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Abstract

In this paper, we introduced a new three parameter generalized Lindley
distribution which has the Lindley distribution, Power Lindley distribution
and a Generalized Gamma distribution as sub-models. Some of the
mathematical properties of the new distribution such as the density
function, cumulative distribution function, survival function, hazard rate
function, moments, measures of skewness and kurtosis, quantile function,
Renyi entropy and moment generating function were extensively studied.
The maximum likelihood estimation method was used in estimating the
parameters of the new distribution. Finally, we applied the new distribution
alongside with some well known lifetime distributions to a real lifetime data

set to examine its flexibility.
Keywords: Lindley Distribution; Power Lindley Distribution; Hazard Rate; Moments

1.0 Introduction
The density function of the classical one parameter Lindley distribution proposed in [1] is given by
F(x,4) =2 1+x)€™™ : x>0,,4>0 @)
A+1
and the corresponding cumulative distribution function defined as:
Fooi)= 1o [/1+1+/lxje_ix 2
1+

Equation (1) which is a two-component mixture of Exponential (A ) and Gamma (2, A ) can be expressed as:
f(x,2) = pfi(x) + A- p) f,(x)
where f,(x) and f,(x) are the pdf of the Exponential (4) and Gamma (2, A) distribution respectively and p:i is
A+1
the mixing proportion.
The properties of the one parameter Lindley distribution was studied in [2] and applied to a waiting time data.
Considering some comparison criteria, it was shown that the distribution is a better model than the exponential
distribution in modeling lifetime data. But due to the failure rate property of the one parameter Lindley distribution,
there are some situations where the distribution fails to provide a good fit in modeling real lifetime data. Consequently,
it has been observed that the flexibility of a model can be increased by addition of extra parameter(s), thus many
researchers have proposed generalized forms of the classical one parameter Lindley distribution. Some of these
generalizations can be found in the literature [3-14]. In this paper, we introduced a new three parameter generalized
Lindley distribution (3PGLD) which is also an alternative model in modeling real lifetime data sets.
The remaining sections of this paper are organized as follows: In Section 2, we introduce the density function and
cumulative distribution function of the proposed distribution, in Section 3, we present the sub-models of the proposed
distribution. Sections 4-8 cover the survival function and hazard rate function, the quantile function, moments and
related measures, moment generating function and Renyi entropy of the proposed distribution. We estimated the
parameters of the distribution using maximum likelihood method in Section 9.
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An application of the proposed distribution to a real lifetime data set along side with some well known related lifetime
distributions is given in section 10 and finally in section 11, we give a concluding remark.

2.0 PDF and CDF of the Proposed Distribution (3PGLD)
Consider a family of distributions whose cumulative distribution function is given by

Y SrCIen) it
F(x) = /1+1IO 1+t)e it
-0 [G(x)]
_ - [1+ 61+ G(x)]€e , %5060 @)
6+7
and the corresponding density function defined by
2
f0) = - @+Gee g0, x>0,4>0 4
+

where G(x, ¢) €[0, ] is a non-negative monotonically increasing function depending on the parameter vector (15 and

also differentiable. Then from equation (3) and (4), on letting G(x,¢) = )f; , the cumulative distribution function and

the density function of the three parameter generalized Lindley distribution (3PGLD) is given by equations (5) and (6)
respectively as

. s ap+ axe]e ™

F(X) B , x>0, Aa,f>0 ®)
and

2 ay ya-la-4x%
f) = PEBEXDCE T 0 A0 (6)

1+ Ap
The density function in equation (6) which is a two-component mixture of Weibull distribution with shape parameter
(0() and scale parameter(ﬂ,) and a generalized gamma distribution with shape parameters (2,0!) and scale

parameter (1) can be expressed as

f(x,4) = pf,(x) + (1- p) f,(x)

where fl(X) and fz(X) are pdf of Weibull distribution and Generalized Gamma distribution respectively and
AB _isthe mixing proportion.

P 1eap
The graphical presentation of the density function of 3PGLD for some fixed values of the parameters is shown in Figure 1.
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Figure 1: Density function of the 3PGLD for some fixed values of the parameters
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From Figure 1(a), we observed that the density function of the 3PGLD at o <1 is a decreasing function and uni-modal
for ¢ > 1 as displayed in Figure 1(b).

