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Abstract

Symmetric super-implicit (SSI) formulas for the numerical solution of the special
second-order ordinary differential equations (ODEs) have been a focus of
attention in the last decade. The solution of the class of ODEs exhibit oscillatory
behaviour. P-stability is necessary for the numerical integration of such ODEs.
In this paper, we construct families of hybrid SSI formulas employing future
solution values while taking into consideration their phase-lag properties. The
developed SSI hybrid formulas are thus P-stable with smaller phase-lag error
constant than that of its local truncation error constant. The results from the
numerical experiments shows that the new hybrid formulas are suitable for the

integration of seecial second order ODEs.
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1.0 Introduction

Ordinary differential equations (ODES) arise in the modeling of some physical phenomena such as celestial mechanics, engineering,
and lot more. Many of these models cannot be solved analytically. This is why accurate numerical solution is essential. The
consideration is on the numerical integration of the initial value problem (IVP) of the special second order ODE of the form,

Y () = f(x,y(x)); y(x0) = ¥o,¥'(%0) = ¥o, (1)

where y(x) € Rt, f: R x Rt > RE, and the first derivative does not appear explicitly. The numerical methods for integrating (1)
have been a focus of attention because such problems often arise in mechanics, theoretical physics, and chemistry amongst other
areas of applications. The IVP (1) have also been considered in [1,2,3]. We define our linear multi-step method (LMM) for solving
the second order IVP (1) as,

Z?:o A Ynyj = h? Z?:o Bifa+jr B #0, ap = 1. 2

The first and second characteristic polynomials are,

p(z) = Z?:o a; 7z, o(z) = }‘=0 ﬂjzj. 3)

The LMM (2) has an associated local truncation error (LTE) difference operator

LIy();h] = Tfoo ay(x + jh) = h2 Bjo By CHM = CpuahP 2y P2 (x,) + 0(hPHD). “

The LTE is C,,+2h”+2y(”+2) (x,,) at the point x,,, p is the order of the method, and C,,, is the error constant given by,
Cq = 2 Thea) (P = 4q = DB)) = Shurmo s By 4> 2 (5)

An important subclass of the LMM (2) is the Stomer-Cowell formula, which the general form is given by,

p(E) = E*"2(E? — 2E + 1). (6)

The Stomer-Cowell formula with step number greater than two are known to suffer orbital instability [4]. For a test problem that
describes uniform motion in a circular orbit, the numerical solutions generated by such method spiral inwards for all values of the
step length h. The modification of the Stémer-Cowell method for the integration of orbits was suggested in [5]. This approach was
to remove truncation errors and thus avoided the instability of the Stomer-Cowell schemes. Various modifications of the Stomer-
Cowell formulas have been proposed to bypass this deficiency see [6 — 10]. An alternative strategy to eliminate the orbital
instability that is inherent in the Stomer-Cowell formulas was proposed in [4]. The adoption of symmetric linear multi-step methods
was suggested with,

p(E) = (E-1*(E-a)E~b), lal, |bl <1 (7
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Adding the condition of symmetry, we find that a = i and b = —i. This type of polynomial was also considered in [11] recently. The
method (2) is assumed to satisfy the following conditions,

Loag =1,|a| + 1Bl # 0 (a;, B; arereal for j = 0(1)k),

2.(p, 0) =1 (p and o are relatively prime),

3.p(1)=p'(1) =0, p"(1) = 20(1) (consistency),

4. zero-stable.

The LMM (2) is symmetric if a; = a,_; and §; = f,_; for j = 0(1)k. The stability of the periodicity properties of the LMM (2)
can be examined by the application to the scalar test problem,

y'+wly=0wycecR, (8)
which results in the stability polynomial properties equation,
N, H?) = p(r) + H>c(r) =0, H = wh. 9)

The stability polynomial (9) is expected to satisfy the hypotheses in [8].

Definition 1 [4]: The Method (2) is said to have an interval of periodicity (0, H2), if for all H? in this interval, the roots r; of the
stability polynomial (9) satisfy r; = e!0®), 1, = e~ 0 || <1, i = 3(1)k for real (H).

Definition 2 [4]: The LMM (2) is said to be P-stable, if its interval of periodicity is (0,x).

