It further explains the type of information case based on the type of auxiliary information being used. 

PIC means Partial Information Case, FIC means Full Information Case and NIC means No information Case. 
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3.1.1: Introducing estimator schema for full information, no information and partial information cases 

Estimator schema, is hereby, introduced to the aforementioned estimators as proposed in [14] as thus: 

a. Estimator Schema for Full Information Case (FIC) 

The schema of estimator 𝑡1  is presented as 

𝑡1
∗ =

{
 

 
𝑦2 ∗ 𝛼2.𝑖

+𝑘
⏟
𝐴𝑉
𝐹𝐼𝐶

∗ 𝛽2.𝑗
+𝑞
⏟
𝐴𝐴
𝐹𝐼𝐶

⏞          
𝑅𝑎𝑡𝑖𝑜 (𝐹𝐼𝐶)

}
 

 
 

b. Estimator Schema for No Information Case (NIC) 

The schema of estimator 𝑡2  is presented as 

𝑡2
∗ =

{
 

 
𝑦2 ∗ 𝛼𝑖

+𝑘
⏟
𝐴𝑉
𝑁𝐼𝐶

∗ 𝛽𝑗
+𝑞
⏟
𝐴𝐴
𝑁𝐼𝐶

⏞          
𝑅𝑎𝑡𝑖𝑜 (𝑁𝐼𝐶)

}
 

 
 

c. Estimator Schema for Partial Information Case (PIC) 

The schema of estimator 𝑡3  is presented as 

𝑡3
∗ = {𝑦2 ∗ 𝛼𝑖

+𝑟 ∗ 𝛽1.𝑖
+𝑟 ∗ 𝛼𝑗

+𝑘
⏟          

𝐴𝑉
𝑃𝐼𝐶

∗ 𝛾𝑓
+ℎ ∗ 𝜆1.𝑓

+ℎ ∗ 𝛾𝑔
+𝑞

⏟          
𝐴𝐴
𝑃𝐼𝐶

⏞                        
𝑅𝑎𝑡𝑖𝑜 (𝑃𝐼𝐶−𝐼)

} 

d. Estimator Schema Description 

𝑦2 = Sample mean of the study variable at the second phase sampling 

𝛽1.𝑖
+𝑟 = [∏ (

𝑋̅𝑖

𝑥̅(1)𝑖
)
𝛽𝑖

𝑟
𝑖=1 ]: In 𝑡3

∗ above, this is a full information case estimator with first phase sample data 

available. 𝑖 = 1,2, … , 𝑟. The “+” symbol before 𝑟 means that the estimator uses ratio estimation method. 

However, the presence of “-“ symbol means it is a product estimation method. 

𝛽2.𝑗
+𝑞
= [∏ (

𝑋̅𝑗

𝑥̅(2)𝑗
)

𝛽𝑗
𝑞
𝑗=𝑟+1 ]: In 𝑡1

∗ above, this is a full information case estimator with second phase sample data 

available. 𝑗 = (𝑘 + 1), (𝑘 + 2),… , 𝑞. The counter “𝑗” initializes its counting from where the last counter (𝑖) 
stopped its counting. 

𝛼𝑖
+𝑟 = [∏ (

𝑥̅(1)𝑖
𝑥̅(2)𝑖

)
𝛼𝑖

𝑔
𝑖=1 ]   : In 𝑡3

∗ above, this is a no information case ratio estimator with 𝑖 = 1,2,… , 𝑟. 

3.2 Proposed Mixture Ratio Estimator in Two-Phase Sampling for Partial Information Case II (PIC-II). 

If our interest is to estimate the population mean for a mixture ratio estimator using multi-auxiliary variables and 

attributes in two-phase sampling when the population information on the 𝑘 auxiliary variables are known, 

population information on the (𝑘 + 1) to ℎ auxiliary attributes are not known, but the population information on 

(ℎ + 1) 𝑡𝑜 𝑞 auxiliary attributes are not known. The auxiliary variable is at full information case while the 

auxiliary attribute is at partial information case. Then, the mixture ratio estimator is presented as: 

𝑡4 = 𝑦2 [∏(
𝑥̅(1)𝑖
𝑥̅(2)𝑖

)

𝛼𝑖𝑘

𝑖=1

(
𝑋̅𝑖
𝑥̅(1)𝑖

)

𝛽𝑖

] [ ∏ (
𝑝(1)𝑓
𝑝(2)𝑓

)

𝛾𝑓

(
𝑃𝑓

𝑝(1)𝑓
)

𝜆𝑓ℎ

𝑓=𝑘+1

] [ ∏ (
𝑝(1)𝑔
𝑝(2)𝑔

)

𝛾𝑔
𝑞

𝑔=ℎ+1

]                    (8) 

The schema for estimator 𝑡4   is presented as: 

𝑡4
∗ = {𝑦2 ∗ 𝛼𝑖

+𝑘 ∗ 𝛽1.𝑖
+𝑘

⏟      
𝐴𝑉
𝐹𝐼𝐶

∗ 𝛾𝑓
+ℎ ∗ 𝜆1.𝑓

+ℎ ∗ 𝛾𝑔
+𝑞

⏟          
𝐴𝐴
𝑃𝐼𝐶

⏞                    
𝑅𝑎𝑡𝑖𝑜 (𝑃𝐼𝐶−𝐼𝐼)

}                                                                                             (9) 

Appling the equations (1) and (3) to equation (8) yields 
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𝑡4

= [(𝑌 + 𝑒𝑦2)∏(
𝑋̅𝑖 + 𝑒𝑥(1)𝑖
𝑋̅𝑖 + 𝑒𝑥(2)𝑖

)

𝛼𝑖𝑘

𝑖=1

(
𝑋̅𝑖

𝑋̅𝑖 + 𝑒𝑥(1)𝑖
)

𝛽𝑖

∏ (
𝑃𝑓 + 𝑒𝜏(1)𝑓
𝑃𝑓 + 𝑒𝜏(2)𝑓

)

𝛾𝑓

(
𝑃𝑓

𝑃𝑓 + 𝑒𝜏(1)𝑓
)

𝜆𝑓

∏ (
𝑃𝑔 + 𝑒𝜏(1)𝑔
𝑃𝑔 + 𝑒𝜏(2)𝑔

)

𝛾𝑔𝑞

𝑔=ℎ+1

ℎ

𝑓=𝑘+1

] 

𝑡4 =

[
 
 
 
 
 

(𝑌 + 𝑒𝑦2)∏(
𝑋̅𝑖 + 𝑒𝑥(1)𝑖

𝑋̅𝑖
)

