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Abstract 

 
In this paper, we investigated and obtained a closed form solution to an 

investment and consumption decision problem with risk-free asset having a 

rate of return that is driven by the Ornstein- Uhlenbeck process. To easily 

handle the HJB equation derived (which was a nonlinear second other PDE), 

we transformed the PDE into an ODE by using elimination of dependency of 

variable as in literature. It was found that the optimal investment strategy on 

the risky asset becomes totally dependent on the relative risk aversion 

coefficient and the total amount available for investment (only) if there is no 

correlation. While it becomes totally dependent on the relative risk aversion 

coefficient , the total amount available for investment  , the correlation 

coefficient of the Brownian motions, the constant volatility of the interest rate, 

the diffusion parameter of the risky asset and rate of return of the risk free 

asset if there is correlation. 

 
Keywords: Impact, shocks correlation, asset allocation, maximum principle, Ornstein-Uhlenbeck, stochastic interest 

rate model  
  

1.0 Introduction 
The classical Merton’s portfolio optimization problems shows that an investor dynamically allocates his wealth between one 

risk asset and one risk-free asset and chooses an optimal consumption rate to maximize total expected discounted utility of 

consumption [1, 2]. In this Merton’s model, there are no, transaction costs, borrowing and shorting constraints. Hundreds of 

literally extensions and applications on investment and consumption problems have been inspired by this pioneer work of 

Merton. For example, the introduction of transaction costs into the investment and consumption problems, one can refer to 

[3-5]. In investigating the optimal consumption problem with borrowing constraints authors in [6-9] have made very useful 

contributions. However, the above mentioned models generally were studied under the assumption that risky asset price 

dynamics was driven by a geometric Brownian motion (GBM) and the risk-free asset with a rate of return that is assumed 

constant. Some authors have studied the problem under the extension of geometric Brownian motion (GBM) called the 

constant elasticity of variance (CEV) model which is a natural extension of the GBM. The constant elasticity of variance 

(CEV) model has an advantage that the volatility rate has correlation with the risky asset price. Cox and Ross [10] originally 

proposed the use of constant elasticity of variance (CEV) model as an alternative diffusion process for pricing European 

option. This has also been applied to analyze the option pricing formula [11-14]. Further applications of the constant 

elasticity of variance (CEV) model, in the recent years, has been in the areas of annuity contracts and the optimal investment 

strategies in the utility framework using dynamic programming principle. Detailed discussions can be found in [15-22].  

This paper aims at investigating and giving a closed form solution to an investment and consumption decision problem where 

the risk-free asset has a rate of return that is driven by Ornstein-Uhlenbeck Stochastic interest rate of return model. Dynamic 

programming principle, specifically, the maximum principle is applied to obtain the HJB equation for the value function. 

Owing to the introducing of consumption factor and the Ornstein-Uhlenbeck Stochastic interest rate of return, the HJB 

equation derived is much more difficult to deal with than the one obtained in [16].  
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Inspired by the techniques in [16] and [23], we transform the nonlinear second-order partial differential equation into an 

ordinary differential equation using elimination of dependency on variables, which is easy to tackle.  

The rest of this paper is organized as follows. In section 2 is the problem formulation of the financial market and the 

proposed optimization problem. In section 3, dynamic programming principle is applied to obtain the HJB equation and the 

optimal investment and consumption strategies in the power utility preference case investigated and the findings given. 

Section 4 concludes the paper. 

 

2.0 The problem formulation: 

We assume that an investor trades two assets in an economy continuously-c riskless asset (bond) and a risky asset (stock), Let 

the price of the riskless asset be denoted by 𝐵(𝑡) with a rate of return 𝑟(𝑡) which is stochastic and driven by the Orinstein-

Uhlenbeck model.That is 

𝑑𝐵(𝑡) = 𝑟(𝑡)𝐵(𝑡)𝑑𝑡                                                          (1) 

where 

𝑑𝑟(𝑡) = 𝛼(𝛽 − 𝑟(𝑡))𝑑𝑡 + 𝜎𝑑𝑧1(𝑡): 𝑟(0) = 𝑟0                        (2a) 

then 

𝑟(𝑡) = (𝑟0 − 𝛽)𝑒−𝛼𝑡 + 𝜎 ∫ 𝑒−𝛼(𝑡−𝛼)𝑑𝑧1(𝛼)
𝑡

𝑡0
                           (2b) 

