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Abstract 

 
In this paper, we investigated the stability and contraction of fixed point of the 

solution of Black-Scholes equation in Hilbert space using the Lyapunov 

approach and method of integral equation. The Black-Scholes equation was 

reduced to Volterra integral equation of second kind and finally concluded 

that the solution is unique. 

 
 

1.0 Introduction 

Black-Scholes equation are frequently encountered in many fields of endeavor such as finance, financial engineering, 

option pricing theory, financial mathematics, economic, market analysis and stock exchange [1-5]. In general, the 

conceptual idea of the Black-Scholes equation of the form; 
𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑠2 𝜕2𝑉

𝜕𝑠2 =  −𝑟𝑠
𝜕𝑉

𝜕𝑠
+ 𝑟𝑉,    (𝑠, 𝑡) ∈ ℝ+ × (0, 𝑇),                          (1.1) 

(where 𝜎2 𝑎𝑛𝑑 𝑟 are constants), lies in the construction of a riskless portfolio taking positions in bonds (cash), option 

and the underlying stock [4] which may induce instability or poor performance of the price evolution of a European 

call. Therefore the stability problem for price option has attracted much attention during the past decades. In [6] Green 

function was used to study the Ulam-Hyers stability of Black-Scholes equation and concluded that the system is stable. 

See also [7-9]. 

Surveying in the literature, different methods aimed at solving Black-Scholes partial differential equation have 

appeared. The partial differential equations arising from the generalized option pricing model pose three challenges to 

the numerical approximation: the degeneracy of the equation, the coefficients being time and space-dependent and also 

unbounded in the space variables [10]. Also, many authors have worked on solution of Black-Scholes equation 

producing sound results [11-14], while little attention have been paid to contraction of fixed point of solution of Black-

Scholes equation. Motivation by the above literature, the purpose of this paper is to investigate the stability and 

contraction of fixed point of the solution of homogenous Black-Scholes equation of the form 
𝜕𝑉(𝑠)

𝜕𝑡
+

1

2
𝜎2𝑠2 𝜕2𝑉(𝑠)

𝜕𝑠2 + 𝑟𝑠
𝜕𝑉(𝑠)

𝜕𝑠
− 𝑟𝑉(𝑠) = 0,                                (1.2) 

where 𝑉(𝑠, 𝑡) is the price of an option, the independent variable 𝑠 is the current option price of the stock, 𝑟 is the 

annualized risk-free interest rate continuously compounded, 𝑡, the time in year generally use now 𝑡 = 0 at expiry 𝑡 = 𝑇 

and 𝜎, volatility of an underlying asset. Equation (1.2) is of the parabolic form and can be considered as a diffusion 

equation. It provide quantitative information to continuously buy or sell assets to maintain a portfolio that grows at the 

riskless rate and thus provide insurance against downturns in the value of assets held long or protect against a rise in the 

value of assets held short. On the other hand, a quoted option price may be inconsistent with the value of the option as 

predicted by the Black-Scholes equation. In this case, it is possible to construct a portfolio which is guaranteed to 

outperform a riskless investment of the same magnitude. This possibility is called arbitrage. 

In order to guarantee that the Black-Scholes equation has a unique solution one needs a boundary condition. With this 

condition imposed, the Black-Scholes equation is converted into an inhomogeneous equation of the form; 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
,                                              (1.3) 

where 𝑢(𝑥) is the unknown function, 𝐾(𝑥, 𝑡) is called the kernel or nucleus of the integral equation and 𝜆 is not an 

eigenvalue of the homogenous equation of the form; 
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𝑢(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
,                                                           (1.4) 

which has at least one non-trivial solution corresponding to a particular value of 𝜆. In this case, 𝜆 is an eigenvalue and 

the solution is an eigenfunction. If 𝜆 is an eigenvalue, the inhomogeneous equation has a solution if and only if  

∫ 𝑢(𝑥)𝑓(𝑥)𝑑𝑥 = 0
𝑥

𝑎
                                                                (1.5) 

for every function 𝑓(𝑥) [15].  

 

2.0 Preliminaries 

Definition 2.1: (Black-Scholes model) A  mathematical formula design to price an option as a function of certain 

variables generally stock price, striking price, volatility, time to expiration dividends to be paid and the current risk-free 

interest rate for pricing European option on stocks [5]. 