The barrier theorem as regards the attainable order of P-stable LMM (2) have been independently established in [12,4]. The order
barrier is the equivalent of that in [13] for the first order ODES. To be precise, we state the result for the second order ODEs as in [2].
Theorem 3 [2]: The LMM (2) is P-stable/unconditionally stable if

1. Itis implicit, 5, #0

2. Itis, at best of order p = 2.

The conditions in theorem (3) have been proved to be sufficient in [14]. The most accurate P-stable LMM (2) is given by,

Yniz = 2Yn41t Y = ihz (fa+z + 2fpe1 + o), (10)

which the equivalent one-leg method was derived in [17],

ez = 2Vner + Y = h? (Xnen S frwz + 2 frs + 2. (11)
Im (H)
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Figure 1: Stability plot of P-stable formula (10) and (11)

The method (10) and (11) have order p = 2, error constant C,,,, = — % , the interval of periodicity is (0, o), and the stability plot is

given in Figure 1. The graph grows indefinitely in the positive direction on the real axis for an increasing H? which supports the P-
stability definition 2. The introduction of hybrid two-step methods in [6] was to overcome the order barrier imposed on LMM (2).
This method is thus P-stable as the stability plot is as in Figure 1.

Tuer = 2w+ = (T G+ )+ 2 o+ 5+ o)) (12)
The orderisp =4, Cyyp = %, with hybrid pair,

yn% = %)’n+2 + Y1 — %Yn +h? (;_:fn+2 + %fn+l) (133)
and

Vs = 3Ynsn + 30+ 02 (3 fove = oo frsn = 5 o). (130)

The use of Padé approximation to obtain P-stable one-leg formulas which is off great advantage in terms of function evaluation was
suggested in [8,9,12]. Since then, there have been some interesting advances in the construction of new LMMs see for example the
excellent work in [15,16,18]. P-stable super-implicit methods which are extension of the work in [19] was suggested in [20].
Examples of the methods derived in [20] are,

7411 362771 47057 2707 641
Ynsz = 2Yns1 + 200 = 2Yn_y + Yu_p = h? (72575 fat 753600 (fasr + o) + 253600 (fasz + fo2) — 253600 (fass + fazs) + Te14400 (fasa + fn—4)),

_ _—4139
p=10,Cpsr = 79833600’ (14)
57517 101741 8593 149 289
Yns1 — 2Yn + Yno1 = h? (72576fn + 507200 (fas1 + fr-1) — 507200 (frsz + fr2) + 129600 (fres + fr-3) — 3628800 (frea + fn—4)),
_ =317
p=10,Cpsr = 22809600 (15)
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The methods (14,15) and like the hybrid methods to be proposed in this paper require additional formulas to predict the additional
starting and future values.

2.0 P-Stable High Order Super-Implicit Hybrid LMM
In this section, we are particularly interested in the hybrid SSI formula of the form
k K
X0 (Vnsj+¥n-j) = h? DERY (fasitfui) t W2 ¢ (frratfa-2). (16)
The method (16) is explicit for k* = k - 1, implicit for k* = k, and super-implicit for k* > k with A € [0, 1] as in [6]. Here for k
=4, q; are fixed, say a, = 1 = a,, a, = —2 to ensure symmetry and zero-stability conditions. The a; are arbitrarily chosen.

This was also considered in [7,11,20]. The constants §; = 0(1)%*and ¢ are then determined. The formula (16) approximates the
hybrid quantities y,,.., by an expression involving the quantities {(y,+;; fu+;)}-

k K

Yn+r = 212-:01/)1'()/11+1+Yn—1) + hz 21'2:0 yj(fn+j+fn—j)' (17)
k K

Yn-2 = 2i0 4 (Vs j+Yn—j) + h? =0 bj (FasjHfui): (18)

Where, k*, k are even and A € [0, 1]. Constants ;,;, b;, a; are then determined. When k =4 and k™ = 6, we have,
Yn+2 — 2yn+1 + Zyn - Zyn—l + Yn-—2 = hz(ﬂofn + ﬁl(ﬁr&l + fn—l) + ﬁz(fn+2 + fn—z) + BB(fn+3 + fn—S) + ¢(fn+l + fn—l))- (19)
We chose our hybrid parameter 1 = % to ensure P-stability similar to the methods in [6]. Using MATHEMATICA v10 [21], we

obtained the following values,
_ -82048 fo = 39967 B, = 22049 g, = 70529 g, = ~1997
~ 70875 '7°0 7 45360’ 71 T 18144’72 7 113400073 T 2268000’

for method (19) with error constant —%7_ and order p = 10. Similarly, for the hybrid

