On The Stability And Contraction Of Fixed Point Of The Solution Of Black-Scholes Equation In Hilbert Space

${ }^{1}$ B. O. Osu , ${ }^{2}$ U. E. Obasi and ${ }^{3}$ D. Francis
1,2,3Department of Mathematics, Michael Okpara University of Agriculture, Umudike.

Abstract

In this paper, we investigated the stability and contraction of fixed point of the solution of Black-Scholes equation in Hilbert space using the Lyapunov approach and method of integral equation. The Black-Scholes equation was reduced to Volterra integral equation of second kind and finally concluded that the solution is unique.

$1.0 \quad$ Introduction

Black-Scholes equation are frequently encountered in many fields of endeavor such as finance, financial engineering, option pricing theory, financial mathematics, economic, market analysis and stock exchange [1-5]. In general, the conceptual idea of the Black-Scholes equation of the form;
$\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} s^{2} \frac{\partial^{2} V}{\partial s^{2}}=-r s \frac{\partial V}{\partial s}+r V, \quad(s, t) \in \mathbb{R}_{+} \times(0, T)$,
(where σ^{2} and r are constants), lies in the construction of a riskless portfolio taking positions in bonds (cash), option and the underlying stock [4] which may induce instability or poor performance of the price evolution of a European call. Therefore the stability problem for price option has attracted much attention during the past decades. In [6] Green function was used to study the Ulam-Hyers stability of Black-Scholes equation and concluded that the system is stable. See also [7-9].
Surveying in the literature, different methods aimed at solving Black-Scholes partial differential equation have appeared. The partial differential equations arising from the generalized option pricing model pose three challenges to the numerical approximation: the degeneracy of the equation, the coefficients being time and space-dependent and also unbounded in the space variables [10]. Also, many authors have worked on solution of Black-Scholes equation producing sound results [11-14], while little attention have been paid to contraction of fixed point of solution of BlackScholes equation. Motivation by the above literature, the purpose of this paper is to investigate the stability and contraction of fixed point of the solution of homogenous Black-Scholes equation of the form
$\frac{\partial V(s)}{\partial t}+\frac{1}{2} \sigma^{2} s^{2} \frac{\partial^{2} V(s)}{\partial s^{2}}+r s \frac{\partial V(s)}{\partial s}-r V(s)=0$,
where $V(s, t)$ is the price of an option, the independent variable s is the current option price of the stock, r is the annualized risk-free interest rate continuously compounded, t, the time in year generally use now $t=0$ at expiry $t=T$ and σ, volatility of an underlying asset. Equation (1.2) is of the parabolic form and can be considered as a diffusion equation. It provide quantitative information to continuously buy or sell assets to maintain a portfolio that grows at the riskless rate and thus provide insurance against downturns in the value of assets held long or protect against a rise in the value of assets held short. On the other hand, a quoted option price may be inconsistent with the value of the option as predicted by the Black-Scholes equation. In this case, it is possible to construct a portfolio which is guaranteed to outperform a riskless investment of the same magnitude. This possibility is called arbitrage.
In order to guarantee that the Black-Scholes equation has a unique solution one needs a boundary condition. With this condition imposed, the Black-Scholes equation is converted into an inhomogeneous equation of the form;
$u(x)=f(x)+\lambda \int_{a}^{x} K(x, t) u(t) d t$,
where $u(x)$ is the unknown function, $K(x, t)$ is called the kernel or nucleus of the integral equation and λ is not an eigenvalue of the homogenous equation of the form;

Correspondence Author: Osu B.O., Email: megaobrait@hotmail.com, Tel: +2348032628251
Transactions of the Nigerian Association of Mathematical Physics Volume 4, (July, 2017), 205-210
$u(x)=\lambda \int_{a}^{x} K(x, t) u(t) d t$,
which has at least one non-trivial solution corresponding to a particular value of λ. In this case, λ is an eigenvalue and the solution is an eigenfunction. If λ is an eigenvalue, the inhomogeneous equation has a solution if and only if
$\int_{a}^{x} u(x) f(x) d x=0$
for every function $f(x)$ [15].