Definition 2.2: (Stochastic differential equation) Let (Ω, 𝐹, 𝑃) be a probability space and let 𝑋𝑡 , 𝑡 ∈ ℝ+ be stochastic 

process 𝑋: Ω × ℝ𝑡 → ℝ. Moreover, assume that 𝑎(𝑋𝑡, 𝑡): Ω × ℝ × ℝ+ → ℝ and 𝑏(𝑋𝑡, 𝑡): Ω × ℝ × ℝ+ → ℝ are 

stochastically integrable functions of 𝑡 ∈ ℝ. Then the equation 

d𝑋𝑡 = 𝑎(𝑋𝑡, 𝑡)𝑑𝑡 + 𝑏(𝑋𝑡, 𝑡)𝑑𝑊𝑡,                                           (2.1) 

is called stochastic differential equation. 

Note that equation (2.1) has to be understood as a symbolic notation of the stochastic integral equation 

𝑋𝑡 = 𝑋0 + ∫ 𝑎(𝑋𝑠, 𝑠)𝑑𝑠
𝑡

0
+ ∫ 𝑏(𝑋𝑠, 𝑠)𝑑𝑊𝑠

𝑡

0
.                                (2.2) 

The function 𝑎(𝑋𝑡, 𝑡)and 𝑏(𝑋𝑡, 𝑡) 𝑎𝑟𝑒 referred to as the drift term and the diffusion term respectively. 

Theorem 2.3 [15]: Let 𝑓(𝑥) ∈ 𝐿2[0,1] and suppose that 𝐾(𝑥, 𝑦) is continuous for 𝑥, 𝑦 ∈ [0,1] and therefore uniformly 

bounded say |𝐾(𝑥, 𝑦)| ≤ 𝑀. Then the equation 

∅(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑦)∅(𝑦)
𝑥

0
𝑑𝑦 = 𝑓(𝑥).                                      (2.3) 

has a unique solution 𝜙(𝑥) for all 𝜆 and𝑓(𝑥) in 𝐿2[0,1]. 
Definition 2.4 [16]:  Let (𝑋, 𝜌) be a metric space and let 𝑓 be a map. A point 𝑥∗ ∈ 𝑋 is called a fixed point of 𝑓 if 

𝑓(𝑥∗) = 𝑥∗. 𝑓 is called a strict contraction if there exist a constant 𝑘 ∈ [0,1) such that 𝜌(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑘𝜌(𝑥, 𝑦) for all 

𝑥, 𝑦 ∈ 𝑋. 

Definition 2.5: A Hilbert space is a vector space 𝐻 with an inner product 〈𝑓, 𝑔〉 such that the norm defined by |𝑓| =

√〈𝑓, 𝑓〉 turns 𝐻 into a complete metric space. If the metric defined by the norm is not complete then 𝐻 is instead 

known as an inner product space. 

Theorem 2.6 [17]: Let 𝑓 and 𝐹 be real-valued function defined on a closed interval [𝑎, 𝑏] such that 𝐹 is continuous on 

all [𝑎, 𝑏] and derivative of 𝐹 is 𝑓 for almost all points in [𝑎, 𝑏]. That is 𝑓 and 𝐹 are functions such that for all 𝑥 ∈ (𝑎, 𝑏) 

except for perhaps a set of measure zero in the interval. If 𝑓 is Riemann integrable on [𝑎, 𝑏] then  

∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎

. 

Definition 2.7: (Stability) The equilibrium point 𝑥 = 0 is stable if for each 𝜖 > 0 there exist a 𝛿 > 0 such that 
‖𝑥(0)‖ < 𝛿 implies that ‖𝑥(𝑡)‖ < 𝜖for 𝑡 ≤ 0. 

Theorem 2.8: Let the origin 𝑥 = 0 ∈ 𝐷 ⊂ ℝ𝑛 be an equilibrium point for 𝑥̇ = 𝑓(𝑥). Let 𝑉: 𝐷 → ℝ be a continuously 

differentiable function such that 

(i) 𝑉(0) = 0 

(ii) 𝑉(𝑥) > 0, ∀ 𝑥 ∈ 𝐷\{0} 

(iii) 𝑉̇(𝑥) ≤ 0∀ 𝑥 ∈ 𝐷 

Then 𝑥 = 0 is stable. Moreover if 𝑉̇(𝑥) < 0, ∀ 𝑥 ∈ 𝐷\{0} then 𝑥 = 0 is asymptotically stable. 