798336000
_ 2
Ynar = VoVnsz T ViVni1 T WaVn + W3Vno1 + WaVnp + B2 ofa + Vifasr + Vafnrz + Vafuis) (20)
we obtain the coefficients,
2583745 —175635 1511055 42085 —20223 —253989 —299619 -13833
Yo = 3448832'1/J1 " 215552 Wy = 1724—416'1/}3 - 215552’11}4 = 3228832’ 70 = Be2z08 ' V1 T 31104 ' V2 T Z1sss’ V3 T
837 . -132547y (x)n®
with LTE = —22347Y R onq for
431104 965672960
_ 2
Yn-a = QYn+2 + M Yns1 + QYo + A3Vn1 + @uYn_p + 2 (bofy + by fro1 + baf_s + bsfy_3), (21)
we obtain the following coefficients using MATHEMATICA v10 [21],
_ —20223 42085 1511055 _ -175635 2583745 _ -253989 299619 _ -13833 837 .
Qo = Tiasesz’ M T 215552 P2 T 172216 B T Tasssz 1M T 3aasesz’ 20 T gezzos 'l T 431104 ' 2 T zisssz’ U3 T a3ii04 with
132547y (x)n?
LTE = B2547y _h”
965672960

In a similar manner, for k = 4 and k* = 8, we obtain the order p =12 method,
Yn+2 — 2yn+1 + Zyn - Zyn—l + Vn—2 = hz(,BOfn + ﬁl(fn+1 + fn—l) + ﬁz(fn+2 + fn—z) + .83(fn+3 + fn—3) + ﬁ4(fn+4 + fn—4) +

¢(fn+/1 + fn—/l))v (22)
with coefficients,

~1059584 603035 5728861 343789 —11887 7967 —5367083
Q= ,Bo = ,B1 = B2 = B3 = ,Ba = and error constant —————. Also, we

1091475 798336 4989600 4989600 6985440 139708800 5230697472000
obtain the coefficients of the hybrid

— 2
Ynaa = WoVnsz + WiVne1 + VoV + Y3Vno1 + YaVnoo + B2 Vofu + Vifasr + Vafusz + Vafues + Vafnsra)s (23)
as,
o = 1641212183 by = —87829569 W, = 731654937 by = 7074877 e = —5881545 _ —1924995069 _ -955773 _

0 = 512200368 ' Y1 T 16077824 ' W2 T 257245182’ ¥3 T 16077824’ P+ T 514490368° 0 ~ 2572451820 ' V1 T 358880 ' /2
60322041 1646523 -3578769 . 131972451y [x]h°
Vs = Ya = with LTE =——=2 """ and

183746560 80389120 2572451840 720286515200

— 2
V-2 = Qo¥n42 T GYni1 + QY + A3Yno1 + QuYn_o + h*(Bofyy + b1 fu—1 + bafpp + b3fa_z + Vafn-a), (24)

_ S881ses o 7074877 731654937 _ 87820569 _ 1641212183, ~1924995069 _ -955773 _ —60322041 _
0 7 514490368’ 1~ 16077824 ° 2~ 257245184 3 16077824 ' ¥ 514490368 ’ 2572451840 1~ 358880 ' 2 183746560’ °
1646523 3578769 . 131972451y [x]r®
b, = with LTE — 131972451y 7 IxI?

80389120 2572451840 720286515200

3.0 P-Stable High Order Stormer-Cowell Type Super-Implicit Hybrid LMM
This section present a particular case of (2) called the Stérmer-Cowell type LMM,

k k
2

%20 @ (s +¥ney) = B2 20 By (st foy) W OUniatfon). (25)
However, the hybrids of interest are,
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Yn4a = Z}c:o Yj Yno14j + H° Z?;o Vifasj (26)

Ynid = Do @j Yno14j + h2 Z?;o bj fr-j» (27)

where, k and the super-implicit parameter k*are even, and A € [0, 1] as in [6]. When k = 4 and k*= 6, we have,

Y1 = 2Yn + Ynoq = hz(,Bofn + B1(fas1 + fae1) + B2(favz + fuz2) + Bs(fass + fr—s) + d(fuia + fn—/l))- (28)