Where 𝛼 is the speed of mean reversion,𝛽 the mean level attracting the interest rate and 𝜎 the constant volatility of the 

interest rate.𝑧1(𝑡) is a standard Brownian motion. Also, let the price of the risky asset be denoted by 𝑠(𝑡) with the process 

𝑑𝑠(𝑡) = 𝑠(𝑡)[𝜇𝑑𝑡 + 𝜆𝑑𝑧2(𝑡)],                                      (3a)                                                                              

then 

𝑠(𝑡) = 𝑠(0) exp [𝜆𝑧2(𝑡) + (𝜇 −
𝜆2

2
) 𝑡] , ∀ 𝑡 𝜖 (0, ∞),                      (3b) 

where 𝜇 and 𝜆 are constants and 𝜇 the drift parameter while 𝜆 is the diffusion parameter.𝑧2(𝑡) is another standard Brownian  

motion. 

Through this work, we assume a probability space (Ω, ℱ, 𝜌) and a filtration {ℱ𝑡}. Uncertainty in the models are generated by 

the Brownian motions 𝑧1(𝑡) and 𝑧2(𝑡). 

Let 𝜋(𝑡) to the amount of money the investor decides to put in the risky asset at time t,then the balance [𝑤(𝑡) − 𝜋(𝑡)] is the 

amount to be invested in the riskless assets, where 𝑤(𝑡) is the total amount of money available for investment. 

Assumption: 

We assume that transaction cost, tax and dividend are paid on the amount invested in the risky asset at constant rates, 

𝜎, 𝜃 𝑎𝑛𝑑 𝑑 respectively. Therefore for any policy 𝜋, the total wealth process of the investor follows the stochastic differential 

equation (SDE) 

𝑑𝑤𝜋(𝑡) = 𝜋(𝑡)
𝑑𝑠(𝑡)

𝑠(𝑡)
+ [𝑤(𝑡) − 𝜋(𝑡)]

𝑑𝐵

𝐵(𝑡)
− (𝜗 + 𝜃 − 𝑑)𝜋(𝑡)𝑑𝑡.                           (4) 

Applying (1) and (3a) in (4) gives 

𝑑𝑤𝜋(𝑡) = {[(𝜇 + 𝑑) − (𝑟(𝑡) + 𝜗 + 𝜃)]𝜋(𝑡) + 𝑟(𝑡)𝑤(𝑡)}𝑑𝑡 + 𝜆𝜋(𝑡)𝑑𝑧2(𝑡).        (5) 

Suppose the investor has a utility function 𝑈(. ) which is strictly concave and continuously differentiable on (−∞, +∞) and 

wishes to maximize his expected utility of terminal wealth, then his problem can therefore be written as  

 𝜖[𝑈(𝑇)] 𝜋
𝑀𝑎𝑥             (6)  

subject to (5). 

The optimization problem is under consideration is for the power utility function given as 

𝑈(𝑤) =
𝑤1−𝜙

1−𝜙
, 𝜙 ≠ 1                                                       (7) 

where 𝜙 is a constant. 

3.0 The Optimal investment strategy for the power utility function 

Here we obtain the explicit solutions for the optimization problem using stochastic control and the maximum principle. 

3.1 The general framework 

Define the value function as 

𝐺(𝑡, 𝑟, 𝑠, 𝑤) = [𝜖(𝑈(𝑤)] = 0; 𝑈(𝑇, 𝑊) = 𝑈(𝑤), 0 < 𝑡 < 𝑇 𝜋
𝑀𝑎𝑥   

𝑟(𝑡) = 𝑟, 𝑤(𝑡) = 𝑤, 𝑠(𝑡) = 𝑠                                    (8) 

The corresponding Hamilton-Jacobi-Bellman (HJB) equation using the maximum principle is 