𝛼𝑖

(
𝑋̅𝑖

𝑋̅𝑖 + 𝑒𝑥(2)𝑖
)

𝛼𝑖𝑘

𝑖=1

(
𝑋̅𝑖

𝑋̅𝑖 + 𝑒𝑥(1)𝑖
)

𝛽𝑖

∗

∏ (
𝑃𝑓 + 𝑒𝜏(1)𝑓

𝑃𝑓
)

𝛾𝑓

(
𝑃𝑓

𝑃𝑓 + 𝑒𝜏(2)𝑓
)

𝛾𝑓

(
𝑃𝑓

𝑃𝑓 + 𝑒𝜏(1)𝑓
)

𝜆𝑓

∏ (
𝑃𝑔 + 𝑒𝜏(1)𝑔

𝑃𝑔
)

𝛾𝑔

(
𝑃𝑔

𝑃𝑔 + 𝑒𝜏(2)𝑔
)

𝛾𝑔
𝑞

𝑔=ℎ+1

ℎ

𝑓=𝑘+1 ]
 
 
 
 
 

 

𝑡4 =

[
 
 
 
 
 

(𝑌 + 𝑒𝑦2)∏(1+
𝑒𝑥(1)𝑖
𝑋̅𝑖

)

𝛼𝑖

(1 +
𝑒𝑥(2)𝑖
𝑋̅𝑖

)

−𝛼𝑖𝑘

𝑖=1

(1 +
𝑒𝑥(1)𝑖
𝑋̅𝑖

)

−𝛽𝑖

∗

∏ (1+
𝑒𝜏(1)𝑓
𝑃𝑓

)

𝛾𝑓

(1 +
𝑒𝜏(2)𝑓
𝑃𝑓

)

−𝛾𝑓

(1 +
𝑒𝜏(1)𝑓
𝑃𝑓

)

−𝜆𝑓

∏ (1+
𝑒𝜏(1)𝑔
𝑃𝑔

)

𝛾𝑔

(1 +
𝑒𝜏(2)𝑔
𝑃𝑔

)

−𝛾𝑔𝑞

𝑔=ℎ+1

ℎ

𝑓=𝑘+1 ]
 
 
 
 
 

 

Applying taylor’s series of expansion, it gives thus: 

𝑡4 =

[
 
 
 
 
 
 
 

(𝑌 + 𝑒𝑦2)

(

 
 
 
 
 (1 +∑𝛼𝑖

𝑒𝑥(1)𝑖
𝑋̅𝑖

𝑘

𝑖=1

)(1 −∑𝛼𝑖
𝑒𝑥(2)𝑖
𝑋̅𝑖

𝑘

𝑖=1

)∑(1 −∑𝛽𝑖
𝑒𝑥(1)𝑖
𝑋̅𝑖

𝑘

𝑖=1

)(1 + ∑ 𝛾𝑓
𝑒𝜏(1)𝑓
𝑃𝑓

ℎ

𝑓=𝑘+1

)

𝑘

𝑖=1

(1 − ∑ 𝛾𝑓
𝑒𝜏(2)𝑓
𝑃𝑓

ℎ

𝑓=𝑘+1

)

(1 − ∑ 𝜆𝑓
𝑒𝜏(1)𝑓
𝑃𝑓

ℎ

𝑓=𝑘+1

)(1 + ∑ 𝛾𝑔
𝑒𝜏(1)𝑔
𝑃𝑔

𝑞

𝑔=ℎ+1

)(1 − ∑ 𝛾𝑔
𝑒𝜏(2)𝑔
𝑃𝑔

𝑞

𝑔=ℎ+1

)

)

 
 
 
 
 

]
 
 
 
 
 
 
 

 

Expand the brackets ignoring the second and higher order terms to give: 

𝑡4 =

[
 
 
 
 
 

(𝑌 + 𝑒𝑦2)

(

 
 
 
1 +∑𝛼𝑖

𝑒𝑥(1)𝑖
𝑋̅𝑖

𝑘

𝑖=1

−∑𝛼𝑖
𝑒𝑥(2)𝑖
𝑋̅𝑖

−∑𝛽𝑖
𝑒𝑥(1)𝑖
𝑋̅𝑖

𝑘

𝑖=1

+ ∑ 𝛾𝑓
𝑒𝜏(1)𝑓
𝑃𝑓

ℎ

𝑓=𝑘+1

𝑘

𝑖=1

− ∑ 𝛾𝑓
𝑒𝜏(2)𝑓
𝑃𝑓

ℎ

𝑓=𝑘+1

− ∑ 𝜆𝑓
𝑒𝜏(1)𝑓
𝑃𝑓

ℎ

𝑓=𝑘+1

+

∑ 𝛾𝑔
𝑒𝜏(1)𝑔

𝑃𝑔

𝑞

𝑔=ℎ+1

− ∑ 𝛾𝑔
𝑒𝜏(2)𝑔

𝑃𝑔

𝑞

𝑔=ℎ+1 )

 
 
 

]
 
 
 
 
 

 

Expand the brackets ignoring the second and higher order terms to give: 

𝑡4 = [𝑌 + 𝑒𝑦2 + 𝑌∑𝛼𝑖

𝑘

𝑖=1

(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)

𝑋𝑖
− 𝑌∑𝛽𝑖

𝑘

𝑖=1

𝑒𝑥(1)𝑖

𝑋𝑖
+ 𝑌 ∑ 𝛾𝑓

ℎ

𝑓=𝑘+1

(𝑒𝜏(1)𝑓 − 𝑒𝜏(2)𝑓)

𝑃𝑓
− 𝑌 ∑ 𝜆𝑓

ℎ

𝑓=𝑘+1

𝑒𝜏(1)𝑓
𝑃𝑓

+ 𝑌 ∑ 𝛾𝑔

𝑞

𝑔=ℎ+1

(𝑒𝜏(1)𝑔 − 𝑒𝜏(2)𝑔)

𝑃𝑔
] 

𝑀𝑆𝐸(𝑡4) = 𝐸1𝐸2/1(𝑡4 − 𝑌)
2
                                                                  

𝑀𝑆𝐸(𝑡4) = 𝐸1𝐸2/1 [𝑒𝑦2 + 𝑌∑𝛼𝑖

𝑘

𝑖=1

(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)

𝑋𝑖
− 𝑌∑𝛽𝑖

𝑘

𝑖=1

𝑒𝑥(1)𝑖

𝑋𝑖
+ 𝑌 ∑ 𝛾𝑓

ℎ

𝑓=𝑘+1

(𝑒𝜏(1)𝑓 − 𝑒𝜏(2)𝑓)

