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Abstract 
 

Symmetric super-implicit (SSI) formulas for the numerical solution of the special 

second-order ordinary differential equations (ODEs) have been a focus of 

attention in the last decade. The solution of the class of ODEs exhibit oscillatory 

behaviour. P-stability is necessary for the numerical integration of such ODEs. 

In this paper, we construct families of hybrid SSI formulas employing future 

solution values while taking into consideration their phase-lag properties. The 

developed SSI hybrid formulas are thus P-stable with smaller phase-lag error 

constant than that of its local truncation error constant. The results from the 

numerical experiments shows that the new hybrid formulas are suitable for the 

integration of special second order ODEs. 
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1.0 Introduction 

Ordinary differential equations (ODEs) arise in the modeling of some physical phenomena such as celestial mechanics, engineering, 

and lot more. Many of these models cannot be solved analytically. This is why accurate numerical solution is essential. The 

consideration is on the numerical integration of the initial value problem (IVP) of the special second order ODE of the form, 

𝑦′′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)); 𝑦(𝑥0) = 𝑦0, 𝑦′(𝑥0) = 𝑦0,               (1)               

where 𝑦(𝑥) ∊ ℜ𝑡 , 𝑓: ℜ × ℜ𝑡 → ℜ𝑡 , and the first derivative does not appear explicitly. The numerical methods for integrating (1) 

have been a focus of attention because such problems often arise in mechanics, theoretical physics, and chemistry amongst other 

areas of applications. The IVP (1) have also been considered in [1,2,3]. We define our linear multi-step method (LMM) for solving 

the second order IVP (1) as, 

∑ 𝛼𝑗
𝑘
𝑗=0 𝑦𝑛+𝑗 = ℎ2 ∑ 𝛽𝑗𝑓𝑛+𝑗,𝑘

𝑗=0   𝛽𝑘 ≠ 0, 𝛼𝑘 = 1.         (2)  

The first and second characteristic polynomials are, 

𝜌(𝑧) = ∑ 𝛼𝑗
𝑘
𝑗=0 𝑧𝑗 ,    𝜎(𝑧) = ∑ 𝛽𝑗𝑧𝑗𝑘

𝑗=0 .            (3)  

The LMM (2) has an associated local truncation error (LTE) difference operator 

𝐿[𝑦(𝑥); ℎ] = ∑ 𝛼𝑗𝑦(𝑥 + 𝑗ℎ) − ℎ2𝑘
𝑗=0 ∑ 𝛽𝑗𝑦′′(𝑥+𝑗ℎ)𝑘

𝑗=0 = 𝐶𝑝+2ℎ𝑝+2𝑦(𝑝+2)(𝑥𝑛) + 𝑂(ℎ(𝑝+3)).    (4) 

The LTE is 𝐶𝑝+2ℎ𝑝+2𝑦(𝑝+2)(𝑥𝑛) at the point 𝑥𝑛 , 𝑝 is the order of the method, and 𝐶𝑝+2 is the error constant given by,  

𝐶𝑞 =
1

𝑞!
∑ 𝑗𝑞+2(𝑗2𝛼𝑗 − 𝑞(𝑞 − 1)𝛽𝑗)𝑘

𝑗=0  − ∑
𝑗𝑞−2

(𝑞−2)!
𝛽𝑗 ,𝑘

𝑘+1=0        𝑞 > 2.     (5) 

An important subclass of the LMM (2) is the Stӧmer-Cowell formula, which the general form is given by, 

𝜌(𝐸) = 𝐸𝑘−2(𝐸2 − 2𝐸 + 1).        (6) 

The Stӧmer-Cowell formula with step number greater than two are known to suffer orbital instability [4]. For a test problem that 

describes uniform motion in a circular orbit, the numerical solutions generated by such method spiral inwards for all values of the 

step length h. The modification of the Stӧmer-Cowell method for the integration of orbits was suggested in [5]. This approach was 

to remove truncation errors and thus avoided the instability of the Stӧmer-Cowell schemes. Various modifications of the Stӧmer-

Cowell formulas have been proposed to bypass this deficiency see [6 – 10]. An alternative strategy to eliminate the orbital 

instability that is inherent in the Stӧmer-Cowell formulas was proposed in [4]. The adoption of symmetric linear multi-step methods 

was suggested with, 

 𝜌(𝐸) = (𝐸 − 1)2(𝐸 − 𝑎)(𝐸 − 𝑏),     |𝑎|,   |𝑏|  <  1.        (7) 
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Adding the condition of symmetry, we find that a = i and b = −i. This type of polynomial was also considered in [11] recently. The 

method (2) is assumed to satisfy the following conditions, 

1. 𝛼𝑘 = 1, |𝛼0| + |𝛽0| ≠ 0  (𝛼𝑗 , 𝛽𝑗  are real for 𝑗 = 0(1)𝑘), 

2.(𝜌, 𝜎) = 1 (𝜌 and 𝜎 are relatively prime), 

3. 𝜌(1) = 𝜌′(1) = 0,  𝜌′′(1) = 2𝜎(1) (consistency), 

4. zero-stable. 