We choose our hybrid parameter as A = % to ensure P-stability. Using MATHEMATICA v10 [21], we obtained the following values
for method (28),

18496 20017 671 —241 13
= m,ﬁo = 90720,31 = 36288,32 = 2268000,[)’3 mwnh error constant ~———— and order p =10. Also, for the hybrid

formula (26,27), we have,
Ynia = WoVne1 + Y1Vn + YoVn1 + P Wofn + Vifass + Vafara + V3fn+3) (29)

_ 63 241 671 -503 _ -631 223 _ 5779 [xn’
Yo = E’lpl - E’lpz 216" V0 T 26a V1 T 72067 V2 T Tasez’ V3 T Wlth LTE= 583680 and
Vn-a = QY41 + G Yn + QoYn_1 + h*(bofy + bifuy +bofnr + b3fn—3)' (30)

_ 671 _24 63 _ 503 —631 _ 223 o1 -577y7| .
Yo = 1216'1’[}1 - 608'1'[)2 216" V0 T 28647 V1 T 72067 V2 T Tas02’ V3 T ise with LTE = 583680 For k=2and k"= 8, we have,

Yner = 29 + Ynr = W2 (Bofo + B (Frss + fams) + Boaz + frmz) + Ba(fres + foes) + BaUfowa + foea) + (fia + fu-2)). (31)
The coefficients of method (31) of order p = 12 are given by,

40576 353093 187171 -53 61 -1 46507 .
0= 155925‘ﬂ° " 1596672 P = 9979200’[;2 - 399168'ﬂ3 - 9979200’ﬂ4 " 4435200 and error constant 10461394944000 The hybrids and
their coefficients are respectively given by,

_ 2
Ynia = WoVns1 + Y1V + YoVt + B2 Wofu + Vifnsr + Vafnsz + Vafuss + Vafusa) (32)

89 487 1241 _ —48103 3323 7 . 157123y ®) [x]n8
Yo = 2304‘1/J1 - 1152‘1/J2 = 230870 = 552060’ Y1 T 3256072 = 27680 5760'}/4 552960 with LTE= 278691840 and

_ 2
Ynir = VoVnsr + V1Vn + YoYno1 + B2 Wofn + Vifaor + Vafuoa + V3fn—3 + Vafn-a), (33)

_ 1241 487 89 -48103 _ -3323 7 -43 577 . _ 157123y®[x]n8
Yo = 2304’¢1 - 1152’#}2 2302" 70 = 552060 1 T 3a560 V2 T 2764807 V3 T 5760 V* T 552960 Ss2960 WIth LTE = 278691840

4.0 Phase-Lag Properties of the Super-Implicit Hybrid LMM
When deriving efficient numerical methods (2) for the solution of (1) it is useful to consider the phase-lag (PL) order as well as the
algebraic order of the method. The concept of PL was first introduced in [22]. However, several methods with high phase-lag order
have been proposed for the numerical integration of the IVP (1). A new approach to constructing methods for the numerical
integration of (1) through a rational approximation to the cosine was given in [23]. Since then, [25 - 28] among others have all
considered the phase-lag analysis of LMM (2). A method with maximum order of the phase-lag has minimal phase-lag error [10].
The phase-lag formula for the generalized symmetric LMM (2) have been considered in [27]. Following the idea in [27], the phase-
lag for the SSI hybrid LMM is given by,

ZAk*(H)cos(jH)+---+2A]-(H)cos(jH)+---+2A0(H)
PL(H) = —2— =—Cy4 H2 + O(H). (34)

z(k) Ak +(H) 4 +2j2A5(H)++241 (H)

Where A;j(H) = “"_*_j Hzﬁk_*_j, 1<j< 7, H = wh, d is the order of the phase-lag and c is the phase-lag error constant. We
2 2

use formula (34) in the sense of the work in [27] to obtain the phase-lag for methods (16,25). Upon applying (16) on the test
problem (8), for k =4 and k* = 6, we have the phase-lag expression as,

PL(H) = % = —Cgp, HY2 + O(HHY). (35)

Here,

Ty = 2(ay + H?By) + (2(a, + H?2B,)cos(H) + (ay + H?B,)cos(2H) + (a5 + H?B5)cos(3H) + (a + H?B,)cos(AH)) (36)