𝑃𝑓

− 𝑌 ∑ 𝜆𝑓

ℎ

𝑓=𝑘+1

𝑒𝜏(1)𝑓
𝑃𝑓

+ 𝑌 ∑ 𝛾𝑔

𝑞

𝑔=ℎ+1

(𝑒𝜏(1)𝑔 − 𝑒𝜏(2)𝑔)

𝑃𝑔
]

2

                                                                            (10) 

To obtain the optimum values for 𝛼𝑖  , 𝛽𝑖, 𝛾𝑓  , 𝜆𝑓 𝑎𝑛𝑑  𝛾𝑔 , we obtain the partial derivative with respect to 𝛼𝑖   ,

𝛽𝑖, 𝛾𝑓  , 𝜆𝑓 𝑎𝑛𝑑  𝛾𝑔  and equate it to zero, hence, solve for the parameters. 
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𝜕𝑀𝑆𝐸(𝑡4)

𝜕𝛼𝑖
= 0                                                                 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑘 

𝐸1𝐸2/1 [𝑌
(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)

𝑋𝑖
(𝑒𝑦2 + 𝑌∑𝛼𝑖

𝑘

𝑖=1

(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)

𝑋𝑖
− 𝑌∑𝛽𝑖

𝑘

𝑖=1

𝑒𝑥(1)𝑖

𝑋𝑖
+ 𝑌 ∑ 𝛾𝑓

ℎ

𝑓=𝑘+1

(𝑒𝜏(1)𝑓 − 𝑒𝜏(2)𝑓)

𝑃𝑓

− 𝑌 ∑ 𝜆𝑓

ℎ

𝑓=𝑘+1

𝑒𝜏(1)𝑓
𝑃𝑓

+ 𝑌 ∑ 𝛾𝑔

𝑞

𝑔=ℎ+1

(𝑒𝜏(1)𝑔 − 𝑒𝜏(2)𝑔)

𝑃𝑔
)] = 0 

Applying expectation and simplifying further when 𝑖 = 1 

∑𝛼𝑖𝐶𝑥𝑖𝜌𝑥1𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛾𝑓𝐶𝜏𝑓𝜌𝑥1𝜏𝑓

ℎ

𝑓=𝑘+1

+ ∑ 𝛾𝑔𝐶𝜏𝑔𝜌𝑥1𝜏𝑔

𝑞

𝑔=ℎ+1

= 𝐶𝑦𝜌𝑦𝑥1                                 (11) 

Applying expectation and simplifying further when 𝑖 = 2 

∑𝛼𝑖𝐶𝑥𝑖𝜌𝑥2𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛾𝑓𝐶𝜏𝑓𝜌𝑥2𝜏𝑓

ℎ

𝑓=𝑘+1

+ ∑ 𝛾𝑔𝐶𝜏𝑔𝜌𝑥2𝜏𝑔

𝑞

𝑔=ℎ+1

= 𝐶𝑦𝜌𝑦𝑥2                                (12) 

…  …  …   ….   …  …  …   ….   …  …  …   …. 

Applying expectation and simplifying further when 𝑖 = 𝑘 

∑𝛼𝑖𝐶𝑥𝑖𝜌𝑥𝑘𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛾𝑓𝐶𝜏𝑓𝜌𝑥𝑘𝜏𝑓

ℎ

𝑓=𝑘+1

+ ∑ 𝛾𝑔𝐶𝜏𝑔𝜌𝑥𝑘𝜏𝑔

𝑞

𝑔=ℎ+1

= 𝐶𝑦𝜌𝑦𝑥𝑘                                    (13) 

𝜕𝑀𝑆𝐸(𝑡4)

𝜕𝛽𝑖
= 0                                               𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑘 

𝐸1𝐸2/1 [−𝑌
𝑒𝑥(1)𝑖

𝑋𝑖
(𝑒𝑦2 + 𝑌∑𝛼𝑖

𝑘

𝑖=1

(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)

𝑋𝑖
− 𝑌∑𝛽𝑖

𝑘

𝑖=1

𝑒𝑥(1)𝑖

𝑋𝑖
+ 𝑌 ∑ 𝛾𝑓

ℎ

𝑓=𝑘+1

(𝑒𝜏(1)𝑓 − 𝑒𝜏(2)𝑓)

𝑃𝑓

− 𝑌 ∑ 𝜆𝑓

ℎ

𝑓=𝑘+1

𝑒𝜏(1)𝑓
𝑃𝑓

+ 𝑌 ∑ 𝛾𝑔

𝑞

𝑔=ℎ+1

(𝑒𝜏(1)𝑔 − 𝑒𝜏(2)𝑔)

𝑃𝑔
)] = 0 

Applying expectation and simplifying further when 𝑖 = 1 

∑𝛽𝑖𝐶𝑥𝑖𝜌𝑥1𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝜆𝑓𝐶𝜏𝑓𝜌𝑥1𝜏𝑓

ℎ

𝑓=𝑘+1

= 𝐶𝑦𝜌𝑦𝑥1                                             (14) 

Applying expectation and simplifying further when 𝑖 = 2 

∑𝛽𝑖𝐶𝑥𝑖𝜌𝑥2𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝜆𝑓𝐶𝜏𝑓𝜌𝑥2𝜏𝑓

ℎ

𝑓=𝑘+1

= 𝐶𝑦𝜌𝑦𝑥2                                             (15) 

…  …  …   ….   …  …  …   ….   …  …  …   …. 

Applying expectation and simplifying further when 𝑖 = 𝑘 

∑𝛽𝑖𝐶𝑥𝑖𝜌𝑥𝑘𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝜆𝑓𝐶𝜏𝑓𝜌𝑥𝑘𝜏𝑓

ℎ

𝑓=𝑘+1

= 𝐶𝑦𝜌𝑦𝑥𝑘                                             (16) 

𝜕𝑀𝑆𝐸(𝑡4)

𝜕𝛾𝑓
= 0                  𝑓𝑜𝑟 𝑓 = 𝑘 + 1, 𝑘 + 2,… , ℎ 
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𝐸1𝐸2/1 [𝑌
(𝑒𝜏(1)𝑓 − 𝑒𝜏(2)𝑓)

𝑃𝑓
(𝑒𝑦2 + 𝑌∑𝛼𝑖

𝑘

𝑖=1

(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)

𝑋𝑖
− 𝑌∑𝛽𝑖

𝑘

𝑖=1

𝑒𝑥(1)𝑖

𝑋𝑖
+ 𝑌 ∑ 𝛾𝑓

ℎ

𝑓=𝑘+1

(𝑒𝜏(1)𝑓 − 𝑒𝜏(2)𝑓)