 

3.0 Main Result 

We consider the homogenous Black-Scholes equation of the form in equation (1.2) with boundary conditions 𝑉(0, 𝑡) =
𝑐1 and 𝑉𝑠(𝑧, 𝑡) = 𝑐2, which can be written as 
𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑠2 𝜕2𝑉

𝜕𝑠2 + 𝑟𝑠
𝜕𝑉

𝜕𝑠
= 𝑟𝑉.                                       (3.1) 

Converting equation (3.1) to integral equation by changing the dummy variable 𝑠 𝑡𝑜 𝑦 and integrating from 0 𝑡𝑜 𝑧 

gives 

∫ [
𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑠2 𝜕2𝑉

𝜕𝑠2 + 𝑟𝑠
𝜕𝑉

𝜕𝑠
] 𝑑𝑦 = ∫ 𝑟𝑉𝑑𝑦

𝑧

0

𝑧

0
.                               (3.2) 

Integrating term by term gives 
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∫ 𝑉𝑡
𝑧

0
(𝑦, 𝑡)𝑑𝑦 = 𝑉(𝑧, 𝑡) − 𝑐1,                                               (3.3) 

1

2
𝜎2 ∫ 𝑠2𝑧

0

𝜕2𝑉

𝜕𝑠2 𝑑𝑦 =
𝜎2𝑧2𝑐2

2
− 𝜎2𝑧𝑉(𝑧, 𝑡) + 𝜎2 ∫ 𝑉(𝑠, 𝑡)𝑑𝑠

𝑧

0
,                   (3.4) 

and 

∫ 𝑟𝑦𝑉𝑠(𝑦, 𝑡)𝑑𝑦
𝑧

0
= 𝑟𝑧𝑉(𝑧, 𝑡) + ∫ 𝑟

𝑧

0
𝑉(𝑠. 𝑡)𝑑𝑠.                                 (3.5) 

Substituting for equations (3.3), (3.4) and (3.5) in equation (3.2) yield 

𝑉(𝑧, 𝑡) − 𝜎2𝑧𝑉(𝑧, 𝑡) +  𝑟𝑧𝑉(𝑧, 𝑡) − 𝑐1 +
𝜎2𝑧2𝑐2

2
+ 𝜎2 ∫ 𝑉(𝑠, 𝑡)𝑑𝑠

𝑧

0
+ ∫ 𝑟

𝑧

0
𝑉(𝑠. 𝑡)𝑑𝑠 = ∫ 𝑟𝑉𝑑𝑦

𝑧

0
.  

Simplification of the above equation we have 

𝑉(𝑧, 𝑡)𝑘1 − 𝑐1 +
𝜎2𝑧2𝑐2

2
+ (𝜎2 + 𝑟) ∫ 𝑉(𝑠, 𝑡)𝑑𝑠

𝑧

0
= ∫ 𝑟𝑉𝑑𝑦,

𝑧

0
                     (3.6) 

where 𝑘1 = 1 − 𝜎2𝑧 + 𝑟𝑧. 

Integrating equation (3.6) from 0 to 𝑥we have 

∫ 𝑉(𝑧, 𝑡)𝑘1𝑑𝑡 − ∫ 𝑐1
𝑥

0

𝑥

0
𝑑𝑡 + ∫

𝜎2𝑧2𝑐2

2
𝑑𝑡 +

𝑥

0
(𝜎2 + 𝑟) ∫ ∫ 𝑉(𝑠, 𝑡)𝑑𝑠𝑑𝑡 = ∫ ∫ 𝑟𝑉𝑑𝑠𝑑𝑡

𝑧

0

𝑥

0

𝑧

0

𝑥

0
  

∫ 𝑉(𝑧, 𝑡)𝑑𝑡 =
𝑐1𝑥

𝑘1

𝑥

0
−

𝜎2𝑧2𝑐2𝑥

2𝑘1
+

𝜎2

𝑘1
∫ (𝑥 − 𝑧)𝑉(𝑠, 𝑡)𝑑𝑠

𝑥

0
   

= 𝑓(𝑧) + 𝛼 ∫ (𝑥 − 𝑧)𝑉(𝑠, 𝑡)𝑑𝑠
𝑥

0
,                                             (3.7) 

where 𝑓(𝑧) =
𝑐1𝑥

𝑘1
−

𝜎2𝑧2𝑐2𝑥

2𝑘1
 and 𝛼 =

𝜎2

𝑘1
. 

Applying theorem (2.6) to (3.7) we have 

𝑉(𝑧, 𝑡) − 𝑐1 = 𝑓(𝑧) + 𝛼 ∫ (𝑥 − 𝑧)𝑉(𝑠, 𝑡)𝑑𝑠
𝑥

0
, 

or 

𝑉(𝑧, 𝑡) = 𝐹(𝑧) + 𝛼 ∫ 𝐾(𝑥, 𝑧)𝑉(𝑠, 𝑡)𝑑𝑠
𝑥

0
,  

better still 

𝑉(𝑧, 𝑡) −  𝛼 ∫ 𝐾(𝑥, 𝑧)𝑉(𝑠, 𝑡)𝑑𝑠
𝑥

0
= 𝐹(𝑧)                                         (3.8) 

which is  the Volterra equation of the first kind.  