The LMM (2) is symmetric if 𝛼𝑗 = 𝛼𝑘−𝑗 and 𝛽𝑗 = 𝛽𝑘−𝑗 for 𝑗 = 0(1)𝑘. The stability of the periodicity properties of the LMM (2) 

can be examined by the application to the scalar test problem, 

𝑦′′ + 𝜔2𝑦 = 0, 𝜔, 𝑦 ∊ ℜ,         (8) 

which results in the stability polynomial properties equation, 

𝛱(𝑟, 𝐻2) = 𝜌(𝑟) + 𝐻2𝜎(𝑟) = 0,    𝐻 = 𝜔ℎ.       (9) 

The stability polynomial (9) is expected to satisfy the hypotheses in [8]. 

Definition 1 [4]: The Method (2) is said to have an interval of periodicity (0, 𝐻0
2), if for all 𝐻2 in this interval, the roots 𝑟𝑖 of the 

stability polynomial (9) satisfy 𝑟1 = 𝑒𝑖𝜃(𝐻),  𝑟2 = 𝑒−𝑖𝜃(𝐻), |𝑟𝑖| ≤ 1,   𝑖 = 3(1)𝑘 for real 𝜃(𝐻). 

Definition 2 [4]: The LMM (2) is said to be P-stable, if its interval of periodicity is (0,∞). 

The barrier theorem as regards the attainable order of P-stable LMM (2) have been independently established in [12,4]. The order 

barrier is the equivalent of that in [13] for the first order ODEs. To be precise, we state the result for the second order ODEs as in [2]. 

Theorem 3 [2]: The LMM (2) is P-stable/unconditionally stable if 

1. It is implicit, 𝛽𝑘 ≠ 0 

2. It is, at best of order p = 2.  

The conditions in theorem (3) have been proved to be sufficient in [14]. The most accurate P-stable LMM (2) is given by, 

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
1

4
ℎ2(𝑓𝑛+2 + 2𝑓𝑛+1 + 𝑓𝑛),       (10) 

which the equivalent one-leg method was derived in [17],  

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 = ℎ2 (𝑥𝑛+1,
1

4
𝑓𝑛+2 +

1

4
𝑓𝑛+1 +

1

4
𝑓𝑛).      (11) 

 

     

 

 

 

Figure 1: Stability plot of P-stable formula (10) and (11) 
 

The method (10) and (11) have order p = 2, error constant 𝐶𝑝+2 = − 
1

6
 , the interval of periodicity is (0, ∞), and the stability plot is 

given in Figure 1. The graph grows indefinitely in the positive direction on the real axis for an increasing 𝐻2 which supports the P-

stability definition 2. The introduction of hybrid two-step methods in [6] was to overcome the order barrier imposed on LMM (2). 

This method is thus P-stable as the stability plot is as in Figure 1. 

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 = ℎ2 (
−11

360
(𝑓𝑛+2 + 𝑓𝑛) +

3

20
𝑓𝑛+1 +

41

90
(𝑓

𝑛+
3

2

+ 𝑓
𝑛+

1

2

)).          (12) 

The order is p = 4, 𝐶𝑝+2 =
17

5760
, with hybrid pair, 

 𝑦
𝑛+

3

2

=
1

4
𝑦𝑛+2 + 𝑦𝑛+1 −

1

4
𝑦𝑛 + ℎ2 (

−3

48
𝑓𝑛+2 +

9

48
𝑓𝑛+1)      (13a) 

and 

𝑦
𝑛+

1

2

=
1

2
𝑦𝑛+1 +

1

2
𝑦𝑛 + ℎ2 (

9

192
𝑓𝑛+2 −

15

96
𝑓𝑛+1 −

1

64
𝑓𝑛).       (13b) 

The use of Padé approximation to obtain P-stable one-leg formulas which is off great advantage in terms of function evaluation was 

suggested in [8,9,12]. Since then, there have been some interesting advances in the construction of new LMMs see for example the 

excellent work in [15,16,18]. P-stable super-implicit methods which are extension of the work in [19] was suggested in [20]. 

Examples of the methods derived in [20] are, 

𝑦𝑛+2 − 2𝑦𝑛+1 + 2𝑦𝑛 − 2𝑦𝑛−1 + 𝑦𝑛−2 = ℎ2 (
7411

72576
𝑓𝑛 +

362771

453600
(𝑓𝑛+1 + 𝑓𝑛−1) +

47057

453600
(𝑓𝑛+2 + 𝑓𝑛−2) −

2707

453600
(𝑓𝑛+3 + 𝑓𝑛−3) +

641

1814400
(𝑓𝑛+4 + 𝑓𝑛−4)), 

 p = 10, 𝐶𝑝+2 =
−4139

79833600
,         (14) 

𝑦𝑛+1 − 2𝑦𝑛 + 𝑦𝑛−1 = ℎ2 (
57517

72576
𝑓𝑛 +

101741

907200
(𝑓𝑛+1 + 𝑓𝑛−1) −

8593

907200
(𝑓𝑛+2 + 𝑓𝑛−2) +

149

129600
(𝑓𝑛+3 + 𝑓𝑛−3) −

289

3628800
(𝑓𝑛+4 + 𝑓𝑛−4)),   

p = 10, 𝐶𝑝+2 =
−317

22809600
.         (15) 
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The methods (14,15) and like the hybrid methods to be proposed in this paper require additional formulas to predict the additional 

starting and future values. 
 