𝑃𝑓

− 𝑌 ∑ 𝜆𝑓

ℎ

𝑓=𝑘+1

𝑒𝜏(1)𝑓
𝑃𝑓

+ 𝑌 ∑ 𝛾𝑔

𝑞

𝑔=ℎ+1

(𝑒𝜏(1)𝑔 − 𝑒𝜏(2)𝑔)

𝑃𝑔
)] = 0 

Applying expectation and simplifying further when 𝑓 = (𝑘 + 1) 

∑𝛼𝑖𝐶𝑥𝑖𝜌𝜏𝑘+1𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛾𝑓𝐶𝜏𝑓𝜌𝜏𝑘+1𝜏𝑓

ℎ

𝑓=𝑘+1

+ ∑ 𝛾𝑔𝐶𝜏𝑔𝜌𝜏𝑘+1𝜏𝑔

𝑞

𝑔=ℎ+1

= 𝐶𝑦𝜌𝑦𝜏𝑘+1                      (17) 

Applying expectation and simplifying further when 𝑓 = (𝑘 + 2) 

∑𝛼𝑖𝐶𝑥𝑖𝜌𝜏𝑘+2𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛾𝑓𝐶𝜏𝑓𝜌𝜏𝑘+2𝜏𝑓

ℎ

𝑓=𝑘+1

+ ∑ 𝛾𝑔𝐶𝜏𝑔𝜌𝜏𝑘+2𝜏𝑔

𝑞

𝑔=ℎ+1

= 𝐶𝑦𝜌𝑦𝜏𝑘+2                      (18) 

…  …  …   ….   …  …  …   ….   …  …  …   …. 

Applying expectation and simplifying further when 𝑓 = ℎ 

∑𝛼𝑖𝐶𝑥𝑖𝜌𝜏ℎ𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛾𝑓𝐶𝜏𝑓𝜌𝜏ℎ𝜏𝑓

ℎ

𝑓=𝑘+1

+ ∑ 𝛾𝑔𝐶𝜏𝑔𝜌𝜏ℎ𝜏𝑔

𝑞

𝑔=ℎ+1

= 𝐶𝑦𝜌𝑦𝜏ℎ                      (19) 

𝜕𝑀𝑆𝐸(𝑡4)

𝜕𝜆𝑓
= 0                    𝑓𝑜𝑟 𝑓 = 𝑘 + 1, 𝑘 + 2,… , ℎ 

𝐸1𝐸2/1 [−𝑌
𝑒𝜏(1)𝑓
𝑃𝑓

(𝑒𝑦2 + 𝑌∑𝛼𝑖

𝑘

𝑖=1

(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)

𝑋𝑖
− 𝑌∑𝛽𝑖

𝑘

𝑖=1

𝑒𝑥(1)𝑖

𝑋𝑖
+ 𝑌 ∑ 𝛾𝑓

ℎ

𝑓=𝑘+1

(𝑒𝜏(1)𝑓 − 𝑒𝜏(2)𝑓)

𝑃𝑓

− 𝑌 ∑ 𝜆𝑓

ℎ

𝑓=𝑘+1

𝑒𝜏(1)𝑓
𝑃𝑓

+ 𝑌 ∑ 𝛾𝑔

𝑞

𝑔=ℎ+1

(𝑒𝜏(1)𝑔 − 𝑒𝜏(2)𝑔)

𝑃𝑔
)] = 0 

Applying expectation and simplifying further when 𝑓 = 𝑘 + 1 

∑𝛽𝑖𝐶𝑥𝑖𝜌𝜏𝑘+1𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝜆𝑓𝐶𝜏𝑓𝜌𝜏𝑘+1𝜏𝑓

ℎ

𝑓=𝑘+1

= 𝐶𝑦𝜌𝑦𝜏𝑘+1                                    (20) 

Applying expectation and simplifying further when 𝑓 = 𝑘 + 2 

∑𝛽𝑖𝐶𝑥𝑖𝜌𝜏𝑘+2𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝜆𝑓𝐶𝜏𝑓𝜌𝜏𝑘+2𝜏𝑓

ℎ

𝑓=𝑘+1

= 𝐶𝑦𝜌𝑦𝜏𝑘+2                                   (21) 

…  …  …   ….   …  …  …   ….   …  …  …   …. 

Applying expectation and simplifying further when 𝑓 = ℎ 

∑𝛽𝑖𝐶𝑥𝑖𝜌𝜏ℎ𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝜆𝑓𝐶𝜏𝑓𝜌𝜏ℎ𝜏𝑓

ℎ

𝑓=𝑘+1

= 𝐶𝑦𝜌𝑦𝜏ℎ                                    (22) 

𝜕𝑀𝑆𝐸(𝑡4)

𝜕𝛾𝑔
= 0                                𝑓𝑜𝑟 𝑔 = ℎ + 1, ℎ + 2,… , 𝑞 

𝐸1𝐸2/1 [𝑌
(𝑒𝜏(1)𝑔 − 𝑒𝜏(2)𝑔)

𝑃𝑔
(𝑒𝑦2 + 𝑌∑𝛼𝑖

𝑘

𝑖=1

(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)

𝑋𝑖
− 𝑌∑𝛽𝑖

𝑘

𝑖=1

𝑒𝑥(1)𝑖

𝑋𝑖
+ 𝑌 ∑ 𝛾𝑓

ℎ

𝑓=𝑘+1

(𝑒𝜏(1)𝑓 − 𝑒𝜏(2)𝑓)

𝑃𝑓

− 𝑌 ∑ 𝜆𝑓

ℎ

𝑓=𝑘+1

𝑒𝜏(1)𝑓
𝑃𝑓

+ 𝑌 ∑ 𝛾𝑔

𝑞

𝑔=ℎ+1

(𝑒𝜏(1)𝑔 − 𝑒𝜏(2)𝑔)

𝑃𝑔
)] = 0 

 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 4, (July, 2017), 237 –250 



245 
 

Extension of Information…         Ogunyinka and Sodipo      Trans. of NAMP 

 

Applying expectation and simplifying further when 𝑔 = (ℎ + 1) 

∑𝛼𝑖𝐶𝑥𝑖𝜌𝜏ℎ+1𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛾𝑓𝐶𝜏𝑓𝜌𝜏ℎ+1𝜏𝑓

ℎ

𝑓=𝑘+1

+ ∑ 𝛾𝑔𝐶𝜏𝑔𝜌𝜏ℎ+1𝜏𝑔

𝑞

𝑔=ℎ+1

= 𝐶𝑦𝜌𝑦𝜏ℎ+1                                   (23) 

Applying expectation and simplifying further when 𝑔 = (ℎ + 2) 

∑𝛼𝑖𝐶𝑥𝑖𝜌𝜏ℎ+2𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛾𝑓𝐶𝜏𝑓𝜌𝜏ℎ+2𝜏𝑓

ℎ

𝑓=𝑘+1

+ ∑ 𝛾𝑔𝐶𝜏𝑔𝜌𝜏ℎ+2𝜏𝑔

𝑞

𝑔=ℎ+1

= 𝐶𝑦𝜌𝑦𝜏ℎ+2                                     (24) 

…  …  …   ….   …  …  …   ….   …  …  …   …. 