𝐺𝑡 + 𝛼(𝛽 − 𝑟)𝐺𝑟 + 𝜇𝑠𝐺𝑠 + {[(𝜇 + 𝑑) − (𝑟 + 𝜗 + 𝜃)]𝜋 + 𝑟𝑤}𝐺𝑤 + 𝜆2𝑠𝜋𝐺𝑠𝑤 +
1

2
[𝜎2𝐺𝑟𝑟 + 𝜆2𝑠2𝐺𝑠𝑠 + 𝜆2𝜋2𝐺𝑤𝑤] = 0 (9) 

where the Brownian motions do not correlate, and 

𝐺𝑡 + 𝛼(𝛽 − 𝑟)𝐺𝑟 + 𝜇𝑠𝐺𝑠 + {[(𝜇 + 𝑑) − (𝑟 + 𝜗 + 𝜃)]𝜋 + 𝑟𝑤}𝐺𝑤 + 𝜆2𝑠𝜋𝐺𝑠𝑤 + 𝜌𝜎𝑠𝐺𝑟𝑠 + 𝜌𝜎𝜆𝜋𝐺𝑟𝑤 +
1

2
[𝜎2𝐺𝑟𝑟 + 𝜆2𝑠2𝐺𝑠𝑠 + 𝜆2𝜋2𝐺𝑤𝑤] = 0   (10) 

where the Brownian motions correlate with correlation co-efficient  𝜌. 𝐺𝑡 , 𝐺𝑠 , 𝐺𝑤  𝑎𝑛𝑑 𝐺𝑟 , are first partial derivatives with 

respect to 𝑡, 𝑠, 𝑤 𝑎𝑛𝑑 𝑟 respectively. Also 𝐺𝑟𝑠 , 𝐺𝑟𝑤 , 𝐺𝑠𝑤 , 𝐺𝑟𝑟𝐺𝑠𝑠  𝑎𝑛𝑑 𝐺𝑤𝑤 are second partial derivatives, with the boundary 

condition that at the terminal time T, 
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𝐺(𝑇, 𝑟, 𝑠, 𝑤) = 𝑢(𝑤)                                                                        (11) 

The differentiation of (9) with respect to 𝜋 gives 

[(𝜇 + 𝑑) − (𝑟 + 𝜗 + 𝜃)]𝐺𝑤 + 𝜆2𝑠𝐺𝑠𝑤 + 𝜆2𝜋𝐺𝑤𝑤 = 0                                         (12) 

and the optimal strategy 

𝜋𝑑,𝜗,𝜃
∗ =

−[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]𝐺𝑤

𝜆2𝐺𝑤𝑤
−

𝑠𝐺𝑠𝑤

𝐺𝑤𝑤
 ,                                               (13) 

for the case where the Brownian  motions do not correlate. 

Differentiating (10) with respect to 𝜋 gives 

[(𝜇 + 𝑑) − (𝑟 + 𝜗 + 𝜃)]𝐺𝑤 + 𝜆2𝐺𝑠𝑤 + 𝜌𝜎𝜆𝐺𝑟𝑤 + 𝜆2𝜋𝐺𝑤𝑤 = 0                       (14) 

𝑎𝑛𝑑 the optimal strategy 

𝜋𝑑,𝜗,𝜃
∗ =

−[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]𝐺𝑤

𝜆2𝐺𝑤𝑤
−

𝑠𝐺𝑠𝑤

𝐺𝑤𝑤
−

𝜌𝜎𝜆𝐺𝑟𝑤

𝜆2𝐺𝑤𝑤
,                                                       (15) 

for the case where the Brownian  motions correlate. 

3.2. The optimal strategy for the power utility 

We consider two cases-when the Brownian motions do not correlate and when they correlate with correlation co-efficient 𝜌. 
3.2.1. Case 1: When the Brownian motions do not correlate. 

We consider power utility function described by (7).To eliminate the dependency on 𝑤, let the solution to the HJB equation 

(9) be 

𝐺(𝑡, 𝑟, 𝑠, 𝑤) = 𝐻(𝑡, 𝑟, 𝑠)
𝑤1−𝜙

1−𝜙
 ,                                (16a) 

with boundary condition 

𝐻(𝑇, 𝑟, 𝑠) = 1,                                                       (16b) 

then 

𝐺𝑡 =
𝑤1−𝜙

1−𝜙
𝐻𝑡 , 𝐺𝑟 =

𝑤1−𝜙

1−𝜙
𝐻𝑟 , 𝐺𝑠 =

𝑤1−𝜙

1−𝜙
𝐻𝑠 , 𝐺𝑠𝑤 = 𝑤−𝜙𝐻𝑠 , 𝐺𝑤 = 𝑤−𝜙𝐻𝑠.          (16c) 