T, = 2((0(1 + H?B)) + 4(a, + H?B,) + 9(az + H2B3)cos(3H) + (ay + Hzﬁz)cos(/lH)). (37)

In particular, for the hybrid SSI method (19) with = i , We obtain the phase-lag order d = 10 with phase-lag error constant as in,
PL(H) = —2— H'2 + O (H'*) = =g, HY*? + O(H™), (38)

using MATHEMATICA v10 [21]. Similarly, for Stormer-Cowell type hybrid SSI method (28) with 4 = % we obtain the phase-lag
orderd =10 with phase-lag error constant as in,

PL(H) = 50035000 H2 + O (H™) = =4, HY? + O(H), (39)

The summary of the algebraic and phase-lag properties of the proposed hybrid methods are presented in Tables 1 and 2.
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Table 1: Summary of the algebraic and phase-lag properties of hybrid SILMM for A = i

Methods | k | k* | Order of PL d /Order PL LTE Stability
of the Methods p, Error Constant Constant
d=p Ca+2 Cp2
(19) 2 2 6 7967 7967 P-stable
1596672000 798336000
(22) 2 4 8 —5367083 —5367083 P'Stable
10461394944000 5230697472000

Table 2: Summary of the algebraic and phase-lag properties of the Stérmer-Cowell type hybrid SILMM for A = %

Methods | k | k* | Order of PL d /Order PL LTE Stability
of the Methods p, Error Constant Constant
d=p Ca+2 Cp+2
(28) 2 | 6 10 -t -1 P-stable
50688000 25344000
(31) 2 8 12 46507 46507 P-stable
20922789888000 10461394944000
5.0 Implementation of Hybrid SSILMM

We consider the implementation of our new hybrid methods derived to show the applicability of these methods in solving the
almost periodic problem of (1) using MATLAB v7.5 [29]. We are faced with the problem of resolving the implicitness in the
derived hybrid methods. However, we consider implementing methods (19,22,28,31) following the ideas in [6,9]. Assume that (1) is
Lipschitz continuous with reference to y(x) forall x € [a,b]

IfCx,y) — f(x, y)I < Llly — y*I, (40)

where L is the Lipschitz constant. The approach of Newton-Raphson iterative method is used to resolve the implicitness in our
methods. We use the predictor,

Yniz — 2Vns1 t Y0 = hzfn+17 (41)

@[y
of order p = 2, as the starter for the Newton-Raphson iteration with LTE = L bdnt . The P-stable method,

hZ
Yniz = 2Vns1t Y = T(fn+2 = 2fpi1 Tt o) (42)
is employ to generate the future solution values {y,;}j=,3 in the case of (19,28) and {y,1;},=234 in the case of (22,31)
respectively. So that the Newton-Raphson iteration becomes,

-1
le+1]_ ) [¢l [t] [t] -
Vn+1 —yn+1(1(yn+1)) F(7,4q) e = 0Lew (43)
where the Jacobian is given by,
]( ) aF(y) (44)

The numerlcal methods (19,22,28,31) are applied to solve almost periodic orbital problem as described in [5]. In the case of the P-

stable method in (19),

[t+1]y _ . [t] _ 39967 22049 70529 [t] 1997
(yn+2 ) - yn+2 - 2yn+1 + Zyn - Zyn—l + Yn—2 = hz (45360f 18144 (fn+1 + fn 1) + 1134000 (fn+2 + fn—z) - 2268000 (fn+3 +

82048

faos) = 22 (11, + £19)) (45)
Also, in the case of the P-stable Stérmer-Cowell type hybrid method in (22),

[t+1] [t] _ 20017 671
F(yn+1 ) Yn+1 — Zyn tVn-1= h? (90720f 36288 (fn+1 + fn 1) - M(fn+2 + fn 2) + 2536000 (fn+3 + fn 3) +

18496 [t]

70875 (fn ) (46)
Example 1: Almost periodic orbital problem (Source: [4,6,8,9,11])

y"' +y=0.001e"*, 47)

y(0) = 1,y'(0) = 0.9995i2 = —
which the theoretical solution is,
y(x) = u(x) + iv(x) = (u(x),v(x)), (48)
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where u(x) = cosx + 0.0005xsinx and v(x) = i(sinx — 0.0005xcosx). The IVP (47) represent motion on a perturbed
circular orbit on the complex plane in which the path defined by the point y(x) = (u(x),v(x)) spirals slowly outward such that its
distance from the origin at any given time x is given by,