2.0 Preliminaries

Definition 2.1: (Black-Scholes model) A mathematical formula design to price an option as a function of certain variables generally stock price, striking price, volatility, time to expiration dividends to be paid and the current risk-free interest rate for pricing European option on stocks [5].
Definition 2.2: (Stochastic differential equation) Let (Ω, F, P) be a probability space and let $X_{t}, t \in \mathbb{R}_{+}$be stochastic process $X: \Omega \times \mathbb{R}_{t} \rightarrow \mathbb{R}$. Moreover, assume that $a\left(X_{t}, t\right): \Omega \times \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ and $b\left(X_{t}, t\right): \Omega \times \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ are stochastically integrable functions of $t \in \mathbb{R}$. Then the equation
$\mathrm{d} X_{t}=a\left(X_{t}, t\right) d t+b\left(X_{t}, t\right) d W_{t}$,
is called stochastic differential equation.
Note that equation (2.1) has to be understood as a symbolic notation of the stochastic integral equation
$X_{t}=X_{0}+\int_{0}^{t} a\left(X_{s}, s\right) d s+\int_{0}^{t} b\left(X_{s}, s\right) d W_{s}$.
The function $a\left(X_{t}, t\right)$ and $b\left(X_{t}, t\right)$ are referred to as the drift term and the diffusion term respectively.
Theorem 2.3 [15]: Let $f(x) \in L_{2}[0,1]$ and suppose that $K(x, y)$ is continuous for $x, y \in[0,1]$ and therefore uniformly bounded say $|K(x, y)| \leq M$. Then the equation
$\phi(x)-\lambda \int_{0}^{x} K(x, y) \emptyset(y) d y=f(x)$.
has a unique solution $\phi(x)$ for all λ and $f(x)$ in $L_{2}[0,1]$.
Definition 2.4 [16]: Let (X, ρ) be a metric space and let f be a map. A point $x^{*} \in X$ is called a fixed point of f if $f\left(x^{*}\right)=x^{*} . f$ is called a strict contraction if there exist a constant $k \in[0,1)$ such that $\rho(f(x), f(y)) \leq k \rho(x, y)$ for all $x, y \in X$.
Definition 2.5: A Hilbert space is a vector space H with an inner product $\langle f, g\rangle$ such that the norm defined by $|f|=$ $\sqrt{\langle f, f\rangle}$ turns H into a complete metric space. If the metric defined by the norm is not complete then H is instead known as an inner product space.
Theorem 2.6 [17]: Let f and F be real-valued function defined on a closed interval $[a, b]$ such that F is continuous on all $[a, b]$ and derivative of F is f for almost all points in $[a, b]$. That is f and F are functions such that for all $x \in(a, b)$ except for perhaps a set of measure zero in the interval. If f is Riemann integrable on $[a, b]$ then
$\int_{a}^{b} f(x) d x=F(b)-F(a)$.
Definition 2.7: (Stability) The equilibrium point $x=0$ is stable if for each $\epsilon>0$ there exist a $\delta>0$ such that $\|x(0)\|<\delta$ implies that $\|x(t)\|<\epsilon$ for $t \leq 0$.
Theorem 2.8: Let the origin $x=0 \in D \subset \mathbb{R}^{n}$ be an equilibrium point for $\dot{x}=f(x)$. Let $V: D \rightarrow \mathbb{R}$ be a continuously differentiable function such that
(i) $V(0)=0$
(ii) $V(x)>0, \forall x \in D \backslash\{0\}$
(iii) $\dot{V}(x) \leq 0 \forall x \in D$

Then $x=0$ is stable. Moreover if $\dot{V}(x)<0, \forall x \in D \backslash\{0\}$ then $x=0$ is asymptotically stable.