Applying (17a) and (16c ) to (13) gives 

𝜋𝑑,𝜗,𝜃
∗ =

[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]𝑤

𝜆2 +
𝑠𝑤𝐻𝑠

𝐺𝑤𝑤
 .                                    (17) 

Applying  (16a). (16c) and (17) to (9) and simplifying yields 

𝐻𝑡 + 𝛼(𝛽 − 𝑟)𝐻𝑟 + 𝜇𝑠𝐻𝑠 + [(1 − 𝜙)𝑟 +
[(𝜇 + 𝑑) − (𝑟 + 𝜎 + 𝜃)]2

2𝜆2 ] 𝐻 +
𝜎2

2
𝐻𝑟𝑟 +

𝜆2𝑠2

2
𝐻𝑠𝑠 

−
(1−𝜙)𝜋2𝑠2

2𝜙2

𝐻𝑠
2

𝐻
= 0,                                                             (18) 

another second order partial differential equation. 

To eliminate dependency on s, we further conjecture that 

𝐻(𝑡, 𝑟, 𝑠) =
𝑠1−𝜙

1−𝜙
𝐼(𝑡, 𝑟)                                                    (19a) 

where 

𝐼(𝑇, 𝑟) =
1−𝜙

𝑠1−𝜙                                                       (19b) 

We obtain the following from (19a) 

𝐻𝑡 =
𝑠1−𝜙

1−𝜙
𝐼𝑡 , 𝐻𝑟 =

𝑠1−𝜙

1−𝜙
𝐼𝑟 , 𝐻𝑠 = 𝑠−𝜙𝐼, 𝐻𝑟𝑟 =

𝑠1−𝜙

1−𝜙
𝐼𝑟𝑟   𝑎𝑛𝑑 𝐻𝑠𝑠 = −𝜙𝑠−𝜙−1𝐼             (19c) 

Applying (19a) and the equivalents of 𝐻𝑠 from (19c) to (17) gives 

𝜋𝑑,𝜗,𝜃
∗ = 𝑤 [

[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]

𝜆2 +
1−𝜙

𝜙
]                                                (20) 

Also the application of (19a) and (19c) to (18) yields, on simplification, 

𝐼𝑡 + 𝛼(𝛽 − 𝑟)𝐼𝑟 + [(1 − 𝜙)(𝜇 − 𝜆2)]𝐼 +
𝜎2

2
𝐼𝑟𝑟 = 0                              (21) 

Equation (21) is also a second order partial differential equation, so we conjecture that 

𝐼(𝑡, 𝑟) =
𝑟1−𝜙

1−𝜙
𝐽(𝑡)                                                         (22a) 

to eliminate dependency on r such that at the terminal time T, 

𝐼(𝑇) =
(1−𝜙)2

(𝑟𝑠)1−𝜙                                                          (22b) 

From (22a) obtain, 

 𝐼𝑡 =
𝑟1−𝜙

1−𝜙

𝑑𝐽

𝑑𝑡
, 𝐼𝑟 = 𝑟−𝜙𝐽 𝑎𝑛𝑑 𝐼𝑟𝑟 = −𝜙𝑟−𝜙−1𝐽.                                            (22c) 

The application of (22a) and (22c) on (21) gives 
𝑟1−𝜙

1−𝜙

𝑑𝐽

𝑑𝑡
+ 𝛼(𝛽 − 𝑟)𝑟−𝜙𝐽 + (1 − 𝜙)(𝜇 − 𝜆2)

𝑟1−𝜙

1−𝜙
𝐽 +

𝜎2

2
(−𝜙)𝑟−𝜙−1𝐽 = 0,        (23) 
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which simplifies to 
𝑑𝐽

𝑑𝑡
+ [

(1−𝜙)∝(𝛽−𝑟)

𝑟
+ (1 − 𝜙)(𝜇 − 𝜆2) −

𝜎2

2𝑟2 𝜙(1 − 𝜙)] 𝐽 = 0.  