Applying expectation and simplifying further when 𝑔 = 𝑞 

∑𝛼𝑖𝐶𝑥𝑖𝜌𝜏𝑞𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛾𝑓𝐶𝜏𝑓𝜌𝜏𝑞𝜏𝑓

ℎ

𝑓=𝑘+1

+ ∑ 𝛾𝑔𝐶𝜏𝑔𝜌𝜏𝑞𝜏𝑔

𝑞

𝑔=ℎ+1

= 𝐶𝑦𝜌𝑦𝜏𝑞                                   (25) 

Representing equations (11),(12), (13), (17), (18), (19), (23), (24) and (25) in correlation coefficient matrix and 

simplifying further to give: 

𝜎∗𝑘 =

𝐶𝑦(−1)
𝑖+1 |𝑅𝑦𝑥𝑖𝜏𝑗|𝑦(𝑥⏟,𝜏⏟)

𝑘

|𝑅|
𝑦(𝑥⏟,𝜏⏟)

𝑘

= 𝐶∗𝑘𝜎
∗𝑘 

Hence, the following parameters are estimated as thus: 

𝛼𝑖 =

𝐶𝑦(−1)
𝑖+1|𝑅𝑦𝑥𝑖|𝑦𝑥⏟

𝑘

𝐶𝑥𝑖|𝑅|𝑥⏟
𝑘

              𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑘                        (26) 

𝛾𝑓 =

𝐶𝑦(−1)
𝑓+1 |𝑅𝑦𝜏𝑓|𝑦𝜏⏟

ℎ

𝐶𝜏𝑓|𝑅|𝜏⏟
ℎ

              𝑓𝑜𝑟 𝑓 = 𝑘 + 1, 𝑘 + 2,… , ℎ               (27) 

𝛾𝑔 =

𝐶𝑦(−1)
𝑔+1 |𝑅𝑦𝜏𝑔|𝑦𝜏⏟

𝑞

𝐶𝜏𝑔|𝑅|𝜏⏟
𝑞

             𝑓𝑜𝑟 𝑔 = 𝑓 + 1, 𝑓 + 2,… , 𝑞               (28) 

Representing equations (14), (15), (16), (20), (21) and (22) in correlation coefficient matrix and simplifying 

further to give: 

𝜎∗ℎ =

𝐶𝑦(−1)
𝑖+1 |𝑅𝑦𝑥𝑖,𝜏𝑗|𝑦(𝑥⏟,𝜏⏟)

ℎ

|𝑅|
𝑦(𝑥⏟,𝜏⏟)

ℎ

= 𝐶∗ℎ𝜎
∗ℎ 

Hence, the following parameters are estimated as thus: 

𝛽𝑖 =

𝐶𝑦(−1)
𝑖+1|𝑅𝑦𝑥𝑖|𝑦𝑥⏟

𝑘

𝐶𝑥𝑖|𝑅|𝑥⏟
𝑘

            𝑓𝑜𝑟 𝑖 = 1, 2,… , 𝑘            (29) 

𝜆𝑓 =

𝐶𝑦(−1)
𝑓+1 |𝑅𝑦𝜏𝑓|𝑦𝜏⏟

ℎ

𝐶𝜏𝑓|𝑅|𝜏⏟
ℎ

            𝑓𝑜𝑟 𝑓 = 𝑘 + 1, 𝑘 + 2,… , ℎ              (30) 

Simplifying equation (10) ignoring the second and higher order degrees to give 
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𝑀𝑆𝐸(𝑡4) = 𝐸1𝐸2 1⁄ [𝑒𝑦2(𝑒𝑦2 + 𝑌∑𝛼𝑖

𝑘

𝑖=1

(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)

𝑋𝑖
− 𝑌∑𝛽𝑖

𝑘

𝑖=1

𝑒𝑥(1)𝑖

𝑋𝑖
+ 𝑌 ∑ 𝛾𝑓

ℎ

𝑓=𝑘+1

(𝑒𝜏(1)𝑓 − 𝑒𝜏(2)𝑓)

𝑃𝑓

− 𝑌 ∑ 𝜆𝑓

ℎ

𝑓=𝑘+1

𝑒𝜏(1)𝑓
𝑃𝑓

+ 𝑌 ∑ 𝛾𝑔

𝑞

𝑔=ℎ+1

(𝑒𝜏(1)𝑔 − 𝑒𝜏(2)𝑔)

𝑃𝑔
)]                                                                         (31) 

Applying conditional expectation to equation (31) gives 

𝑀𝑆𝐸(𝑡4) = 𝑌
2
𝐶𝑦 [𝜃2𝐶𝑦 + (𝜃1 − 𝜃2)∑𝛼𝑖𝐶𝑥𝑖𝜌𝑦𝑥𝑖 −

𝑘

𝑖=1

𝜃1∑𝛽𝑖𝐶𝑥𝑖𝜌𝑦𝑥𝑖

𝑘

𝑖=1

+ (𝜃1 − 𝜃2) ∑ 𝛾𝑓𝐶𝜏𝑓𝜌𝑦𝜏𝑓

ℎ

𝑓=𝑘+1

− 𝜃1 ∑ 𝜆𝑓𝐶𝜏𝑓𝜌𝑦𝜏𝑓

ℎ

𝑓=𝑘+1

+ (𝜃1 − 𝜃2) ∑ 𝛾𝑔𝐶𝜏𝑔𝜌𝑦𝜏𝑔

𝑞

𝑔=ℎ+1

]                                                                      (32) 

Substitute the optimum equations obtained for 𝛼𝑖  , 𝛽𝑖, 𝛾𝑓   , 𝜆𝑓 𝑎𝑛𝑑  𝛾𝑔, in equations (26), (27), (28), (29) and 

(30) into equation (32), hence, simplify to give: 