$3.0 \quad$ Main Result

We consider the homogenous Black-Scholes equation of the form in equation (1.2) with boundary conditions $V(0, t)=$ c_{1} and $V_{s}(z, t)=c_{2}$, which can be written as
$\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} s^{2} \frac{\partial^{2} V}{\partial s^{2}}+r s \frac{\partial V}{\partial s}=r V$.
Converting equation (3.1) to integral equation by changing the dummy variable sto y and integrating from 0 to z gives
$\int_{0}^{z}\left[\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} s^{2} \frac{\partial^{2} V}{\partial s^{2}}+r s \frac{\partial V}{\partial s}\right] d y=\int_{0}^{z} r V d y$.
Integrating term by term gives
$\int_{0}^{z} V_{t}(y, t) d y=V(z, t)-c_{1}$,
$\frac{1}{2} \sigma^{2} \int_{0}^{z} s^{2} \frac{\partial^{2} V}{\partial s^{2}} d y=\frac{\sigma^{2} z^{2} c_{2}}{2}-\sigma^{2} z V(z, t)+\sigma^{2} \int_{0}^{z} V(s, t) d s$,
and
$\int_{0}^{z} r y V_{s}(y, t) d y=r z V(z, t)+\int_{0}^{z} r V(s . t) d s$.
Substituting for equations (3.3), (3.4) and (3.5) in equation (3.2) yield
$V(z, t)-\sigma^{2} z V(z, t)+r z V(z, t)-c_{1}+\frac{\sigma^{2} z^{2} c_{2}}{2}+\sigma^{2} \int_{0}^{z} V(s, t) d s+\int_{0}^{z} r V(s . t) d s=\int_{0}^{z} r V d y$.
Simplification of the above equation we have
$V(z, t) k_{1}-c_{1}+\frac{\sigma^{2} z^{2} c_{2}}{2}+\left(\sigma^{2}+r\right) \int_{0}^{z} V(s, t) d s=\int_{0}^{z} r V d y$,
where $k_{1}=1-\sigma^{2} z+r z$.
Integrating equation (3.6) from 0 to x we have
$\int_{0}^{x} V(z, t) k_{1} d t-\int_{0}^{x} c_{1} d t+\int_{0}^{x} \frac{\sigma^{2} z^{2} c_{2}}{2} d t+\left(\sigma^{2}+r\right) \int_{0}^{x} \int_{0}^{z} V(s, t) d s d t=\int_{0}^{x} \int_{0}^{z} r V d s d t$
$\int_{0}^{x} V(z, t) d t=\frac{c_{1} x}{k_{1}}-\frac{\sigma^{2} z^{2} c_{2} x}{2 k_{1}}+\frac{\sigma^{2}}{k_{1}} \int_{0}^{x}(x-z) V(s, t) d s$
$=f(z)+\alpha \int_{0}^{x}(x-z) V(s, t) d s$,
where $f(z)=\frac{c_{1} x}{k_{1}}-\frac{\sigma^{2} z^{2} c_{2} x}{2 k_{1}}$ and $\alpha=\frac{\sigma^{2}}{k_{1}}$.
Applying theorem (2.6) to (3.7) we have
$V(z, t)-c_{1}=f(z)+\alpha \int_{0}^{x}(x-z) V(s, t) d s$,
or
$V(z, t)=F(z)+\alpha \int_{0}^{x} K(x, z) V(s, t) d s$,
better still
$V(z, t)-\alpha \int_{0}^{x} K(x, z) V(s, t) d s=F(z)$
which is the Volterra equation of the first kind.
Theorem 4.1: Let $f(x) \in L_{2}[0,1]$ and suppose that $K(x, y)$ is such that
$\int_{0}^{1} \int_{0}^{1}|K(x, y)|^{2} d x d y<\infty$,
then
$V(x)=f(x)+\lambda \int_{0}^{x} K(x, y) V(y) d y$,
has a unique solution for all $\lambda \in L_{2}[0,1]$.
Proof: Suppose that
$g_{1}^{2}(x)=\int_{0}^{x}|K(x, y)|^{2} d y$ and $g_{2}^{2}(y)=\int_{y}^{1}|K(x, y)|^{2} d x$
then
$g_{1}(x)=\left(\int_{0}^{x}|K(x, y)|^{2} d y\right)^{\frac{1}{2}} \quad$ and $\quad g_{2}(y)=\left(\int_{y}^{1}|K(x, y)|^{2} d x\right)^{\frac{1}{2}}$.
We see that $g_{1}(x)$ and $g_{2}(x)$ are integrable. Let P be a number such that
$\int_{0}^{1} g_{1}^{2}(x) d x \leq P$ and $\int_{0}^{1} g_{2}^{2}(y) d y \leq P$.
Furthermore, we defined the function $r(x)$ by $r(x)=\int_{0}^{x} g_{1}^{2}(y) d y$. So that $r(1) \leq P$.
Now, consider the series representation of integral equation
$V(x)=f(x)+\lambda K f+\ldots+\lambda^{n-1} K^{n-1} f+\lambda^{n} K^{n} V$
where
$K^{n} V=\int_{0}^{x} K_{n}(x, y) V(y) d y$.
To estimate $\left\|K_{n}\right\|$, we have
$K_{2}(x, y)=\int_{y}^{x} K(x, z) K(z, y) d z$.
By Cauchy-Schwartz inequality
$\left|K_{2}(x, y)\right|^{2} \leq \int_{y}^{x}|K(x, z)|^{2} d z \int_{y}^{x}|K(z, y)|^{2} d z$
$\leq g_{1}^{2}(x) g_{2}^{2}(y)$.
Similarly,
$K_{3}(x, y)=\int_{y}^{x} K(x, z) K_{2}(z, y) d y$.

