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Abstract 

 
In this paper, we introduced a new three parameter generalized Lindley 

distribution which has the Lindley distribution, Power Lindley distribution 

and a Generalized Gamma distribution as sub-models. Some of the 

mathematical properties of the new distribution such as the density 

function, cumulative distribution function, survival function, hazard rate 

function, moments, measures of skewness and kurtosis, quantile function, 

Renyi entropy and moment generating function were extensively studied. 

The maximum likelihood estimation method was used in estimating the 

parameters of the new distribution. Finally, we applied the new distribution 

alongside with some well known lifetime distributions to a real lifetime data 

set to examine its flexibility. 
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1.0 Introduction  

The density function of the classical one parameter Lindley distribution proposed in [1] is given by  
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and the corresponding cumulative distribution function defined as: 
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Equation (1) which is a two-component mixture of Exponential ( ) and Gamma (2,  ) can be expressed as: 

)()1()(),( 21 xfpxpfxf −+=  

where )(1 xf  
and )(2 xf  

are the pdf of the Exponential ( ) and Gamma (2,  ) distribution respectively and 
1+

=



p  is 

the mixing proportion. 

The properties of the one parameter Lindley distribution was studied in [2] and applied to a waiting time data. 

Considering some comparison criteria, it was shown that the distribution is a better model than the exponential 

distribution in modeling lifetime data. But due to the failure rate property of the one parameter Lindley distribution, 

there are some situations where the distribution fails to provide a good fit in modeling real lifetime data. Consequently, 

it has been observed that the flexibility of a model can be increased by addition of extra parameter(s), thus many 

researchers have proposed generalized forms of the classical one parameter Lindley distribution. Some of these 

generalizations can be found in the literature [3-14]. In this paper, we introduced a new three parameter generalized 

Lindley distribution (3PGLD) which is also an alternative model in modeling real lifetime data sets. 

The remaining sections of this paper are organized as follows: In Section 2, we introduce the density function and 

cumulative distribution function of the proposed distribution, in Section 3, we present the sub-models of the proposed 

distribution. Sections 4-8 cover the survival function and hazard rate function, the quantile function, moments and 

related measures, moment generating function and Renyi entropy of the proposed distribution. We estimated the 

parameters of the distribution using maximum likelihood method in Section 9. 
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An application of the proposed distribution to a real lifetime data set along side with some well known related lifetime 

distributions is given in section 10 and finally in section 11, we give a concluding remark. 

 

2.0 PDF and CDF of the Proposed Distribution (3PGLD) 

Consider a family of distributions whose cumulative distribution function is given by 
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and the corresponding density function defined by 
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where ],0[),( xG  is a non-negative monotonically increasing function depending on the parameter vector   and 

also differentiable. Then from equation (3) and (4), on letting



xxG =),( , the cumulative distribution function and 

the density function of the three parameter generalized Lindley distribution (3PGLD) is given by equations (5) and (6) 

respectively as 
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The density function in equation (6) which is a two-component mixture of Weibull distribution with shape parameter

)(  and scale parameter )(  and a generalized gamma distribution with shape parameters ),2(   and scale 

parameter )(  can be expressed as 

)()1()(),( 21 xfpxpfxf −+=  

where )(1 xf  and )(2 xf  are pdf of Weibull distribution and Generalized Gamma distribution respectively and
 


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+
=

1
p  is the  mixing proportion. 

The graphical presentation of the density function of 3PGLD for some fixed values of the parameters is shown in Figure 1. 

      (a)         (b) 

 
           x          x 

Figure 1: Density function of the 3PGLD for some fixed values of the parameters 
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From Figure 1(a), we observed that the density function of the 3PGLD at 1  is a decreasing function and uni-modal 

for 1  as displayed in Figure 1(b). 

3.3 Sub-models of 3PGLD 

3.3.1 Lindley Distribution 

For ,1==   the 3PGLD reduces to the classical one parameter Lindley distribution with probability density 

function given by, 
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3.3.2 Power Lindley Distribution 

For ,1=  the 3PGLD reduces to the Power Lindley distribution with density function given by, 
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3.3.3 Generalized Gamma Distribution 

For ,0=  the 3PGLD reduces to the Generalized Gamma distribution with density function defined by, 
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and the corresponding cumulative distribution function given by, 
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where 2 and   are the shape parameters and   is the scale parameter. 