𝑑𝐽

𝑑𝑡
+ (1 − 𝜙) [

2𝑟∝(𝛽−𝑟)+2𝑟2(𝜇−𝜆2−𝜎2𝜙

2𝑟2 ] 𝐽 = 0                (24) 

Equation (24) becomes 
𝑑𝐽

𝑑𝑡
+ 𝜁(𝑡)𝐽 = 0,                                                      (25a) 

where 

𝜁(𝑡) = (1 − 𝜙) [
2𝑟∝(𝛽−𝑟)+2𝑟2(𝜇−𝜆2−𝜎2𝜙

2𝑟2 ].                       (25b) 

From equation (25a) we get 
𝑑𝐽

𝐽
= −𝜉(𝑡)𝑑𝑡,                                                     (26) 

and on integration 

𝐽(𝑡) = 𝐽(𝑇)𝑒𝑥𝑝 [∫ 𝜁
𝑇

𝑡
(𝑢)𝑑𝑢].                                           (27) 

Applying (22b) to (27) obtains 

𝐽(𝑡) =
(1−𝜙)2

(𝑟𝑠)1−𝜙 𝑒𝑥𝑝 [∫ 𝜁
𝑇

𝑡
(𝑢)𝑑𝑢].                                     (28) 

Therefore, the optimal value function for the investor`s problem is 

𝐺∗(𝑡, 𝑟, 𝑠, 𝑤) =
𝑤1−𝜙

1−𝜙
𝑒𝑥𝑝 [∫ 𝜁

𝑇

𝑡
(𝑢)𝑑𝑢].                          (29) 

3.2.2. Case 2: When the Brownian motions correlate 

Adopting (16a) and (16b), we obtain from (16a) 

𝐺𝑡 =
𝑤1−𝜙

1−𝜙
𝐻𝑡 ,  𝐺𝑤 = 𝑤−𝜙𝐻,  𝐺𝑤𝑤 = −𝜙𝑤−𝜙−1𝐻,  𝐺𝑠 =

𝑤1−𝜙

1−𝜙
𝐻𝑠 , 𝐺𝑠𝑤 = 𝑤−𝜙𝐻𝑠 , 𝐺𝑟 =

𝑤1−𝜙

1−𝜙
𝐻𝑟 ,   𝐺𝑟𝑟 =  

𝑤1−𝜙

1−𝜙
𝐻𝑟𝑟 ,   𝐺𝑠𝑠 =

𝑤1−𝜙

1−𝜙
𝐻𝑠𝑠  𝑎𝑛𝑑 𝐺𝑟𝑤 = 𝑤−𝜙𝐻𝑟 .                                                    (30) 

Applying the equivalent of 𝐺𝑤 , 𝐺𝑤𝑤 , 𝐺𝑠𝑤 , 𝑎𝑛𝑑 𝐺𝑟𝑤   from equation (30) and (16a) to (15) gives 

𝜋𝑑,𝜗,𝜃
∗ =

[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]𝑤

𝜆2 +
𝑠𝑤𝐻𝑠

𝜙𝐻
+

𝜌𝜎𝑤𝐻𝑟

𝜆𝜙𝐻
.                                                         (31) 

Using (16a) , (30) and (31) in (10) gives 
𝑤1−𝜙

1−𝜙
𝐻𝑡 +

𝑤1−𝜙

1−𝜙
𝛼(𝛽 − 𝑟)𝐻𝑟 + [(𝜇 + 𝑑) − (𝑟 + 𝜗 + 𝜃) [

[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]𝑤

𝜆2 +
𝑠𝑤𝐻𝑠

𝜙𝐻
+

𝜌𝜎𝑤𝐻𝑟

𝜆𝜙𝐻
] +𝑟𝑤]𝑤−𝜙𝐻 +

𝜆2𝑠𝑤 [
[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]

𝜆2 +
𝑠𝐻𝑠

𝜙𝐻
+

𝜌𝜎𝐻𝑟

𝜆𝜙𝐻
] 𝑤−𝜙𝐻𝑠 + 𝜌𝜎𝑠

𝑤1−𝜙

1−𝜙
𝐻𝑠𝑠 + 𝜌𝜎𝜆𝑤 [

[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]