3.3 Sub-models of 3PGLD

3.3.1 Lindley Distribution

For =/ =1 the 3PGLD reduces to the classical one parameter Lindley distribution with probability density

function given by,

2
f(x) = 1+x)e ™, x>0,1>0 )
A+1

and the corresponding cumulative distribution function defined by

-AX
Fo =1- LHAEET 650 ®)
A+1
3.3.2  Power Lindley Distribution

For =1, the 3PGLD reduces to the Power Lindley distribution with density function given by,

al

f(x) = 7(1+x‘1)x“’1 e | x>0, a,A>0 )
A+1
and cumulative distribution function defined by,

@+ 1+ x*)e >
- A+1
3.3.3  Generalized Gamma Distribution
For 2 =0, the 3PGLD reduces to the Generalized Gamma distribution with density function defined by,

F(x) =1 , x>0, a,A>0 (10)

f(x) = a2 x50 a,4>0 (11)
and the corresponding cumulative distribution function given by,

F(x) = 1- Q+x9)e > | x>0, ¢,A>0 (12)
where 2 and « are the shape parameters and A is the scale parameter.

4, Survival and Hazard Rate Function of (3PGLD)

Let X be a continuous random variable with density function f(x) and cumulative distribution function F(x). The
survival (reliability) function and hazard rate (failure rate) function of the three parameter generalized Lindley
distribution are defined by:

L+ A8+ x?)e >

o _ 13
S(X) = 1-F(x) = 115 , x>0, a,4,8>0 (13)
and
2 ay a1
hog = ) @A BHXDXTT 850 (14)

S(x) L+ AB+Ax%)
The graph of the haz(a)rd rate function of the 3PGLD for dibfferent values of the parameters is given in Figure 2.
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Figure 2: Hazard rate function of the 3PGLD for varying values of the parameters
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Clearly from Figure 2(a), the 3PGLD exhibits monotone decreasing failure rate property and Figure 2(b) shows that the
3PGLD exhibits a monotone increasing failure rate property. It decreases monotonically when « <1 and increases
monotonically when o >1.

5. Quantile Function of 3PGLD
Given the cumulative distribution function F(x) defined by equation (5), the quantile function of the 3PGLD can be
obtain as Qy (p) =F _1(p), The quantile function of the Lindley family of distributions can be expressed in a closed
form using the Lambert W' function proposed in [15].
The pth quantile function is obtained by solving F(X) = p i.e.,
a —AX*

1- [1+/1,B+/1x ]e _ b

1+ A8
h+ap+ax<]e™ = @+ip)@a-p)

multiplying both sides by e ) \ye have

[F1-28-ax=]e &+ = _a+18) - p)e @

Clearly, we observe that [—1—/1,8—;Lx“] is the Lambert W function of the real argument —(1+ A8) (1— p)E‘(“’w) .
Thus, we have

W@+ 28 a- pe = [Fa-ap-ax]

X =—-1-2B8-W,, [— A+ A8)(1— p)e*Mﬁ)]

%
x=|-p-3-2w.Laima-pe ]| 19)

where pe(01).
The median of the 3PGLD can be obtained by substituting p = % in equation (15) which yields,

. _ 11 Yo
Median = Q, =F NY) = {—[;’—ﬂ—lw_l[—%(l+ /M)exp(—l—iﬂ)]}
6. Moments and Some Related Measures of the 3PGLD
Let X be a continuous random variable with density function f (X), then the r' raw moment of X is defined by,
' _ r . o0 r
po= E(X") = jo x" f (x)dx (16)

Given the pdf in equation (6), the r'™ raw moment of the 3PGLD is defined by,

o o ak(Brxt)x et

R r
po= E(X") = jo Y dx
O{ﬂz o0 a+r-1n-Ax% © 2a+r-1p-Ax%
:1+/1,3U° Bxete dx+_|.0 x“*te dx} a7