4. Survival and Hazard Rate Function of (3PGLD) 

Let X  be a continuous random variable with density function f(x) and cumulative distribution function F(x). The 

survival (reliability) function and hazard rate (failure rate) function of the three parameter generalized Lindley 

distribution are defined by: 
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The graph of the hazard rate function of the 3PGLD for different values of the parameters is given in Figure 2.  

 
Figure 2: Hazard rate function of the 3PGLD for varying values of the parameters 
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Clearly from Figure 2(a), the 3PGLD exhibits monotone decreasing failure rate property and Figure 2(b) shows that the 

3PGLD exhibits a monotone increasing failure rate property. It decreases monotonically when 1
 
and increases 

monotonically when .1  
 

5. Quantile Function of 3PGLD 

Given the cumulative distribution function )(xF  defined by equation (5), the quantile function of the 3PGLD can be 

obtain as )()( 1 pFpQX

−= . The quantile function of the Lindley family of distributions can be expressed in a closed 

form using the Lambert W  function proposed in [15]. 

The 
thp  quantile function is obtained by solving pxF =)(  i.e., 
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where )( 1,0p . 

The median of the 3PGLD can be obtained by substituting 2
1=p  in equation (15) which yields, 
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6. Moments and Some Related Measures of the 3PGLD 

Let X  be a continuous random variable with density function )(xf , then the 
thr  raw moment of X  is defined by, 
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Given the pdf in equation (6), the 
thr  raw moment of the 3PGLD is defined by, 
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From equation (18), the first four raw moments of the 3PGLD can be obtained as follows; 
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Similarly, the 
thk  central moments of a random variable X  is defined by, 
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where  ='

1  and 10 = . 

Using equation (19), the 2nd, 3rd and 4th central moments can be obtained as 
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The variance (
2 ) and coefficient of variation ( ) of the 3PGLD are given by, 
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Further substitution of the raw moments yields the measures of skewness and kurtosis as follows; 
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Tables 1 and 2 show the theoretical moments of the 3PGLD for different values of the parameters. 2=  
 

Table 1: Theoretical moments of 3PGLD for fixed value of the parameter ( 2= ) 

'

r   )3,2( ==    )4,2( ==   )3,3( ==    )4,3( ==   

'

1   0.54821  0.46773  0.53725  0.46015 

'

2   0.38095  0.27778  0.36667  0.26923 

'

3   0.31065  0.19386  0.29421  0.18534 

'

4   0.28571  0.15278  0.26667  0.14423 

2   0.08042  0.05901  0.07803  0.05749 

   0.69920  0.81951  0.71347  0.83210 

kS   0.59809  0.60974  0.61337  0.62006 

sK   3.16608  3.19188  3.20031  3.21638 

 

Table 2: Theoretical moments of 3PGLD for fixed value of the parameter ( 4= ) 

'

r   )3,2( ==    )4,2( ==   )3,3( ==    )4,3( ==   

'

1   0.71331  0.65872  0.70593  0.65325 

'

2   0.54821  0.46773  0.53725  0.46016 

'

3   0.44638  0.35202  0.43342  0.34368 

'

4   0.38095  0.27778  0.36667  0.26923 

2   0.03939  0.03381  0.03890  0.03342 

   0.53737  0.58190  0.54298  0.58677  

kS   -0.11046 -0.10199 -0.09940 -0.09470 

sK   2.74277  2.74341  2.74383  2.74493 

 

From Tables 1 and 2, we observed that the 3PGLD can be positively skewed and negatively skewed. Also, at some 

fixed values of the parameters, the distribution can be leptokurtic as well as platykurkic. 

 

7. Moment Generating Function 

Let X  be a continuous random variable with density function )(xf , then the moment generating function of X  is 

defined by, 
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The first and second derivatives of equation (25) give the first and second raw moments of 3PGLD. 

 

8. Renyi Entropy 

An entropy of a random variable X  is a measure of variation of uncertainty associated with the random variable X . 