𝑀𝑆𝐸(𝑡4)𝑚𝑖𝑛 = 𝑌
2
𝐶𝑦
2 [𝜃2 + (𝜃1 − 𝜃2)𝜌𝑦.𝑥⏟

𝑘

2 − 𝜃1𝜌𝑦.𝑥⏟
𝑘

2 + (𝜃1 − 𝜃2)𝜌𝑦.𝜏⏟
ℎ

2 − 𝜃1𝜌𝑦.𝜏⏟
ℎ

2 + (𝜃1 − 𝜃2)𝜌𝑦.𝜏⏟
𝑞

2 ]               

𝑀𝑆𝐸(𝑡4)𝑚𝑖𝑛 = 𝑌
2
𝐶𝑦
2 [𝜃2 + (𝜃1 − 𝜃2)𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 − 𝜃1𝜌𝑦.(𝑥⏟
𝑘
,𝜏⏟
ℎ
)

2 ]                                                

𝑀𝑆𝐸(𝑡4)𝑚𝑖𝑛 = 𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 ) + 𝜃1 (𝜌𝑦.(𝑥⏟,𝜏⏟)
𝑞

2 − 𝜌
𝑦.(𝑥⏟

𝑘
,𝜏⏟
ℎ
)

2 )]                                               (33) 

 

3.3 Proposed Mixture Ratio Estimator in Two-Phase Sampling for Partial Information Case III (PIC-III). 

If our interest is to estimate the population mean for a mixture ratio estimator using multi-auxiliary variables and 

attributes in two-phase sampling when the population information on the auxiliary variables from 1  𝑡𝑜  𝑟 are 

known but for (𝑟 + 1) to 𝑘 are unknown and the population information of the auxiliary attributes from (𝑘 + 1) 
to 𝑞 are known. The auxiliary variable is at partial information case while the auxiliary attribute is at full 

information case. The estimator is suggested as: 

𝑡5 = 𝑦2 ∗ [∏(
𝑥̅(1)𝑖
𝑥̅(2)𝑖

)

𝛼𝑖𝑟

𝑖=1

(
𝑋̅𝑖
𝑥̅(1)𝑖

)

𝛽𝑖

] [ ∏ (
𝑥̅(1)𝑗

𝑥̅(2)𝑗
)

𝛼𝑗𝑘

𝑗=𝑟+1

] [ ∏ (
𝑝(1)𝑓
𝑝(2)𝑓

)

𝛾𝑓

(
𝑃𝑓

𝑝(1)𝑓
)

𝜆𝑓
𝑞

𝑓=𝑘+1

]              (34) 

The schema for estimator 𝑡5   is presented as: 

𝑡5
∗ =

{
 

 
𝑦2 ∗ 𝛼𝑖

+𝑟 ∗ 𝛽1.𝑖
+𝑟 ∗ 𝛼𝑗

+𝑘
⏟          

𝐴𝑉
𝑃𝐼𝐶

∗ 𝛾𝑓
+𝑞
∗ 𝜆1.𝑓

+𝑞
⏟      

𝐴𝐴
𝐹𝐼𝐶

⏞                    
𝑅𝑎𝑡𝑖𝑜 (𝑃𝐼𝐶−𝐼𝐼)

}
 

 
                        (35) 

The proof for the mean square error of estimator 𝑡5  is abridged. However, it follows the same steps as established 

in PIC-II explained earlier. Applying equation (1) and (3) to equation  

(34) gives 

𝑀𝑆𝐸(𝑡5 ) = 𝐸1𝐸2/1 [𝑒𝑦2 + 𝑌∑𝛼𝑖

𝑟

𝑖=1

(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)

𝑋𝑖
− 𝑌∑𝛽𝑖

𝑟

𝑖=1

𝑒𝑥(1)𝑖

𝑋𝑖
+ 𝑌 ∑ 𝛼𝑗

𝑘

𝑗=𝑟+1

(𝑒𝑥(1)𝑗 − 𝑒𝑥(2)𝑗)

𝑋𝑗

+ 𝑌 ∑ 𝛾𝑓

𝑞

𝑓=𝑘+1

(𝑒𝜏(1)𝑓 − 𝑒𝜏(2)𝑓)

𝑃𝑓
− 𝑌 ∑ 𝜆𝑓

𝑞

𝑓=𝑘+1

𝑒𝜏(1)𝑓
𝑃𝑓

]

2

                                     (36) 
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To obtain the optimum values for 𝛼𝑖  , 𝛽𝑖,     𝛼𝑗  , 𝛾𝑓  𝑎𝑛𝑑 𝜆𝑓 , we perform the partial derivative with respect to 

𝛼𝑖  , 𝛽𝑖 ,     𝛼𝑗   , 𝛾𝑓  𝑎𝑛𝑑 𝜆𝑓    and equate it to zero, hence, solve for the parameters. 

𝛼𝑖 =

𝐶𝑦(−1)
𝑖+1|𝑅𝑦𝑥𝑖|𝑦𝑥⏟

𝑟

𝐶𝑥𝑖|𝑅|𝑥⏟
𝑟

           𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑟                          (37) 

𝛼𝑗 =

𝐶𝑦(−1)
𝑗+1 |𝑅𝑦𝑥𝑗|𝑦𝑥⏟

𝑘

𝐶𝑥𝑗|𝑅|𝑥⏟
𝑘

          𝑓𝑜𝑟 𝑗 = 𝑟 + 1, 𝑟 + 2,… , 𝑘                 (38) 

𝛾𝑓 =

𝐶𝑦(−1)
𝑓+1 |𝑅𝑦𝜏𝑓|𝑦𝜏⏟

𝑞

𝐶𝜏𝑓|𝑅|𝜏⏟
𝑞

          𝑓𝑜𝑟 𝑓 = 𝑘 + 1, 𝑘 + 2,… , 𝑞                   (39) 

𝛽𝑖 =

𝐶𝑦(−1)
𝑖+1|𝑅𝑦𝑥𝑖|𝑦𝑥⏟

𝑟

𝐶𝑥𝑖|𝑅|𝑥⏟
𝑟

        𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑟                               (40) 

𝜆𝑓 =

𝐶𝑦(−1)
𝑓+1 |𝑅𝑦𝜏𝑓|𝑦𝜏⏟

𝑞

𝐶𝜏𝑓|𝑅|𝜏⏟
𝑞

         𝑓𝑜𝑟 𝑓 = 𝑘 + 1, 𝑘 + 2,… , 𝑞              (41) 

Simplify equation (36) and ignoring second and higher order degrees to give: 