Using the transformation y = At%, t = (%)%c dt= (%)%6 7ldy

al

A A R

al
_ P J'wyr/a e’ dy
ai| ,1%!
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BT (V+1)
al/att
Similarly,
J'OO X20l+l’—le—ﬂxa dX — F(Vft +22)
0 alet

upon substituting into equation (17), we have

! aX [ BT+  T(%+2)
He = 1+l,3{ 0{2,%”1 + 0{2,%”2 }
1 [ AT, +D)+T(7,+2)

- 1+/w{ 2V }
rfe(Ag+1)+r]l(%,)

r=12 34,.. (18)
a2l (1+ Ap)

From equation (18), the first four raw moments of the 3PGLD can be obtained as follows;

- [a(AB+1) +1T (%) . 2[a(AB+D) +2]T(%,)
Hy=H = 2 .Y ' Hy = 212,
a’ A% L+ 1) a’A% (L+ Ap)
 3la(AB+D) +31T() 1, - Aa(AB+1) +41T (%)
3~ ! 4 —

a2 (14 A8) a2 % (14 2p)

Similarly, the k™ central moments of a random variable X is defined by,

k k
e = (X - 1)} = E{Z(—l)r(rjxk_rﬂr}

K
={Z (—1)f[f]E(xk‘f)M}
k kY .
= Z(—l)f[r]uk_ruf 19

where £, = 4 and gz, =1.
Using equation (19), the 2", 3 and 4" central moments can be obtained as
! 2

Hy =y =1 My = py =3, i1+ 2417 My = g =gt i+ 6p, " =3u"
The variance (02 ) and coefficient of variation () of the 3PGLD are given by,
R e AN e e
G THhTE = 2 % - 2 Y

a?A7 (14 Ap) a? % (L+ Ap)
_202(AB+D[a(AB+1) + 2T(%,) - [a(AB+) +1PT2(%)
- ot 20 (1+ 2 9)2
o 2a2(GB+Da(ip+D) +2T(%) - [a(Af+D) +02T2 (%)
u [2(AB+1) +1T(Y)

Further substitution of the raw moments yields the measures of skewness and kurtosis as follows;

(20)

7= (21)
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3t 2u
Measure of Skewness (S, ) = Fs _ M ToLUT ok (22)

uz% (14, —,UZ)%

and

A+ 6, — 3
Measure of Kurtosis (Kg) = Ha _ K ZHLETOMM 7o (23)

' 2
H (1, — %)
Tables 1 and 2 show the theoretical moments of the 3PGLD for different values of the parameters. o = 2

Table 1: Theoretical moments of 3PGLD for fixed value of the parameter (ox = 2)

Hy (=2, 1=3) (=2 1=4) (=3 4=3) (=3 1=4)
7 0.54821 0.46773 053725 0.46015
7 0.38095 0.27778 0.36667 0.26923
Ly 0.31065 0.19386 0.29421 0.18534
Ly 0.28571 0.15278 0.26667 0.14423
o’ 0.08042 0.05901 0.07803 0.05749
y 0.69920 0.81951 0.71347 0.83210
Sk 0.59809 0.60974 0.61337 0.62006
Ks 3.16608 3.19188 3.20031 3.21638

Table 2: Theoretical moments of 3PGLD for fixed value of the parameter (ax = 4)

Hy (=2 4=3) (=2 1=4) (=3 4=3) (=3 1=4)
,ui 0.71331 0.65872 0.70593 0.65325
,U‘z 0.54821 0.46773 0.53725 0.46016
‘ué 0.44638 0.35202 0.43342 0.34368
,u;l 0.38095 0.27778 0.36667 0.26923
o? 0.03939 0.03381 0.03890 0.03342
V4 0.53737 0.58190 0.54298 0.58677
Sy -0.11046 -0.10199 -0.09940 -0.09470
Ks 2.74277 2.74341 2.74383 2.74493

From Tables 1 and 2, we observed that the 3PGLD can be positively skewed and negatively skewed. Also, at some
fixed values of the parameters, the distribution can be leptokurtic as well as platykurkic.

7. Moment Generating Function

Let X pe a continuous random variable with density function f (X), then the moment generating function of X s
defined by,

M, (t) = E[e%] = j:’ e f (x)dx (24)
Thus, we define the moment generating function of 3PGLD by,
a (B +x*)xe g A

1+ A8
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0 tnxn

n=o n!