Theorem 4.1: Let 𝑓(𝑥) ∈ 𝐿2[0,1] and suppose that 𝐾(𝑥, 𝑦) is such that 

∫ ∫ |𝐾(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦 < ∞,
1

0

1

0

 

then 

𝑉(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑦)𝑉(𝑦)𝑑𝑦
𝑥

0
,                              

has a unique solution for all 𝜆 ∈ 𝐿2[0,1]. 
Proof: Suppose that  

𝑔1
2(𝑥) = ∫ |𝐾(𝑥, 𝑦)|2𝑑𝑦

𝑥

0
and𝑔2

2(𝑦) = ∫ |𝐾(𝑥, 𝑦)|2𝑑𝑥
1

𝑦
 

then 

𝑔1(𝑥) = (∫ |𝐾(𝑥, 𝑦)|2𝑑𝑦
𝑥

0
)

1

2     and      𝑔2(𝑦) = (∫ |𝐾(𝑥, 𝑦)|2𝑑𝑥
1

𝑦
)

1

2
. 

We see that 𝑔1(𝑥) and 𝑔2(𝑥) are integrable. Let 𝑃 be a number such that 

∫ 𝑔1
21

0
(𝑥)𝑑𝑥 ≤ 𝑃 and  ∫ 𝑔2

21

0
(𝑦)𝑑𝑦 ≤ 𝑃. 

Furthermore, we defined the function 𝑟(𝑥) by 𝑟(𝑥) = ∫ 𝑔1
2𝑥

0
(𝑦)𝑑𝑦. So that 𝑟(1) ≤ 𝑃. 

Now, consider the series representation of integral equation 

𝑉(𝑥) = 𝑓(𝑥) + 𝜆𝐾𝑓+ .  .  . +𝜆𝑛−1𝐾𝑛−1𝑓 + 𝜆𝑛𝐾𝑛𝑉                 (3.9) 

where 

𝐾𝑛𝑉 = ∫ 𝐾𝑛(𝑥, 𝑦)𝑉(𝑦)𝑑𝑦
𝑥

0
. 

To estimate‖𝐾𝑛‖, we have 

𝐾2(𝑥, 𝑦) = ∫ 𝐾(𝑥, 𝑧)𝐾(𝑧, 𝑦)𝑑𝑧
𝑥

𝑦
.                                           (3.10) 

By Cauchy-Schwartz inequality 

|𝐾2(𝑥, 𝑦)|2 ≤ ∫ |𝐾(𝑥, 𝑧)|2𝑥

𝑦
𝑑𝑧 ∫ |𝐾(𝑧, 𝑦)|2𝑥

𝑦
𝑑𝑧  

≤ 𝑔1
2(𝑥)𝑔2

2(𝑦). 

Similarly, 

𝐾3(𝑥, 𝑦) = ∫ 𝐾(𝑥, 𝑧)𝐾2(𝑧, 𝑦)𝑑𝑦
𝑥

𝑦
. 
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So that 

|𝐾3(𝑥, 𝑦)|2 ≤ ∫ |𝐾(𝑥, 𝑧)|2𝑥

𝑦
𝑑𝑧 ∫ |𝐾(𝑧, 𝑦)|2𝑥

𝑦
𝑑𝑧  

≤ 𝑔1
2(𝑥)𝑔2

2(𝑦) ∫ 𝑔1
2(𝑧)𝑑𝑧

𝑥

𝑦
  

= 𝑔1
2(𝑥)𝑔2

2(𝑦)[∫ 𝑔1
2(𝑧)𝑑𝑧

𝑥

0
− ∫ 𝑔1

2(𝑧)𝑑𝑧
𝑦

0
]  

= 𝑔1
2(𝑥)𝑔2

2(𝑦)[𝑟(𝑥) − 𝑟(𝑦)].                                                (3.11) 

Using induction approach we have 

|𝐾𝑛(𝑥, 𝑦)|2 ≤ 𝑔1
2(𝑥)𝑔2

2(𝑦)
[𝑟(𝑥)−𝑟(𝑦)]𝑛−2

(𝑛−2)!
 , 𝑛 ≥ 2. 