So that
$\left|K_{3}(x, y)\right|^{2} \leq \int_{y}^{x}|K(x, z)|^{2} d z \int_{y}^{x}|K(z, y)|^{2} d z$
$\leq g_{1}^{2}(x) g_{2}^{2}(y) \int_{y}^{x} g_{1}^{2}(z) d z$
$=g_{1}^{2}(x) g_{2}^{2}(y)\left[\int_{0}^{x} g_{1}^{2}(z) d z-\int_{0}^{y} g_{1}^{2}(z) d z\right]$
$=g_{1}^{2}(x) g_{2}^{2}(y)[r(x)-r(y)]$.
Using induction approach we have
$\left|K_{n}(x, y)\right|^{2} \leq g_{1}^{2}(x) g_{2}^{2}(y) \frac{[r(x)-r(y)]^{n-2}}{(n-2)!}, n \geq 2$.
Equation (3.9) can be rewritten in the form
$V=T^{n} V$,
where
$T V=f+\lambda K V$
and we can show that for large n, T^{n} is a contraction operator. That is

$$
\begin{align*}
& \left|T^{n} V_{1}-T^{n} V_{1}\right|^{2}=\left|\int_{0}^{x} K_{n}(x, y)\left[V_{1}(y)-V_{2}(y)\right] d y\right|^{2} \tag{3.12}\\
& \leq \int_{0}^{x}\left|K_{n}(x, y)\left[V_{1}(y)-V_{2}(y)\right]\right|^{2} d y \\
& \leq \int_{0}^{x} \frac{g_{1}^{2}(x) g_{2}^{2}(y)[r(x)-r(y)]^{n-2} d y}{(n-2)!} \cdot \int_{0}^{x}\left|V_{1}(y)-V_{2}(y)\right| d y \\
& \leq \frac{g_{1}^{2}(x)[r(x)]^{n-2}}{(n-2)!} \int_{0}^{1} g_{2}^{2}(y) d y\left\|V_{1}-V_{2}\right\|^{2} .
\end{align*}
$$

Hence
$\left\|T^{n} V_{1}-T^{n} V_{2}\right\|^{2} \leq \frac{[r(1)]^{n-1} P}{(n-1)!}\left\|V_{1}-V_{2}\right\|^{2} \leq \frac{P^{n}}{(n-1)!}\left\|V_{1}-V_{2}\right\|^{2}$.
Therefore,
$\left\|T^{n} V_{1}-T^{n} V_{2}\right\| \leq \sqrt{\frac{P^{n}}{(n-1)!}}\left\|V_{1}-V_{2}\right\|$,
so that T is a contraction operator if $\frac{P^{n}}{(n-1)!}<1$. For large n, the Volterra equation and equation (3.10) will have a unique solution in $L_{2}[0,1]$.