𝜆2 +
𝑠𝐻𝑠

𝜙𝐻
+

𝜌𝜎𝐻𝑟

𝜆𝜙𝐻
] 𝑤−𝜙𝐻𝑟 +

1

2
𝜎2 𝑤1−𝜙

1−𝜙
𝐻𝑟𝑟 + 𝜆2𝑠𝐻𝑠𝑠 + 𝜋2𝑤2 [

[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]

𝜆2 +
𝑠𝐻𝑠

𝜙𝐻
+

𝜌𝜎𝐻𝑟

𝜆𝜙𝐻
]

2

(−𝜙𝑤−𝜙−1𝐻)] = 0                                                     

     (32) 

That simplifies to 

𝐻𝑡 + [𝛼(𝛽 − 𝑟) +
(1−𝜙2)𝜌𝜎[(𝜇+𝑑)−(𝑟+𝜗+𝜃)

𝜆𝜙
] 𝐻𝑟 + [(1 − 𝜙) +

[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]2

2𝜆2 ] 𝐻 +
(1−𝜙)𝜆2𝑠2

2𝜙

𝐻𝑠
2

𝐻
+

(1−𝜙)𝜆𝑠𝜌𝜎

𝜙

𝐻𝑠𝐻𝑟

𝐻
+

[
(1−𝜙)(2𝜌𝜎−1)𝜌𝜎

2𝜙
]

𝐻𝑟
2

𝐻
+

𝜎2

2
𝐻𝑟𝑟 + [

𝜆2𝑠

2
+ 𝜌𝜎𝑠] 𝐻𝑠𝑠 = 0.               (33) 

Using (19a)-(19c and applying the equivalent of 𝐻𝑠, 𝐻𝑟  𝑎𝑛𝑑 𝐻 to (31) gives 

𝜋𝑑,𝜗,𝜃
∗ = [

[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]

𝜆2 +
1−𝜙

𝜙
+

𝜌𝜎

𝜆𝜙

𝐼𝑟

𝐼
].                                    (34) 

In equation (33) obtains 
𝑠1−𝜙

1−𝜙
𝐼𝑡 + [𝛼(𝛽 − 𝑟) +

(1−𝜙2)𝜌𝜎[(𝜇+𝑑)−(𝑟+𝜗+𝜃)

𝜆𝜙
]

𝑠1−𝜙

1−𝜙
𝐼𝑟 + [(1 − 𝜙)𝑟 +

[(1−𝜙)(𝜇+𝑑)−(𝑟+𝜗+𝜃)]2

2𝜆2 ]
𝑠1−𝜙

1−𝜙
𝐼 +

(1−𝜙)𝜆2𝑠2

2𝜙
𝑠−𝜙−1𝐼 +

(1−𝜙)𝜆𝑠𝜌𝜎

𝜙
𝑠−𝜙𝐼𝑟 + [

(1−𝜙)(2𝜌𝜎−1)𝜌𝜎

2𝜙
]

𝑠1−𝜙𝐼𝑟
2

𝐼
+

𝜎2

2

𝑠1−𝜙

1−𝜙
𝐼𝑟𝑟 +

𝑠(𝜆2+2𝜌𝜎

2
(−𝜙𝑠−𝜙−1𝐼) = 0,            (35) 

which simplifies to 

𝐼𝑡 + [𝛼(𝛽 − 𝑟) +
(1−𝜙2)𝜌𝜎[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]

𝜆𝜙
+

(1−𝜙)2𝜆𝜌𝜎

𝜙
] 𝐼𝑟 + [(1 − 𝜙)𝑟 +

[(1−𝜙)(𝜇+𝑑)−(𝑟+𝜗+𝜃)]2

2𝜆2 +
(1−𝜙)3𝜆2

2𝜙
−

(1−𝜙)𝜙(𝜆2+2𝜌𝜎

2𝑠
] 𝐼 +

(1−𝜑)2(2𝜌𝜎−1)𝜌𝜎

2𝜙

𝐼𝑟
2

𝐼
+

𝜎2

2
+ 𝐼𝑟𝑟 = 0.        (36) 

Equation (36) is yet a second order partial differential equation, so we conjecture as in (22a)-(22). 