2.0 P-Stable High Order Super-Implicit Hybrid LMM 

In this section, we are particularly interested in the hybrid SSI formula of the form 

 ∑ 𝛼𝑗(𝑦𝑛+𝑗+𝑦𝑛−𝑗)
𝑘

2

𝑗=0
= ℎ2 ∑ 𝛽𝑗(𝑓𝑛+𝑗+𝑓𝑛−𝑗)

𝑘∗

2

𝑗=0
+ ℎ2𝜙(𝑓𝑛+𝜆+𝑓𝑛−𝜆).     (16) 

The method (16) is explicit for 𝑘∗ =  𝑘 –  1, implicit for 𝑘∗  =  𝑘, and super-implicit for 𝑘∗ >  𝑘 with λ ∊ [0, 1] as in [6].  Here for k 

= 4, 𝛼𝑗 are fixed, say 𝛼2 =  1 =  𝛼0, 𝛼2  =  −2 to ensure symmetry and zero-stability conditions. The 𝛼𝑗 are arbitrarily chosen. 

This was also considered in [7,11,20]. The constants 𝛽𝑗 = 0(1)
𝑘∗

2
and 𝜙 are then determined. The formula (16) approximates the 

hybrid quantities 𝑦𝑛±𝜆 by an expression involving the quantities {(𝑦𝑛±𝑗; 𝑓𝑛±𝑗)}. 

𝑦𝑛+𝜆 = ∑ 𝜓𝑗(𝑦𝑛+𝑗+𝑦𝑛−𝑗)
𝑘

2

𝑗=0
+ ℎ2 ∑ 𝛾𝑗(𝑓𝑛+𝑗+𝑓𝑛−𝑗)

𝑘∗

2

𝑗=0
,       (17)  

𝑦𝑛−𝜆 = ∑ 𝑎𝑗(𝑦𝑛+𝑗+𝑦𝑛−𝑗)
𝑘

2

𝑗=0
+ ℎ2 ∑ 𝑏𝑗(𝑓𝑛+𝑗+𝑓𝑛−𝑗).

𝑘∗

2

𝑗=0
       (18) 

Where, 𝑘∗, 𝑘 are even and λ ∊ [0, 1]. Constants 𝜓𝑗 , 𝛾𝑗 , 𝑏𝑗 , 𝑎𝑗 are then determined. When k = 4 and 𝑘∗ = 6, we have, 

𝑦𝑛+2 − 2𝑦𝑛+1 + 2𝑦𝑛 − 2𝑦𝑛−1 + 𝑦𝑛−2 = ℎ2(𝛽0𝑓𝑛 + 𝛽1(𝑓𝑛+1 + 𝑓𝑛−1) + 𝛽2(𝑓𝑛+2 + 𝑓𝑛−2) + 𝛽3(𝑓𝑛+3 + 𝑓𝑛−3) + 𝜙(𝑓𝑛+𝜆 + 𝑓𝑛−𝜆)).  (19) 

We chose our hybrid parameter λ = 
1

2
 to ensure P-stability similar to the methods in [6]. Using MATHEMATICA v10 [21], we 

obtained the following values, 

 ∅ =
−82048

70875
, 𝛽0 =

39967

45360
, 𝛽1 =

22049

18144
, 𝛽2 =

70529

1134000
, 𝛽3 =

−1997

2268000
 , 

for method (19) with error constant 
7967

798336000
 and order p = 10. Similarly, for the hybrid 

𝑦𝑛+𝜆 = 𝜓0𝑦𝑛+2 + 𝜓1𝑦𝑛+1 + 𝜓2𝑦𝑛 + 𝜓3𝑦𝑛−1 + 𝜓4𝑦𝑛−2 + ℎ2(𝛾0𝑓𝑛 + 𝛾1𝑓𝑛+1 + 𝛾2𝑓𝑛+2 + 𝛾3𝑓𝑛+3),   (20) 

we obtain the coefficients, 

𝜓0 =
2583745

3448832
, 𝜓1 =

−175635

215552
, 𝜓2 =

1511055

1724416
, 𝜓3 =

42085

215552
, 𝜓4 =

−20223

3448832
, 𝛾0 =

−253989

862208
, 𝛾1 =

−299619

431104
, 𝛾2 =

−13833

215552
, 𝛾3 =

837

431104
with LTE =

−132547𝑦(9)(𝑥)ℎ9

965672960
 and for 

 𝑦𝑛−𝜆 = 𝑎0𝑦𝑛+2 + 𝑎1𝑦𝑛+1 + 𝑎2𝑦𝑛 + 𝑎3𝑦𝑛−1 + 𝑎4𝑦𝑛−2 + ℎ2(𝑏0𝑓𝑛 + 𝑏1𝑓𝑛−1 + 𝑏2𝑓𝑛−2 + 𝑏3𝑓𝑛−3), (21) 