00x) =JU@)2+V(x)?,

The interval 0 < x < 40 corresponds to 20 orbits of the point y(x),

2(xf) = |y(xf)| = 1.00197197653449, x; = 40m.
The numerical result is generated using the step size h = zlq q = 3(1)13, and can be seen in Table 3,4,5 and 6.
Table 3: Numerical Results of Method (19) at x, = 40

(49)

(50)

q h Method (19) () Error |Q(xr) — Q|

3 /23 1.00321942175128 1.24744521678988e-003
4 /2% 1.00244005857149 4.68082037000883e-004
5 /25 1.00209067667853 1.18700144044803e-004
6 m/28 1.00208276118813 1.10784653639229e-004
7 /27 1.00199977717586 2.78006413707566e-005
8 /28 1.00199784030696 2.58637724708244e-005
9 m/2° 1.00197736701962 5.39048512671059¢-006
10 /210 1.00197688542805 4.90889355941881e-006
11 /211 1.00197664465420 4.66811970589731e-006
12 /212 1.00197409335020 2.1168157144924e-006
13 7/213 1.00197281831423 8.41779736138193e-007

Table 4: Numerical Results of Method (22) at x, = 40

q h Method (22) () Error |Q(x;) — Q]

3 /23 1.00205910451501 8.71279805190195e-005
4 /2% 1.00201530580872 4.33292742272329¢e-005
5 w/2° 1.00199358248877 2.16059542843539e-005
6 /28 1.00198276484045 1.07883059601299e-005
7 /27 1.00197736701962 5.39048512604445e-006
8 /28 1.00197467086008 2.69432559174554e-006
9 r/2° 1.00197332346804 1.34693355424709e-006
10 /210 1.00197264994395 6.73409463525232e-007
11 /21 1.00197231322489 3.36690401558926e-007
12 /212 1.00197214487611 1.68341616424428e-007
13 /28 1.00197206070440 8.41699103748539¢-008

Table 5: Numerical Results of Method (28) at x; = 40m

q h Method (28) () Error [Q(x;) — Q|

3 /28 1.00203401920494 6.20426704474042e-005
4 /2% 1.00200287811217 3.09015776829291e-005
5 w/2° 1.00198739738256 1.54208480669382e-005
6 /28 1.00197967947316 7.70293866714233e-006
7 /27 1.00197582613246 3.84959797039564e-006
8 /28 1.00197390086563 1.92433114087898e-006
9 7/2° 1.00197293858310 9.62048610331223e-007
10 /210 1.00197245752955 4.80995061558076€e-007
11 /211 1.00197221702471 2.40490217517930e-007
12 /212 1.00197209677777 1.20243278001198e-007
13 /213 1.00197203665567 6.01211789241773e-008
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q h Method (31) (Q) Error |Q(x;) — Q]

3 /23 1.00203401920494 6.20426704474042e-005
4 /2% 1.00200287811217 3.09015776829291e-005
5 /25 1.00198739738256 1.54208480669382e-005
6 /2% 1.00197967947316 7.70293866714233e-006
7 /27 1.00197582613246 3.84959797039564e-006
8 /28 1.00197390086563 1.92433114087898e-006
9 n/2° 1.00197293858310 9.62048610331223e-007
10 /210 1.00197245752955 4.80995061558076e-007
11 /211 1.00197221702471 2.40490217517930e-007
12 /212 1.00197209677777 1.20243278001198e-007
13 /213 1.00197203665567 6.01211789241773e-008

6.0 Conclusion

We have derived P-stable SSI hybrid methods based on (16, 25) with order as high as p = 10 and 12 in the case of (19,28) and
(22,31) respectively which turns to be higher than that of the ones proposed in [20] for the same step number. In addition, we have
also investigated the PL of the new SSI hybrid methods which interestingly have its order d coincides with the algebraic order p see
tables 1 and 2. The order barrier in theorem 3 has been bypassed through the use of SSI hybrid methods. The efficiency and
accuracy of the new hybrid methods have been tested on an almost periodic orbital problem as the results compares favourably with
the theoretical solution see tables 3,4,5 and 6.
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