Therefore equation (34) becomes 

𝜋𝑑,𝜗,𝜃
∗ = 𝑤 [

[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]

𝜆2 +
1−𝜙

𝜙
+

(1−𝜙)𝜌𝜎

𝜆𝜙𝑟
],                                                (37) 
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the optimal investment in the risky asset.  

Substituting for the values of 𝐼𝑡 , 𝐼𝑟 , 𝑎𝑛𝑑 𝐼𝑟𝑟  in (36) using (22c) gives, 
𝑟1−𝜙

1−𝜙

𝑑𝐽

𝑑𝑡
+ [𝛼(𝛽 − 𝑟) +

(1−𝜙2)𝜌𝜎[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]

𝜆𝜙
+

(1−𝜙)2𝜆𝜌𝜎

𝜙
] 𝑟−𝜙𝐽 + [(1 − 𝜙)𝑟 +

[(1−𝜙)(𝜇+𝑑)−(𝑟+𝜗+𝜃)]2

2𝜆2 +
(1−𝜙)3𝜆2𝑠2

2𝜙
−

(1−𝜙)𝜙(𝜆2+2𝜌𝜎)

2𝑠
]

𝑟1−𝜙

1−𝜙
𝐽 +

(1−𝜑)2(2𝜌𝜎−1)𝜌𝜎

2𝜙

(1−𝜙)

𝑟1−𝜙 𝐽 +
𝜎2

2
(−𝜙)𝑟−𝜙−1𝐽 = 0.                                           (38) 

Dividing equation (38) by 
𝑟1−𝜙

1−𝜙
 yields 

𝑑𝐽

𝑑𝑡
+ [

(1−𝜙)

𝑟
[𝛼(𝛽 − 𝑟) +

(1−𝜙2)𝜌𝜎[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]

𝜆𝜙
+

(1−𝜙)2𝜆𝜌𝜎

𝜙
+ (1 − 𝜙)𝑟 +

[(1−𝜙)(𝜇+𝑑)−(𝑟+𝜗+𝜃)]2

2𝜆2 +
(1−𝜙)3𝜆2𝑠2

2𝜙
−

(1−𝜙)𝜙(𝜆2+2𝜌𝜎)𝜙

2𝑠
+

(1−𝜙)2

𝑟2(1−𝜙)

(1−𝜑)2(2𝜌𝜎−1)𝜌𝜎

2𝜙
−

𝜙𝜎2

2

(1−𝜙)

𝑟2 ] 𝐽 = 0.                                         (39) 

Equation (39) becomes 

 
𝑑𝐽

𝑑𝑡
+ 𝑘(𝑡)𝐽 = 0,                                                  (40a) 

where 

𝑘(𝑡) = [
(1−𝜙)

𝑟
[𝛼(𝛽 − 𝑟) +

(1−𝜙2)𝜌𝜎[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]

𝜆𝜙
+

(1−𝜙)2𝜆𝜌𝜎

𝜙
+ (1 − 𝜙)𝑟 +

[(1−𝜙)(𝜇+𝑑)−(𝑟+𝜗+𝜃)]2

2𝜆2 +
(1−𝜙)3𝜆2𝑠2

2𝜙
−

(1−𝜙)𝜙(𝜆2+2𝜌𝜎)𝜙

2𝑠
+

(1−𝜙)2

𝑟2(1−𝜙)

(1−𝜑)2(2𝜌𝜎−1)𝜌𝜎

2𝜙
−

𝜙𝜎2(1−𝜙)

𝑟2 ].                   (40b) 

Solving (40a) yields 

 𝐽(𝑡) =
(1−𝜙)2

(𝑟𝑠)1−𝜙  𝑒𝑥𝑝 [∫ 𝑘(𝑢)𝑑𝑢
𝑇

𝑡
].                                          (41) 

Therefore the optimal value function to the investor`s problem when the Brownian motions correlate is given by 

𝐺∗(𝑡, 𝑟, 𝑠, 𝑤) =
𝑤1−𝜙

1−𝜙
𝑒𝑥𝑝 [∫ 𝑘(𝑢)𝑑𝑢

𝑇

𝑡
]             (42) 

3.3. Comparison: 

The optimal investment in the risky asset when the Brownian motions do not correlate is given by (20) and when the 