we obtain the following coefficients using MATHEMATICA v10 [21], 

 𝑎0 =
−20223

3448832
, 𝑎1 =

42085

215552
, 𝑎2 =

1511055

1724416
, 𝑎3 =

−175635

215552
, 𝑎4 =

2583745

3448832
, 𝑏0 =

−253989

862208
, 𝑏1 =

−299619

431104
, 𝑏2 =

−13833

215552
, 𝑏3 =

837

431104
 with 

LTE = 
132547𝑦(9)(𝑥)ℎ9

965672960
. 

In a similar manner, for k = 4 and  𝑘∗ = 8, we obtain the order p =12 method, 

𝑦𝑛+2 − 2𝑦𝑛+1 + 2𝑦𝑛 − 2𝑦𝑛−1 + 𝑦𝑛−2 = ℎ2(𝛽0𝑓𝑛 + 𝛽1(𝑓𝑛+1 + 𝑓𝑛−1) + 𝛽2(𝑓𝑛+2 + 𝑓𝑛−2) + 𝛽3(𝑓𝑛+3 + 𝑓𝑛−3) + 𝛽4(𝑓𝑛+4 + 𝑓𝑛−4) +

𝜙(𝑓𝑛+𝜆 + 𝑓𝑛−𝜆)),          (22) 

with coefficients,  

 ∅ =
−1059584

1091475
, 𝛽0 =

603035

798336
, 𝛽1 =

5728861

4989600
, 𝛽2 =

343789

4989600
, 𝛽3 =

−11887

6985440
, 𝛽4 =

7967

139708800
 and error constant  

−5367083

5230697472000
. Also, we 

obtain the coefficients of the hybrid 

𝑦𝑛+𝜆 = 𝜓0𝑦𝑛+2 + 𝜓1𝑦𝑛+1 + 𝜓2𝑦𝑛 + 𝜓3𝑦𝑛−1 + 𝜓4𝑦𝑛−2 + ℎ2(𝛾0𝑓𝑛 + 𝛾1𝑓𝑛+1 + 𝛾2𝑓𝑛+2 + 𝛾3𝑓𝑛+3 + 𝛾4𝑓𝑛+4), (23) 

as,  

 𝜓0 =
1641212183

514490368
, 𝜓1 =

−87829569

16077824
, 𝜓2 =

731654937

257245184
, 𝜓3 =

7074877

16077824
, 𝜓4 =

−5881545

514490368
, 𝛾0 =

−1924995069

2572451840
, 𝛾1 =

−955773

358880
, 𝛾2 =

−60322041

183746560
, 𝛾3 =

1646523

80389120
, 𝛾4 =

−3578769

2572451840
 with LTE 

131972451𝑦(9)[𝑥]ℎ9

720286515200
  and 

𝑦𝑛−𝜆 = 𝑎0𝑦𝑛+2 + 𝑎1𝑦𝑛+1 + 𝑎2𝑦𝑛 + 𝑎3𝑦𝑛−1 + 𝑎4𝑦𝑛−2 + ℎ2(𝑏0𝑓𝑛 + 𝑏1𝑓𝑛−1 + 𝑏2𝑓𝑛−2 + 𝑏3𝑓𝑛−3 + 𝛾4𝑓𝑛−4),  (24) 

𝑎0 =
−5881545

514490368
, 𝑎1 =

7074877

16077824
, 𝑎2 =

731654937

257245184
, 𝑎3 =

−87829569

16077824
, 𝑎4 =

1641212183

514490368
, 𝑏 =

−1924995069

2572451840
, 𝑏1 =

−955773

358880
, 𝑏2 =

−60322041

183746560
, 𝑏3 =

1646523

80389120
, 𝑏4 =

−3578769

2572451840
 with LTE −

131972451𝑦(9)[𝑥]ℎ9

720286515200
. 

 

3.0 P-Stable High Order Stӧrmer-Cowell Type Super-Implicit Hybrid LMM 

This section present a particular case of (2) called the Stӧrmer-Cowell type LMM,  

 ∑ 𝛼𝑗(𝑦𝑛+𝑗+𝑦𝑛−𝑗)
𝑘

2

𝑗=0
= ℎ2 ∑ 𝛽𝑗(𝑓𝑛+𝑗+𝑓𝑛−𝑗)

𝑘∗

2

𝑗=0
+ ℎ2𝜙(𝑓𝑛+𝜆+𝑓𝑛−𝜆).     (25) 

However, the hybrids of interest are, 
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𝑦𝑛+𝜆 = ∑ 𝜓𝑗
𝑘
𝑗=0 𝑦𝑛−1+𝑗 + ℎ2 ∑ 𝛾𝑗𝑓𝑛+𝑗