4.0 Stability Analysis of Black-Scholes Equation

The equivalent system of equation (1.2) is
$\dot{v}_{1}=v_{2}$,
$\dot{v}_{2}=\frac{2 r v_{1}}{\sigma^{2} s^{2}}-\frac{2 v_{2}(\alpha s+1)}{\sigma^{2} s^{2}}$.
The energy function for the above system is $H=$ kinetic energy + potential energy
$H=\frac{1}{2} \dot{v}_{1}^{2}+\int f\left(v_{1}\right) d v_{1}$
where
$f\left(v_{1}\right)=\frac{2 r v_{1}}{\sigma^{2} s^{2}}$
$v\left(v_{1} v_{2}\right)=\frac{1}{2} v_{2}{ }^{2}+\frac{v_{1}{ }^{2} r}{\sigma^{2} s^{2}}$.
To verify for stability by Lyapunov approach we test
$v\left(v_{1} v_{2}\right)>0, v\left(v_{1} v_{2}\right)=0 \operatorname{as} v_{1}=v_{2}=0$ and $\dot{v}\left(v_{1} v_{2}\right)<0$.
But
$v\left(v_{1} v_{2}\right)>0 \Rightarrow \frac{1}{2} v_{2}^{2}+\frac{v_{1}^{2} r}{\sigma^{2} s^{2}}>0$.
$v(0,0)=0$
$\dot{v}\left(v_{1} v_{2}\right)=\frac{\partial v}{\partial v_{1}} \cdot \frac{d v_{1}}{d t}+\frac{\partial v}{\partial v_{2}} \cdot \frac{d v_{2}}{d t}$
$=\frac{2 v_{1} r}{\sigma^{2} s^{2}} \cdot v_{2}+v_{2} \cdot\left(\frac{2 r v_{1}}{\sigma^{2} s^{2}}-\frac{2 v_{2}(\alpha s+1)}{\sigma^{2} s^{2}}\right)$
$=\frac{2 v_{1} v_{2} r}{\sigma^{2} s^{2}}+\frac{2 v_{1} v_{2} r}{\sigma^{2} s^{2}}-\frac{2 x_{2}^{2}(\alpha s+1)}{\sigma^{2} s^{2}}$
$=\frac{-2 x_{2}\left(-2 r x_{1}+x_{2}(\alpha s+1)\right)}{\sigma^{2} s^{2}}<0$.
Therefore $\dot{v}\left(v_{1} v_{2}\right)<0$. Hence the equilibrium point is stable.

Conclusion

From our result, stability and contraction of a solution of equation (1.2) in Hilbert space have been shown. Further investigation shows that the equilibrium point is stable while the conversion of Black-Scholes equation into Volterra equation of second kind yields equation (1.2) to a unique solution.

References

[1] B. Martin and A. Rennis (1996), Financial calculus: An introduction to derivative pricing, Cambridge England. Cambridge University Press.
[2] Z. Brzezniak and T. Zastawinak (1998), Basic stochastic processes, Springer-Verlag, Heidelbery.
[3] F. Black and M. Scholes (1973), The pricing of options and corporate liabilities. Journal of Political Economy. 81, 637-659.
[4] A.S. Shinde and K.C. Takale (2012), Study of Black-Scholes model and its application. International Conference on Modelling Optimization and Computing. Procedia Engineering 38: 270-279.
[5] F. Black and M.S. Scholes (1973), The pricing of options and corporate liabilities. Journal of Political Economics 81: 637-654.
[6] N. Lungu and S.A. Ciplea (2016), Ulam-Hyers stability of Black-Schole equation. Study University of BabesBolyai Mathematics 61(4): 467-472.
[7] K. Volders (2012), Stability and convergence analysis of discretization of the Black-Scholes equation with linear boundary condition. Cornel University Library.
[8] D.H. Hyers (1941), On the stability of the linear functional equation. Proceeding of Mathematics Academy of Science USA 27: 222-242.
[9] I.A. Rus (2009), Remarks on ulam-stability of the operational equations, Fixed point theory, 10(2): 305-320.
[10] B.O. Osu and O.U. Solomon (2016), A stochastic algorithm and multiple scale for solution to partial differential equation with financial application. Transaction of Nigerian Association of Mathematical Physics, 2: 313-324.
[11] J.M. Steele (2001), Stochastic calculus and financial application. Springer-Verlag, 274(2): 74.
[12] P. Wilmott, S. Howison and J. Dewynne (1995), The mathematics of financial derivatives. Cambridge University Press.
[13] S.R. Dunbar (2003), Stochastic processes and advanced mathematical finance. Solution of the Black-Scholes equation, Department of Mathematics, University of Nebraska Lincoln.
[14] B. Yermukanova, L. Zhexembay and N. Karjanto (2016), On a method of solving the Black-Scholes equation. Republic of Korea.
[15] H. Hochstadt (1973), Integral equation. A Wiley-Interscience Publication, John Wiley and Sons, New York.

On The Stability And... Osu, Obasi and Francis Trans. of NAMP
[16] C.E. Chidume (2006), Applicable functional analysis. The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.
[17] E.W. Weisstein (2017), Frommath world-A Wolfram Web Resource. http://mathworld.wolfram.com/HilbertSpace.