𝑀𝑆𝐸(𝑡5 ) = 𝐸1𝐸2 1⁄ [𝑒𝑦2(𝑒𝑦2 + 𝑌∑𝛼𝑖

𝑟

𝑖=1

(𝑒𝑥(1)𝑖 − 𝑒𝑥(2)𝑖)

𝑋𝑖
− 𝑌∑𝛽𝑖

𝑟

𝑖=1

𝑒𝑥(1)𝑖

𝑋𝑖
+ 𝑌 ∑ 𝛼𝑗

𝑘

𝑗=𝑟+1

(𝑒𝑥(1)𝑗 − 𝑒𝑥(2)𝑗)

𝑋𝑗

+ 𝑌 ∑ 𝛾𝑓

𝑞

𝑓=𝑘+1

(𝑒𝜏(1)𝑓 − 𝑒𝜏(2)𝑓)

𝑃𝑓

− 𝑌 ∑ 𝜆𝑓

𝑞

𝑓=𝑘+1

𝑒𝜏(1)𝑓
𝑃𝑓

)]                                                                        (42) 

Applying expectation to equation (42) and substitute the optimum equations obtained for 𝛼𝑖  , 𝛽𝑖 ,     𝛼𝑗   ,

𝛾𝑓  𝑎𝑛𝑑 𝜆𝑓  in equations (37), (38), (39), (40) and (41) respectively into equation (42) then simplify further to 

give: 

𝑀𝑆𝐸(𝑡5 )𝑚𝑖𝑛 = 𝑌
2
𝐶𝑦
2 [𝜃2 + (𝜃1 − 𝜃2)𝜌𝑦.𝑥⏟

𝑟

2 − 𝜃1𝜌𝑦.𝑥⏟
𝑟

2 + (𝜃1 − 𝜃2)𝜌𝑦.𝑥⏟
𝑘

2 + (𝜃1 − 𝜃2)𝜌𝑦.𝜏⏟
𝑞

2 − 𝜃1𝜌𝑦.𝜏⏟
𝑞

2 ]                      

𝑀𝑆𝐸(𝑡5)𝑚𝑖𝑛 = 𝑌
2
𝐶𝑦
2 [𝜃2 + (𝜃1 − 𝜃2)𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 − 𝜃1𝜌
𝑦.(𝑥⏟

𝑟
,𝜏⏟
𝑞
)

2 ]                                                

𝑀𝑆𝐸(𝑡5 )𝑚𝑖𝑛 = 𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 ) + 𝜃1 (𝜌𝑦.(𝑥⏟,𝜏⏟)
𝑞

2 − 𝜌
𝑦.(𝑥⏟

𝑟
,𝜏⏟
𝑞
)

2 )]                            (43) 

 

4.0 Comparison, Discussion and Conclusion 

4.1 Comparison of the Estimators in PIC-I, PIC-II, PIC-III and NIC. 

This section will perform theoretical and empirical comparison of the proposed estimators with the reviewed 

estimators.  

4.1.1 Theoretical Comparison of PIC-I and PIC-II 

𝑀𝑆𝐸(𝑡3)𝑚𝑖𝑛 −𝑀𝑆𝐸(𝑡4)𝑚𝑖𝑛                                        

𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 ) + 𝜃1 (𝜌𝑦.(𝑥⏟,𝜏⏟)
𝑞

2 − 𝜌
𝑦.(𝑥⏟,𝜏⏟)

ℎ

2 )] − 𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 ) + 𝜃1 (𝜌𝑦.(𝑥⏟,𝜏⏟)
𝑞

2 − 𝜌
𝑦.(𝑥⏟

𝑘
,𝜏⏟
ℎ
)

2 )] 

−𝜌
𝑦.(𝑥⏟,𝜏⏟)

ℎ

2 + 𝜌
𝑦.(𝑥⏟

𝑘
,𝜏⏟
ℎ
)

2 > 0                                                                                             (44) 
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For 𝑘 > ℎ then (𝑀𝑆𝐸(𝑡3)𝑚𝑖𝑛 > 𝑀𝑆𝐸(𝑡4)𝑚𝑖𝑛). Hence, 𝑡4 will be efficient than 𝑡3 (𝑠𝑖𝑛𝑐𝑒 𝑘 > ℎ). 
 

4.1.2 Theoretical Comparison of PIC-I and PIC-III 

𝑀𝑆𝐸(𝑡3)𝑚𝑖𝑛 −𝑀𝑆𝐸(𝑡5)𝑚𝑖𝑛                                  

𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 ) + 𝜃1 (𝜌𝑦.(𝑥⏟,𝜏⏟)
𝑞

2 − 𝜌
𝑦.(𝑥⏟,𝜏⏟)

ℎ

2 )]

− 𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 ) + 𝜃1 (𝜌𝑦.(𝑥⏟,𝜏⏟)
𝑞

2 − 𝜌
𝑦.(𝑥⏟

𝑟
,𝜏⏟
𝑞
)

2 )] 

−𝜌
𝑦.(𝑥⏟,𝜏⏟)

ℎ

2 + 𝜌
𝑦.(𝑥⏟

𝑟
,𝜏⏟
𝑞
)

2 > 0                                                     (45) 

For 𝑞 > ℎ and > 𝑟 , then either 𝑟 > ℎ or ℎ > 𝑟 then, 𝑡5 will be efficient than 𝑡3. 

 

4.1.3 Theoretical Comparison of PIC-II and PIC-III 

𝑀𝑆𝐸(𝑡4)𝑚𝑖𝑛 −𝑀𝑆𝐸(𝑡5)𝑚𝑖𝑛                                                   

𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 ) + 𝜃1 (𝜌𝑦.(𝑥⏟,𝜏⏟)
𝑞

2 − 𝜌
𝑦.(𝑥⏟

𝑘
,𝜏⏟
ℎ
)

2 )]

− 𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 ) + 𝜃1 (𝜌𝑦.(𝑥⏟,𝜏⏟)
𝑞

2 − 𝜌
𝑦.(𝑥⏟

𝑟
,𝜏⏟
𝑞
)

2 )] 

−𝜌
𝑦.(𝑥⏟

𝑘
,𝜏⏟
ℎ
)

2 + 𝜌
𝑦.(𝑥⏟

𝑟
,𝜏⏟
𝑞
)

2                                                      (46) 

For 𝑞 > ℎ, 𝑞 = 𝑘 and 𝑘 > 𝑟. 
𝑡5 will be efficient than 𝑡4 if and only if 𝑟 > ℎ else 𝑡4 will be efficient than 𝑡5. 