𝑘∗

𝑗=0 ,          (26) 

𝑦𝑛+𝜆 = ∑ 𝑎𝑗
𝑘
𝑗=0 𝑦𝑛−1+𝑗 + ℎ2 ∑ 𝑏𝑗𝑓𝑛−𝑗

𝑘∗

𝑗=0 ,       (27) 

where, k and the super-implicit parameter 𝑘∗are even, and λ ∊ [0, 1] as in [6]. When k = 4 and 𝑘∗= 6, we have, 

 𝑦𝑛+1 − 2𝑦𝑛 + 𝑦𝑛−1 = ℎ2(𝛽0𝑓𝑛 + 𝛽1(𝑓𝑛+1 + 𝑓𝑛−1) + 𝛽2(𝑓𝑛+2 + 𝑓𝑛−2) + 𝛽3(𝑓𝑛+3 + 𝑓𝑛−3) + 𝜙(𝑓𝑛+𝜆 + 𝑓𝑛−𝜆)). (28) 

We choose our hybrid parameter as λ = 
1

2
 to ensure P-stability. Using MATHEMATICA v10 [21], we obtained the following values 

for method (28), 

 ∅ =
18496

70875
, 𝛽0 =

20017

90720
, 𝛽1 =

671

36288
, 𝛽2 =

−241

2268000
, 𝛽3 =

13

4536000
 with error constant 

−1

25344000
 and order p =10. Also, for the hybrid 

formula (26,27), we have, 

𝑦𝑛+𝜆 = 𝜓2𝑦𝑛+1 + 𝜓1𝑦𝑛 + 𝜓0𝑦𝑛−1 + ℎ2(𝛾0𝑓𝑛 + 𝛾1𝑓𝑛+1 + 𝛾2𝑓𝑛+2 + 𝛾3𝑓𝑛+3),   (29) 

 𝜓0 =
63

1216
, 𝜓1 =

241

608
, 𝜓2 =

671

1216
, 𝛾0 =

−503

4864
, 𝛾1 =

−631

7296
, 𝛾2 =

223

14592
, 𝛾3 =

−1

456
 with LTE =  

577𝑦(7)[𝑥]ℎ7

583680
 and 

 𝑦𝑛−𝜆 = 𝑎2𝑦𝑛+1 + 𝑎1𝑦𝑛 + 𝑎0𝑦𝑛−1 + ℎ2(𝑏0𝑓𝑛 + 𝑏1𝑓𝑛−1 + 𝑏2𝑓𝑛−2 + 𝑏3𝑓𝑛−3),   (30) 

 𝜓0 =
671

1216
, 𝜓1 =

241

608
, 𝜓2 =

63

1216
, 𝛾0 =

−503

4864
, 𝛾1 =

−631

7296
, 𝛾2 =

223

14592
, 𝛾3 =

−1

456
 with LTE = 

−577𝑦(7)[𝑥]ℎ7

583680
. For k = 2 and 𝑘∗= 8, we have, 

𝑦𝑛+1 − 2𝑦𝑛 + 𝑦𝑛−1 = ℎ2(𝛽0𝑓𝑛 + 𝛽1(𝑓𝑛+1 + 𝑓𝑛−1) + 𝛽2(𝑓𝑛+2 + 𝑓𝑛−2) + 𝛽3(𝑓𝑛+3 + 𝑓𝑛−3) + 𝛽4(𝑓𝑛+4 + 𝑓𝑛−4) + 𝜙(𝑓𝑛+𝜆 + 𝑓𝑛−𝜆)). (31) 

The coefficients of method (31) of order p = 12 are given by, 

 ∅ =
40576

155925
, 𝛽0 =

353093

1596672
, 𝛽1 =

187171

9979200
, 𝛽2 =

−53

399168
, 𝛽3 =

61

9979200
, 𝛽4 =

−1

4435200
 and error constant 

46507

10461394944000
. The hybrids and 

their coefficients are respectively given by, 

𝑦𝑛+𝜆 = 𝜓2𝑦𝑛+1 + 𝜓1𝑦𝑛 + 𝜓0𝑦𝑛−1 + ℎ2(𝛾0𝑓𝑛 + 𝛾1𝑓𝑛+1 + 𝛾2𝑓𝑛+2 + 𝛾3𝑓𝑛+3 + 𝛾4𝑓𝑛+4)  (32) 

 𝜓0 =
89

2304
, 𝜓1 =

487

1152
, 𝜓2 =

1241

2304
, 𝛾0 =

−48103

552960
, 𝛾1 =

−3323

34560
, 𝛾2 =

7171

276480
, 𝛾3 =

−43

5760
, 𝛾4 =

577

552960
 with LTE=

−157123𝑦(8)[𝑥]ℎ8

278691840
 and 

𝑦𝑛+𝜆 = 𝜓2𝑦𝑛+1 + 𝜓1𝑦𝑛 + 𝜓0𝑦𝑛−1 + ℎ2(𝛾0𝑓𝑛 + 𝛾1𝑓𝑛−1 + 𝛾2𝑓𝑛−2 + 𝛾3𝑓𝑛−3 + 𝛾4𝑓𝑛−4),  (33) 

 𝜓0 =
1241

2304
, 𝜓1 =

487

1152
, 𝜓2 =

89

2304
, 𝛾0 =

−48103

552960
, 𝛾1 =

−3323

34560
, 𝛾2 =

7171

276480
, 𝛾3 =

−43

5760
, 𝛾4 =

577

552960
 with LTE = 

157123𝑦(8)[𝑥]ℎ8

278691840
. 