The Renyi entropy of X  with density function )(xf  suggested in [16], is defined by, 
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Using equation (26), the Renyi entropy of the 3PGLD is defined by, 
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9. Maximum Likelihood Estimation 

Let ),...,,( 21 nxxx  be random samples from the 3PGLD, then the likelihood function is defined as, 
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with the log-likelihood function given by, 
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On differentiating the log-likelihood function with respect to the parameters, we obtain the score function as, 
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The maximum likelihood estimator ̂  of   can be obtained by solving the system of non-linear equation 0=







. 

This equation can be solved by an iterative scheme known as Newton Raphson iterative scheme given by, 
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where )( kU   is the score function and )( kH  is the Hessian matrix, which is the second derivative of the likelihood 

function. The Hessian matrix is defined by, 
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10. Application of the 3PGLD 

In this paper, we fit the proposed distribution to two real data sets alongside with some well known lifetime 

distributions with density function given by; 

(i) Exponentiated Power Lindley Distribution (EPLD) reported in  
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(ii) Power Lindley Distribution (PLD) reported in [4], 
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(iii) Lindley-Exponential Distribution (LED) reported in [12], 
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(iv) Weibull Distribution reported in [17], 
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(v) Lindley Distribution reported in [18], 
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Data Set: Table 3 shows the data set consisting of the times to failure of 50 devices put on life test at time 0, reported 

in [18]. 

Table 3: Time to Failure of 50 devices 

0.10 0.20 1 1 1 1 1 2 3 6 7 11 12 

18 18 18 18 18 21 32 36 40 45 46 47 50 

55 60 63 63 67 67 67 67 72 75 79 82 82 

83 84 84 84 85 85 85 85 85 86 86 

The comparison criteria considered in this work includes, the estimates of the parameters of the distribution, )log(2 L− , 

Akaike Information Criterion )]log(22[ LkAIC −= , Bayesian Information Criterion )]log(2)log([ LnkBIC −=  

and Kolmogorov-Smirnov Statistic )( SK − . Where n  is the number of observations, k  is the number of estimated 

parameters and L  is the value of the likelihood function evaluated at the parameter estimates. 
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Table 4: Summary Statistics for the Data Set  

 Models     Estimates -2logL     AIC     BIC     K-S 

 3PGLD  

0542.0

0543.17

8817.0

=

=

=







 5172.479  5172.485  2532.491  1850.0  

 EPLD  

3968.2

5748.0

4199.0

=

=

=







 2642.492  2641.498  0002.504  2118.0  

 PLD  
6640.0

1612.0

=

=




 1746.484  1747.488  9987.491  1961.0  

 LED  
1501.0

0392.1

=

=




 0982.484  0982.488  9222.491  2107.0  

 WEIBULL 
8940.44

9486.0

=

=




 0036.482  0037.486  8277.489  1929.0  

 LINDLEY 0429.0=  8606.502  8606.504  7726.506  1990.0  

 

   (a)         (b)   

 
Figure 3: Density and Cumulative Distribution fit for the Data Set 

 

The fit of the density and cumulative distribution fit of each distribution for the data set are given in the Figure 3(a) and 

Figure 3(b) respectively.   

Table 4 shows that the three-parameter generalized Lindley distribution (3PGLD) has the least value of -2logL, AIC, 

BIC and K-S Statistic, which indicates that the 3PGLD demonstrates superiority over the Exponentiated Power Lindley 

distribution, Power Lindley distribution, Lindley Exponential distribution, Weibull distribution and the classical one 

parameter Lindley distribution in modeling the lifetime data sets under study. This claim was further supported by 

inspecting the density and cumulative distribution fit of the distributions for the real lifetime data set. 
 

11. Conclusion 

In this paper, a three parameter generalized Lindley distribution is introduced and the some of the mathematical 

properties were extensively studied. The maximum likelihood estimation method for estimating its parameters were 

also achieved. An application of the 3PGLD to a real lifetime data set reveals its superiority over the Exponentiated  
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Power Lindley distribution, Power Lindley distribution, Lindley Exponential distribution, Weibull distribution 

and the classical one parameter Lindley distribution in modeling the lifetime data sets under study. 
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