Equation (3.9) can be rewritten in the form 

𝑉 = 𝑇𝑛𝑉, 

where 

𝑇𝑉 = 𝑓 + 𝜆𝐾𝑉 

and we can show that for large 𝑛, 𝑇𝑛 is a contraction operator. That is 

|𝑇𝑛𝑉1 − 𝑇𝑛𝑉1|2 = |∫ 𝐾𝑛(𝑥, 𝑦)[𝑉1(𝑦) − 𝑉2(𝑦)]𝑑𝑦
𝑥

0
|

2
                                   (3.12) 

 ≤ ∫ |𝐾𝑛(𝑥, 𝑦)[𝑉1(𝑦) − 𝑉2(𝑦)]|2𝑥

0
𝑑𝑦 

 ≤ ∫
𝑔1

2(𝑥)𝑔2
2(𝑦)[𝑟(𝑥)−𝑟(𝑦)]𝑛−2𝑑𝑦

(𝑛−2)!

𝑥

0
∙ ∫ |𝑉1(𝑦) − 𝑉2(𝑦)|𝑑𝑦

𝑥

𝑜
 

 ≤
𝑔1

2(𝑥)[𝑟(𝑥)]𝑛−2

(𝑛−2)!
∫ 𝑔2

2(𝑦)𝑑𝑦‖𝑉1 − 𝑉2‖21

0
. 

Hence 

‖𝑇𝑛𝑉1 − 𝑇𝑛𝑉2‖2 ≤
[𝑟(1)]𝑛−1𝑃

(𝑛−1)!
‖𝑉1 − 𝑉2‖2 ≤

𝑃𝑛

(𝑛−1)!
‖𝑉1 − 𝑉2‖2.                     (3.13) 

Therefore, 

‖𝑇𝑛𝑉1 − 𝑇𝑛𝑉2‖ ≤ √
𝑃𝑛

(𝑛−1)!
‖𝑉1 − 𝑉2‖, 

so that 𝑇 is a contraction operator if  
𝑃𝑛

(𝑛−1)!
< 1. For large 𝑛, the Volterra equation and equation (3.10) will have a 

unique solution in 𝐿2[0,1]. 
 

4.0 Stability Analysis of Black-Scholes Equation 

The equivalent system of equation (1.2) is  

𝑣̇1 = 𝑣2, 

𝑣̇2 =
2𝑟𝑣1

𝜎2𝑠2 −
2𝑣2(𝛼𝑠+1)

𝜎2𝑠2 . 

The energy function for the above system is 𝐻 = kinetic energy + potential energy 

𝐻 =
1

2
𝑣̇1

2 + ∫ 𝑓(𝑣1)𝑑𝑣1 

where 

𝑓(𝑣1) =
2𝑟𝑣1

𝜎2𝑠2
 

𝑣(𝑣1𝑣2) =
1

2
𝑣2

2 +
𝑣1

2𝑟

𝜎2𝑠2.                                            (4.1) 

To verify for stability by Lyapunov approach we test 

𝑣(𝑣1𝑣2) > 0, 𝑣(𝑣1𝑣2) = 0as𝑣1 = 𝑣2 = 0  and 𝑣̇(𝑣1𝑣2) < 0. 

But  

𝑣(𝑣1𝑣2) > 0 ⟹
1

2
𝑣2

2 +
𝑣1

2𝑟

𝜎2𝑠2 > 0. 

𝑣(0,0) = 0 

𝑣̇(𝑣1𝑣2) =
𝜕𝑣

𝜕𝑣1
 .

𝑑𝑣1

𝑑𝑡
+

𝜕𝑣

𝜕𝑣2
 .

𝑑𝑣2

𝑑𝑡
                      

=
2𝑣1𝑟

𝜎2𝑠2 . 𝑣2 + 𝑣2. (
2𝑟𝑣1

𝜎2𝑠2 −
2𝑣2(𝛼𝑠+1)

𝜎2𝑠2 )  

=
2𝑣1𝑣2𝑟

𝜎2𝑠2 +
2𝑣1𝑣2𝑟

𝜎2𝑠2 −
2𝑥2

2(𝛼𝑠+1)

𝜎2𝑠2   
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=
−2𝑥2(−2𝑟𝑥1+𝑥2(𝛼𝑠+1))

𝜎2𝑠2 < 0.              (4.2) 

Therefore 𝑣̇(𝑣1𝑣2) < 0. Hence the equilibrium point is stable. 

 

Conclusion 

From our result, stability and contraction of a solution of equation (1.2) in Hilbert space have been shown. Further 

investigation shows that the equilibrium point is stable while the conversion of Black-Scholes equation into Volterra 

equation of second kind yields equation (1.2) to a unique solution. 
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