 

4.0 Phase-Lag Properties of the Super-Implicit Hybrid LMM 

When deriving efficient numerical methods (2) for the solution of (1) it is useful to consider the phase-lag (PL) order as well as the 

algebraic order of the method. The concept of PL was first introduced in [22]. However, several methods with high phase-lag order 

have been proposed for the numerical integration of the IVP (1). A new approach to constructing methods for the numerical 

integration of (1) through a rational approximation to the cosine was given in [23]. Since then, [25 - 28] among others have all 

considered the phase-lag analysis of LMM (2).  A method with maximum order of the phase-lag has minimal phase-lag error [10]. 

The phase-lag formula for the generalized symmetric LMM (2) have been considered in [27]. Following the idea in [27], the phase-

lag for the SSI hybrid LMM is given by, 

 𝑃𝐿(𝐻) =
2𝐴𝑘∗

2

(𝐻)𝑐𝑜𝑠(𝑗𝐻)+⋯+2𝐴𝑗(𝐻)𝑐𝑜𝑠(𝑗𝐻)+⋯+2𝐴0(𝐻)

2(
𝑘∗

2
)

2
𝐴𝑘∗

2

(𝐻)+⋯+2𝑗2𝐴𝑗(𝐻)+⋯+2𝐴1(𝐻)
 =−𝑐𝑑+2𝐻𝑑+2 + 𝑂(𝐻𝑑+4).   (34) 

Where  𝐴𝑗(𝐻) = 𝛼𝑘∗

2
−𝑗

+ 𝐻2𝛽𝑘∗

2
−𝑗

, 1 ≤ 𝑗 ≤
𝑘∗

2
, 𝐻 = ⍵ℎ,  𝑑 is the order of the phase-lag and 𝑐 is the phase-lag error constant. We 

use formula (34) in the sense of the work in [27] to obtain the phase-lag for methods (16,25). Upon applying (16) on the test 

problem (8), for k = 4 and 𝑘∗ = 6, we have the phase-lag expression as, 

𝑃𝐿(𝐻) =
𝑇1

𝑇2
= −𝑐𝑑+2𝐻𝑑+2 + 𝑂(𝐻𝑑+4).       (35) 

Here, 

 𝑇1 = 2(𝛼0 + 𝐻2𝛽0) + (2(𝛼1 + 𝐻2𝛽1)𝑐𝑜𝑠(𝐻) + (𝛼2 + 𝐻2𝛽2)𝑐𝑜𝑠(2𝐻) + (𝛼3 + 𝐻2𝛽3)𝑐𝑜𝑠(3𝐻) + (𝛼𝜆 + 𝐻2𝛽2)𝑐𝑜𝑠(𝜆𝐻)) (36) 

𝑇2 = 2((𝛼1 + 𝐻2𝛽1) + 4(𝛼2 + 𝐻2𝛽2) + 9(𝛼3 + 𝐻2𝛽3)𝑐𝑜𝑠(3𝐻) + (𝛼𝜆 + 𝐻2𝛽2)𝑐𝑜𝑠(𝜆𝐻)).  (37) 

In particular, for the hybrid SSI method (19) with =
1

2
 , we obtain the phase-lag order d = 10 with phase-lag error constant as in, 

PL(H) = 
−7967

1596672000
𝐻12 + O (𝐻14) = −𝑐𝑑+2𝐻𝑑+2 + 𝑂(𝐻𝑑+4),      (38) 

using MATHEMATICA v10 [21]. Similarly, for Stӧrmer-Cowell type hybrid SSI method (28) with 𝜆 =
1

2
, we obtain the phase-lag 

order d = 10 with phase-lag error constant as in, 

PL(H) = 
−1

50688000
 𝐻12 + O (𝐻14) = −𝑐𝑑+2𝐻𝑑+2 + 𝑂(𝐻𝑑+4).     (39) 

The summary of the algebraic and phase-lag properties of the proposed hybrid methods are presented in Tables 1 and 2.  
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Table 1: Summary of the algebraic and phase-lag properties of hybrid SILMM for λ =
1

2
 

Methods k 𝑘∗ Order of PL d /Order 

of the Methods p, 

d = p   

PL 

Error Constant 

 𝑐𝑑+2 

LTE 

Constant 

𝐶𝑝+2 

Stability 

(19) 2 2 6  
−7967

1596672000
  

7967

798336000
 P-stable 

(22) 2 4 8   
−5367083

10461394944000
   

−5367083

5230697472000
 P-stable 

 