Brownian motions correlate by (37), we have 

𝜋𝑑,𝜗,𝜃
∗𝑐 = [

[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]

𝜆2 +
1−𝜙

𝜙
+

(1−𝜙)𝜌𝜎

𝜆𝜙𝑟
] 𝑤     

= [
[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]

𝜆2 +
1−𝜙

𝜙
] 𝑤 +

1−𝜙𝜌𝜎

𝜆𝜙𝑟
𝑤    

𝜋𝑑,𝜗,𝜃
∗𝑐 = 𝜋𝑑,𝜗,𝜃

∗𝑤𝑐 +
(1−𝜙)𝜌𝜎

𝜆𝜙𝑟
𝑤.                                                         (43) 

Notice from equation (43) that the optimal investment on the risky asset when the Brownian motions correlate is greater than  

or  less than optimal investment on the risky asset when the Brownian motions do not correlate. 

If  𝜙 is greater than one the optimal investment is the risky asset when Brownian motions correlate is less than that when the 

Brownian motions do not correlate  by a fraction of  the  ratio of  total amount for investment and  the rate of  return of  the  

riskless asset. 

If  𝜙 is less than one the optimal investment on the risky asset when the Brownian motions correlate is more than  the optimal 

investment on the risky asset when  Brownian motions do not correlate. 

If 𝜙 = 1, though not allowed, the optimal investment under both conditions are equal.  

3.4. Findings 

Equation (20) shows that in the case where the Brownian motions do not correlate if the sum of the drift parameter and 

dividend rate equals the sum of the tax rate, transaction cost rate and the rate of the return of the risk-free asset, then, the 

optimal investment strategy on the risky asset becomes totally dependent on the relative risk aversion coefficient ′𝜙′ and the 

total amount available for investment. Also, the investment strategy is horizon dependent as 𝑤, and 𝑟 are horizon dependent. 

Equation (37) 

𝜋𝑑,𝜗,𝜃
∗ = 𝑤 [

[(𝜇+𝑑)−(𝑟+𝜗+𝜃)]

𝜆2 +
1−𝜙

𝜙
(1 +

𝜌𝜎

𝜆𝑟
)],                                             

the optimal investment in the risky asset, in the case where the Brownie motions correlate if the sum of the drift parameter 

and dividend rate equals the sum of the tax rate, transaction cost rate and the rate of the return of the risk-free asset, then, the 

optimal investment strategy on the risky asset becomes totally dependent on the relative risk aversion coefficient ′𝜙′ the total 

amount available for investment  ′𝑤′ , the correlation coefficient of the Brownian motions, ′𝜎′ the constant volatility of the 

interest rate, ′𝜆′ the diffusion parameter of the risky asset and rate of return of the risk free asset. The investment strategy is 

horizon dependent as 𝑤, and 𝑟 are horizon dependent also. 

 

4. Conclusions 

In this work we investigated an investor’s investment problem. It is assumed that the rate of return of the risk free asset is 

driven by Ornstein-Uhlenbeck Stochastic interest rate of return model.  
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The application of dynamic programming principles and the conjectures on elimination of variables obtained close-form solutions to 

the optimal investment strategies for the two cases considered ( where the investor has a power utility preference and taxes, 

transaction costs and dividend payments are involve). 

It was found that in the case where the Brownian motions do not correlate; if the sum of the drift parameter and dividend rate equal 

the sum of the tax rate, transaction cost rate and the rate of the return of the risk-free asset, then, the optimal investment strategy on 

the risky asset becomes totally dependent on the relative risk aversion coefficient ′𝜙′ and the total amount available for investment. 

While in the case where the Brownian motions correlate ; if the sum of the drift parameter and dividend rate equal the sum of the 

tax rate, transaction cost rate and the rate of the return of the risk-free asset, then, the optimal investment strategy on the risky asset 

becomes totally dependent on the relative risk aversion coefficient ′𝜙′ the total amount available for investment  ′𝑤′ , the correlation 

coefficient of the Brownian motions, ′𝜎′ the constant volatility of the interest rate, ′𝜆′ the diffusion parameter of the risky asset and 

rate of return of the risk free asset. In both cases the investment strategy is horizon dependent as 𝑤, and 𝑟 are horizon dependent. 
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