Using the transformation e* — , we have

al?

n+a-1p-A X%
» ﬂﬂ“ Z—(,B+x yxMrele dx}

2 0
T > L gl xmete x4 [ a2t X gy
1+/1ﬂn 0

al &t" [,b’l"(%,ﬂ) . r(%+2)}

Mx(t) =

= T
_ [ A8EIr0s) + ()G )row) |
n=o N' 2% (14 28)

o g (awn+n2+najr(%) |

D

ion! a’ 2« (1+ AB)

~ i t" (@ AB+N+a)T(Y)
A=D1 o221+ ap)
The first and second derivatives of equation (25) give the first and second raw moments of 3PGLD.

(25)

8. Renyi Entropy
An entropy of a random variable X is a measure of variation of uncertainty associated with the random variable X .
The Renyi entropy of X with density function f (X) suggested in [16], is defined by,

— 1 /4
T = g [P >0, y#l -
Using equation (26), the Renyi entropy of the 3PGLD is defined by,
[ (@) (B +x%) x7 @ D™

1
T.(y) = —— d
R(7) 1-y 0 (1+/1ﬂ)7 X
N4
1 al 0 o
= lo X%)Y x @7 TP gy
1—, 09 ((1+,1/3)j J (B+x)

From the series expansion (a-+b)" = Z(hjanjbj _ we have

=0

7
S R | (7 7 e e A gy
1-y L@+ 28)

but J‘OO & i+aﬂf—7e—;//1x0‘ dx = I'(j +7‘%+%5)
0 a(;/l) j+7*% +¥%

so that
7
1 ar? & ]F(j+7/—77+%5
w0 = “(1 ﬂﬂ)} ZUﬂ a(y2) - ’/4
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1 a7‘1,17(1+%‘)_% © (y ﬁy—i ) )
_ _ _ 27
1—7log[{(l+w)y/“‘%)% ;(JJ(WF“” Vo) “

9. Maximum Likelihood Estimation
Let (Xl, Xy ooy Xn) be random samples from the 3PGLD, then the likelihood function is defined as,

n 2 ay a-1a-4 X%
L =T 2 ”H)jﬂ C | =B @8)

with the log-likelihood function given by,

n 2 a a-1ln-A X
(%, 4) =Zlog al (f+x7)x“€e |

1+ A0

n n n
=nloga+2nlog A+ log(B+x“)+(@-1DD log(x;)—A> % —nlog(l+ A5) (29)

i=1 i=1 i=1
On differentiating the Iog-likelihood function with respect to the parameters, we obtain the score function as,
or n X Iog Xi
— = — + + > logx; — 2 x{ log x;
oa «a .le (B+x7) 2_1: Z

n ni
5,3 Z1:(ﬁ+><"’) 1+ 4p)

@

A

n nﬁ
Z 1+ 4P)

=1

8/1

ol
The maximum likelihood estimator ¢ of ¢ can be obtained by solving the system of non-linear equation 8_¢ = 0.

This equation can be solved by an iterative scheme known as Newton Raphson iterative scheme given by,

A -1 A A A
¢ = ¢k_H (¢k)U(¢k), ¢=(05’,312)T (30)
where U (¢, ) is the score function and H (¢, ) is the Hessian matrix, which is the second derivative of the likelihood
function. The Hessian matrix is defined by,

0 0 0
da’ Oadf OadA

H(g) =| 8%¢ %0 %
opoa 0B  OpoA

0% 0 0%
0o 0B OA?
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where

2 n
2 - ﬂzx(ﬂ[fglx)] - A3 Togx e -
o X log x;
oadB aﬁaa .le (B+x%)?
0%l 0%l no,
TR Ak
04 ni? n

0B (L+Ap)? .Z(ﬂ+x )
o o n
0oL 0B  (1+1p)>
02¢ np? 2n

o2 @+ap?: A2

10. Application of the 3PGLD

In this paper, we fit the proposed distribution to two real data sets alongside with some well known lifetime
distributions with density function given by;