Table 2: Summary of the algebraic and phase-lag properties of the Stӧrmer-Cowell type hybrid SILMM for λ =
1

2
 

Methods k 𝑘∗ Order of PL d /Order 

of the Methods p, 

d = p 

PL 

Error Constant 

𝑐𝑑+2 

LTE 

Constant 

𝐶𝑝+2 

Stability 

(28) 2 6 10  
−1

50688000
  

−1

25344000
 P-stable 

(31) 2 8 12  
−46507

20922789888000
  

46507

10461394944000
 P-stable 

 

5.0 Implementation of Hybrid SSILMM 

We consider the implementation of our new hybrid methods derived to show the applicability of these methods in solving the 

almost periodic problem of (1) using MATLAB v7.5 [29]. We are faced with the problem of resolving the implicitness in the 

derived hybrid methods. However, we consider implementing methods (19,22,28,31) following the ideas in [6,9]. Assume that (1) is 

Lipschitz continuous with reference to 𝑦(𝑥) for all 𝑥 ∈  [𝑎, 𝑏]  
ǁ𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦∗)ǁ ≤ 𝐿ǁ𝑦 − 𝑦∗ǁ,        (40) 

where L is the Lipschitz constant. The approach of Newton-Raphson iterative method is used to resolve the implicitness in our 

methods. We use the predictor,   

 𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 = ℎ2𝑓𝑛+1,        (41) 

of order p = 2, as the starter for the Newton-Raphson iteration with LTE = 
1𝑦(4)[𝑥]ℎ4

12
 . The P-stable method, 

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
ℎ2

4
(𝑓𝑛+2 − 2𝑓𝑛+1 + 𝑓𝑛),       (42) 

is employ to generate the future solution values {𝑦𝑛±𝑗}𝑗=2,3 in the case of (19,28) and  {𝑦𝑛±𝑗}𝐽=2,3,4 in the case of (22,31) 

respectively.  So that the Newton-Raphson iteration becomes, 

𝑦
[𝑡 + 1]
𝑛 + 1

= 𝑦
[𝑡]

𝑛 + 1
(𝐽 (𝑦

[𝑡]
𝑛 + 1

))

−1

𝐹 (𝑦
[𝑡]

𝑛 + 1
) , 𝑡 = 0,1, … , 𝑤,          (43) 

where the Jacobian is given by,  

𝐽(𝑦) =
𝜕𝐹(𝑦)

𝜕𝑦
.          (44) 

The numerical methods (19,22,28,31) are applied to solve almost periodic orbital problem as described in [5]. In the case of the P-

stable method in (19), 

 𝐹(𝑦𝑛+2
[𝑡+1]

) = 𝑦𝑛+2
[𝑡]

− 2𝑦𝑛+1 + 2𝑦𝑛 − 2𝑦𝑛−1 + 𝑦𝑛−2 = ℎ2 (
39967

45360
𝑓𝑛 +

22049

18144
(𝑓𝑛+1 + 𝑓𝑛−1) +

70529

1134000
(𝑓𝑛+2

[𝑡]
+ 𝑓𝑛−2) −

1997

2268000
(𝑓𝑛+3 +

𝑓𝑛−3) −
82048

70875
(𝑓𝑛+𝜆

[𝑡]
+ 𝑓𝑛−𝜆

[𝑡]
)).        (45) 

Also, in the case of the P-stable Stӧrmer-Cowell type hybrid method in (22),   

𝐹(𝑦𝑛+1
[𝑡+1]

) = 𝑦𝑛+1
[𝑡]

− 2𝑦𝑛 + 𝑦𝑛−1 = ℎ2 (
20017

90720
𝑓𝑛 +

671

36288
(𝑓𝑛+1

[𝑡]
+ 𝑓𝑛−1) −

241

2268000
(𝑓𝑛+2 + 𝑓𝑛−2) +

13

4536000
(𝑓𝑛+3 + 𝑓𝑛−3) +

18496

70875
(𝑓𝑛+𝜆

[𝑡]
+ 𝑓𝑛−𝜆

[𝑡]
)).         (46) 

Example 1: Almost periodic orbital problem (Source: [4,6,8,9,11]) 

 𝒚′′ + 𝒚 = 𝟎. 𝟎𝟎𝟏𝒆𝒊𝒙,               (47) 

 𝒚(𝟎) = 𝟏, 𝒚′(𝟎) = 𝟎. 𝟗𝟗𝟗𝟓𝒊𝟐 = −𝟏, 

which the theoretical solution is, 

𝒚(𝒙) = 𝒖(𝒙) + 𝒊𝒗(𝒙) = (𝒖(𝒙), 𝒗(𝒙)),       (48) 
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where 𝒖(𝒙) = 𝒄𝒐𝒔𝒙 + 𝟎. 𝟎𝟎𝟎𝟓𝒙𝒔𝒊𝒏𝒙 and 𝒗(𝒙) = 𝒊(𝒔𝒊𝒏𝒙 − 𝟎. 𝟎𝟎𝟎𝟓𝒙𝒄𝒐𝒔𝒙). The IVP (47) represent motion on a perturbed 

circular orbit on the complex plane in which the path defined by the point 𝒚(𝒙) = (𝒖(𝒙), 𝒗(𝒙)) spirals slowly outward such that its 

distance from the origin at any given time 𝒙 is given by, 

 𝛺(𝑥) = √𝑈(𝑥)2 + 𝑉(𝑥)2 ,               (49) 