 

4.1.4 Theoretical Comparison of PIC-II and NIC 

𝑀𝑆𝐸(𝑡4)𝑚𝑖𝑛 −𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛                                                   

𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 ) + 𝜃1 (𝜌𝑦.(𝑥⏟,𝜏⏟)
𝑞

2 − 𝜌
𝑦.(𝑥⏟

𝑘
,𝜏⏟
ℎ
)

2 )] − 𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 ) + 𝜃1𝜌𝑦.(𝑥⏟,𝜏⏟)
𝑞

2 ] 

−𝜌
𝑦.(𝑥⏟

𝑘
,𝜏⏟
ℎ
)

2 < 0                                                 (47) 

Since (−𝜌
𝑦.(𝑥⏟

𝑘
,𝜏⏟
ℎ
)

2 < 0) then 𝑡4 is efficient than 𝑡2. 

 

4.1.5 Comparison of PIC-III and NIC 

𝑀𝑆𝐸(𝑡5)𝑚𝑖𝑛 −𝑀𝑆𝐸(𝑡2)𝑚𝑖𝑛                                                   

𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 ) + 𝜃1 (𝜌𝑦.(𝑥⏟,𝜏⏟)
𝑞

2 − 𝜌
𝑦.(𝑥⏟

𝑟
,𝜏⏟
𝑞
)

2 )] − 𝑌
2
𝐶𝑦
2 [𝜃2 (1 − 𝜌𝑦.(𝑥⏟,𝜏⏟)

𝑞

2 ) + 𝜃1𝜌𝑦.(𝑥⏟,𝜏⏟)
𝑞

2 ] 

−𝜌
𝑦.(𝑥⏟

𝑟
,𝜏⏟
𝑞
)

2 < 0                                                 (48) 

Since −𝜌
𝑦.(𝑥⏟

𝑟
,𝜏⏟
𝑞
)

2 < 0 then 𝑡5 is efficient than 𝑡2. 

4.1.6 Empirical Comparison of all Estimators 

This research uses 𝑅 statistical software for simulation and analysis of the empirical comparison. Table 1 shows 

the corresponding population size, first phase and second phase sample sizes used in the analysis. The multiple 

correlation coefficient used in the analysis are presented in table 1. This research uses estimator average rating 

method of [18] as shown in table 1. Table 2 shows the ranking of all the five information cases in sixteen (16) 

population cases after which the overall average ranking is done. The analysis revealed that Full Information Case 

(FIC) claims to be the most efficient estimator and No Information Case (NIC) claims to be the least efficient 

estimator.  
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It is also revealed that Partial Information Case III (PIC-III) is efficient over Partial Information Case II (PIC-II) 

and Partial Information Case I (PIC-I). PIC-II proves efficient over PIC-I. This shows that the proposed 

estimators (PIC-II and PIC-III) are efficient than the PIC-I established in [14]. The 𝑅 code used in this empirical 

analysis is available as free-and-open source code on github.com at https://github.com/ogunyinka/mr/tree/mrr     . 

 

Table 1: Means, Coefficient of Variation and Correlation Coefficient. 

 

 

Table 2: Average Rank of Estimator Ranks based on the Mean Square Error 

  

Information 

Case 

Rank of Mean Square Errors for the Estimator for the 16 

populations. Average 

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

   FIC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

  PIC-I 4 4 4 4 3 4 4 3 4 4 4 4 4 4 4 4 4 

  PIC-II 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 

  PIC-III 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 3 2 

  NIC 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

 
 

4.2: Conclusion 

This research has used the method of [16] to propose two (2) partial information cases (PIC-II and PIC-III) in 

addendum to the existing three estimators established in [14]. The efficiency of the five estimators has been 

ascertained both theoretically and empirically. The estimator in FIC is efficient over all other estimators while 

estimator in NIC is less efficient to all other estimators. Estimator in PIC-III claims to be efficient over estimators 

in PIC-I and PIC-II. Similarly, estimator in PIC-II claims efficiency over estimator in PIC-I. It will be observed 

that the proposed estimators (PIC-II and PIC-III), in this study, are efficient over the PIC-I and NIC as suggested 

in [14].  
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Pop. 𝑵 𝒏𝟏 𝒏𝟐 Seed 𝑌
2
 𝐶𝑦

2 
𝜌
𝑦.(𝑥⏟,𝜏⏟)

5

2  𝜌
𝑦.(𝑥⏟,𝜏⏟)

3

2  𝜌
𝑦.(𝑥⏟,𝜏⏟)

4−5

2  𝜌
𝑦.(𝑥⏟

5
,𝜏⏟
3
)

2  𝜌
𝑦.(𝑥⏟

3
,𝜏⏟
5
)

2  

1 10000 3333 1111 800 710813.93 0.2969 0.9574 0.9535 0.955 0.9536 0.9573 

2 9350 3117 1039 215 618230.63 0.2860 0.9552 0.9515 0.953 0.9517 0.9550 

3 8700 2900 967 818 563605.14 0.2867 0.9577 0.9550 0.956 0.9557 0.9570 

4 8050 2683 894 506 486608.18 0.2841 0.9576 0.9535 0.953 0.9536 0.9575 

5 7400 2467 822 286 439636.09 0.2812 0.9593 0.9564 0.955 0.9564 0.9592 

6 6750 2250 750 569 368315.85 0.2723 0.9588 0.9562 0.955 0.9563 0.9587 

7 6100 2033 678 569 312509.93 0.2608 0.9583 0.9554 0.953 0.9555 0.9583 

8 5450 1817 606 250 267927.20 0.2417 0.9584 0.9543 0.952 0.9543 0.9584 

9 4800 1600 533 81 222415.93 0.2285 0.9588 0.9535 0.952 0.9537 0.9586 

10 4150 1383 461 374 177689.51 0.2121 0.9578 0.9521 0.950 0.9524 0.9572 

11 3500 1167 389 24 138773.92 0.1804 0.9544 0.9513 0.942 0.9514 0.9542 

12 2850 950 317 101 109591.37 0.1779 0.9611 0.9585 0.948 0.9587 0.9609 

13 2200 733 244 259 79513.43 0.1411 0.9591 0.9537 0.932 0.9549 0.9578 

14 1550 517 172 598 58405.81 0.1193 0.9663 0.9543 0.910 0.9548 0.9658 

15 900 300 100 357 35949.22 0.0641 0.9667 0.9554 0.865 0.9565 0.9665 

16 250 83 28 185 22102.66 0.0431 0.9834 0.9631 0.778 0.9799 0.9677 

https://github.com/ogunyinka/mr/tree/mrr
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Finally, this study has developed estimator schema for the easy understanding, modification and abridgement of 

lengthy estimators in two-phase sampling. 
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