(i) Exponentiated Power Lindley Distribution (EPLD) reported in

2 ay,a-la—Ax% o A1
F(x) = ad” pA+x7)x" 7€ {1_£1+£Je—ﬂxa} , x>0, a, B,1>0

1+ 2 1+2
(i) Power Lindley Distribution (PLD) reported in [4],
2 ay, a-1a—AX¥
F(x) = al” A+ x“)x“e

1+ 4
(iii) Lindley-Exponential Distribution (LED) reported in [12],

ﬂzae aX(l e—aX)ﬂ, 1(1 Iog(l e (ZX))

, x>0 a,4A>0

f(x) = x>0, a,,A>0
1+ 4

(iv) Weibull Distribution reported in [17],

f(x) = ax?te ™ x>0, &, A>0

(v) Lindley Distribution reported in [18],
221+ x)e ™

f(x) = ————, x>0, 1>0
1+ 4
Data Set: Table 3 shows the data set consisting of the times to failure of 50 devices put on life test at time 0, reported
in [18].
Table 3: Time to Failure of 50 devices
010 020 1 1 1 1 1 2 3 6 7 11 12

18 18 18 18 18 21 32 36 40 45 46 47 50
55 60 63 63 67 67 67 67 72 75 79 82 82
83 84 84 84 85 85 85 85 85 86 86

The comparison criteria considered in this work includes, the estimates of the parameters of the distribution, —2log(L) ,
Akaike Information Criterion [AIC = 2k —2log(L)], Bayesian Information Criterion [BIC =k log(n) —2log(L)]
and Kolmogorov-Smirnov Statistic (K —S). Where n is the number of observations, K is the number of estimated
parameters and L is the value of the likelihood function evaluated at the parameter estimates.
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Table 4: Summary Statistics for the Data Set

Models Estimates -2logL AIC BIC K-S
a =0.8817
3PGLD B =17.0543 4795172 485.5172 491.2532 0.1850
A =0.0542
a =0.4199
EPLD S =05748 492.2642 498.2641 504.0002 0.2118
A =2.3968
a =0.1612
PLD 484.1746 488.1747 491.9987 0.1961
A1 =0.6640
a =1.0392
LED 484.0982 488.0982 491.9222 0.2107
A =0.1501
a =0.9486
WEIBULL 482.0036 486.0037 489.8277 0.1929
A =44.8940
LINDLEY A =0.0429 502.8606 504.8606 506.7726 0.1990
(@) o (D)
Density fit for the Data Set Cumulative distribution fit for the Data Set
Q;
— 3PGLD -
3 EPLD
= R g -
o T
% ~-=- Weibul Ny
o+ i Lindley & i
z °© |1 G B % ;;;;"f o3
(] A oo
ey \».. ‘ 0 ;;}‘;) «—
6 5| - P st
A — By
- S P
S R S gL e PLD
s 7 LED
o S e 4 —== Weibull
o S - Lindley
= I | | 1 | | | 1 | |
0 20 40 60 80 0 20 40 60 80
data data

Figure 3: Density and Cumulative Distribution fit for the Data Set

The fit of the density and cumulative distribution fit of each distribution for the data set are given in the Figure 3(a) and
Figure 3(b) respectively.

Table 4 shows that the three-parameter generalized Lindley distribution (3PGLD) has the least value of -2logL, AIC,
BIC and K-S Statistic, which indicates that the 3PGLD demonstrates superiority over the Exponentiated Power Lindley
distribution, Power Lindley distribution, Lindley Exponential distribution, Weibull distribution and the classical one
parameter Lindley distribution in modeling the lifetime data sets under study. This claim was further supported by
inspecting the density and cumulative distribution fit of the distributions for the real lifetime data set.

11. Conclusion

In this paper, a three parameter generalized Lindley distribution is introduced and the some of the mathematical
properties were extensively studied. The maximum likelihood estimation method for estimating its parameters were
also achieved. An application of the 3PGLD to a real lifetime data set reveals its superiority over the Exponentiated
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Power Lindley distribution, Power Lindley distribution, Lindley Exponential distribution, Weibull distribution
and the classical one parameter Lindley distribution in modeling the lifetime data sets under study.
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