The interval 𝟎 < 𝒙 ≤ 𝟒𝟎𝝅 corresponds to 20 orbits of the point 𝒚(𝒙),  

 𝜴(𝒙𝒇) = |𝒚(𝒙𝒇)| = 𝟏. 𝟎𝟎𝟏𝟗𝟕𝟏𝟗𝟕𝟔𝟓𝟑𝟒𝟒𝟗, 𝒙𝒇 = 𝟒𝟎𝝅.       (50) 

The numerical result is generated using the step size ℎ =
𝜋

2𝑞
, 𝑞 = 3(1)13, and can be seen in Table 3,4,5 and 6. 

Table 3: Numerical Results of Method (19) at 𝑥𝑓 = 40𝜋 

q h Method (19) (Ω) Error |Ω(𝑥𝑓) − Ω| 

3 𝜋 23⁄  1.00321942175128 1.24744521678988e-003 

4 𝜋 24⁄  1.00244005857149 4.68082037000883e-004 

5 𝜋 25⁄  1.00209067667853 1.18700144044803e-004 

6 𝜋 26⁄  1.00208276118813 1.10784653639229e-004 

7 𝜋 27⁄  1.00199977717586 2.78006413707566e-005 

8 𝜋 28⁄  1.00199784030696 2.58637724708244e-005 

9 𝜋 29⁄  1.00197736701962 5.39048512671059e-006 

10 𝜋 210⁄  1.00197688542805 4.90889355941881e-006 

11 𝜋 211⁄  1.00197664465420 4.66811970589731e-006 

12 𝜋 212⁄  1.00197409335020 2.1168157144924e-006 

13 𝜋 213⁄  1.00197281831423 8.41779736138193e-007 

 

Table 4: Numerical Results of Method (22) at 𝑥𝑓 = 40𝜋 

q h Method (22) (Ω) Error |Ω(𝑥𝑓) − Ω| 

3 𝜋 23⁄  1.00205910451501 8.71279805190195e-005 

4 𝜋 24⁄  1.00201530580872 4.33292742272329e-005 

5 𝜋 25⁄  1.00199358248877 2.16059542843539e-005 

6 𝜋 26⁄  1.00198276484045 1.07883059601299e-005 

7 𝜋 27⁄  1.00197736701962 5.39048512604445e-006 

8 𝜋 28⁄  1.00197467086008 2.69432559174554e-006 

9 𝜋 29⁄  1.00197332346804 1.34693355424709e-006 

10 𝜋 210⁄  1.00197264994395 6.73409463525232e-007 

11 𝜋 211⁄  1.00197231322489 3.36690401558926e-007 

12 𝜋 212⁄  1.00197214487611 1.68341616424428e-007 

13 𝜋 213⁄  1.00197206070440 8.41699103748539e-008 

 

Table 5: Numerical Results of Method (28) at 𝑥𝑓 = 40𝜋 

q h Method (28) (Ω) Error |Ω(𝑥𝑓) − Ω| 

3 𝜋 23⁄  1.00203401920494 6.20426704474042e-005 

4 𝜋 24⁄  1.00200287811217 3.09015776829291e-005 

5 𝜋 25⁄  1.00198739738256 1.54208480669382e-005 

6 𝜋 26⁄  1.00197967947316 7.70293866714233e-006 

7 𝜋 27⁄  1.00197582613246 3.84959797039564e-006 

8 𝜋 28⁄  1.00197390086563 1.92433114087898e-006 

9 𝜋 29⁄  1.00197293858310 9.62048610331223e-007 

10 𝜋 210⁄  1.00197245752955 4.80995061558076e-007 

11 𝜋 211⁄  1.00197221702471 2.40490217517930e-007 

12 𝜋 212⁄  1.00197209677777 1.20243278001198e-007 

13 𝜋 213⁄  1.00197203665567 6.01211789241773e-008 
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Table 6: Numerical Results of Method (31) at 𝑥𝑓 = 40𝜋 

 

6.0 Conclusion 

We have derived P-stable SSI hybrid methods based on (16, 25) with order as high as p = 10 and 12 in the case of (19,28) and 

(22,31) respectively which turns to be higher than that of the ones proposed in [20] for the same step number. In addition, we have 

also investigated the PL of the new SSI hybrid methods which interestingly have its order d coincides with the algebraic order p see 

tables 1 and 2. The order barrier in theorem 3 has been bypassed through the use of SSI hybrid methods. The efficiency and 

accuracy of the new hybrid methods have been tested on an almost periodic orbital problem as the results compares favourably with 

the theoretical solution see tables 3,4,5 and 6. 
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