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Abstract 
 

Spectral collocation Methods (SCMs) are specific for differential equations. 

Underpinning these methods is the use of polynomial interpolants and 

enforcing them to satisfy the differential equation at specially chosen points. In 

this regard, we construct spectral method employing the row replacement 

strategy based on differentiation matrix. We use the row replacement strategy 

to solve initial value problem (IVPs), boundary value problems (BVPs), and 

further extend the strategy to handle the non-linear case. The result shows that 

the SCM enjoys rapid convergence as it compares favourably with the exact 

solutions. 
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1.0 Introduction 

The invention of computers have not only saved us from the delay in solving complicated mathematical problems, but they 

have become part of our daily routines. Computational mathematics provides a way of solving complex numerical problems by 

initially working on a simple problem analytically. When the analytical solution is achieved, then one can use this idea to 

implement such problem on a computer and compare both results. With this implementation on a simple problem, one can now 

add more complicated ones by including real-world factors as the case maybe. Nowadays, numerical analysts are in search of 

the most efficient method for solving a given problem. It is well known that interpolation can be used for polynomial (function) 

approximations. Ikhile [1] investigated some iterative methods having similar propagation characteristics in the determination 

of the zeros of a polynomial. In particular, the introduction of the effect of round-off error point arithmetic. The laudable idea of 

interpolation on polynomials can be extended to solve differential equations by enforcing the differential equations to have 

polynomial solutions [2]. This gives rise to the SCMs, in particular, the row replacement strategy, which has not only been 

useful for the approximation of functions but now has a great impact in the discretization for differential equations [3]. Some 

excellent discretization processes can be found in [4,5]. 

Definition 1: [6]: A polynomial is a function f: C → C such that, for some non-negative integer n and for some ak ∈  C , 0 ≤
 k ≤  n, with an ≠  0, 
f(x) = ∑  akx

k n
k=0   ∀  x ∈  ℂ.       (1) 

One of the pillars which numerical analysis depends upon is computation with polynomials [6]. However, we employ the row 

replacement approach to discretizing our differential equations. There are different types of interpolation such as polynomial, 

rational, Hermite, Birkhoff, etc (see [7,8]), but we concentrate on polynomial interpolation specifically. One major reason for 

the importance of equation (1) is that it can be used to approximate continuous functions uniformly. This implies that given any 

𝑓(𝑥), defined and continuous on a closed and bounded interval [𝑎, 𝑏], there exists a 𝑃(𝑥) that is as near to the given 𝑓(𝑥) [8]. 

To be precise, we quote the result of Weierstrass approximation theorem. 

Theorem 1 [8] Suppose that 𝑓(𝑥) is defined and continuous on a closed interval [𝑎, 𝑏]. For any 𝜖 > 0, there exist a 

polynomial 𝑃(𝑥), such that, 

∣ 𝑓(𝑥) −  𝑃(𝑥) ∣ < 𝜖    ∀  𝑥 ∈  [ 𝑎, 𝑏].       (2) 

 

2.0 Improved Lagrange Formulas 

Lagrange interpolation is praised for analytic utility and beauty but deplored for numerical practice [7].  Given the set of points 

𝑥0, . . . , 𝑥𝑛, the Lagrange basis is given by, 

ℓ𝑖(𝑥) = ∏
 (𝑥−𝑥𝑘)

(𝑥𝑖−𝑥𝑘)
,𝑛

𝑘=0
𝑘≠𝑖

        (3) 

with interpolating polynomial, 

𝑃(𝑥)  = ∑ 𝑎𝑖 ℓ𝑖(𝑥)  =  𝑓𝑖
𝑛
𝑖=0 .       (4) 

The Lagrange basis (3) has the property, 

ℓ𝑖(𝑥𝑘)= {
1,       𝑖 = 𝑘
0,       𝑖 ≠ 𝑘

  for 𝑖, 𝑘 =  0,… , 𝑛.      (5) 
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The interpolating polynomial (4) has an associated system with an identity matrix given by, 

(

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

) (

𝑎0
𝑎1
⋮
𝑎𝑛

) =  (

𝑓0
𝑓1
⋮
𝑓𝑛

).        (6) 

The system (6) reduces to, 

ℓ𝒂 =  𝒇.           (7) 

Hence, the coefficients 𝑎𝑖 's can be solved trivially. It is important to note that most authors work with equation (4) for small n 

nodes, before realizing some snags about it which make it a bad practice computationally [9].  The Lagrange matrix is an 

identity which is easier to solve but the system requires 𝑂(𝑛2 ) additions and multiplications to be evaluated which makes it a 

bad choice for computations [2]. General recommendations show that one should instead use Newton's formula, which requires 

only 𝑂(𝑛) operations, and is independent of the evaluation point x [9]. However, we show how equation (4) can be improved 

for better approximation. Burret and Trefethen [9] considered spectral discretization of polynomial interpolants with special 

emphasis on the improved Lagrange formulas. They did this by re-writing equation (4) as, 

𝑃(𝑥)  = ∑  ℓ𝑖(𝑥)𝑓𝑖 ,
𝑛
𝑖=0         (8) 

where ℓ𝑖(𝑥) is as in (3). As in [9], the improved Lagrange formula of the first kind is given by, 

𝑃(𝑥) = Ɩ(𝑥) ∑
 𝑤𝑖

(𝑥−𝑥𝑖)

𝑛
𝑖=0 𝑓𝑖 ,        (9) 

where the weights 𝑤𝑖 = ∏
 1

(𝑥𝑖−𝑥𝑘)
, 𝑓𝑖

𝑛
𝑘≠𝑖  are the given functions, 𝑥𝑖 are the collation points, 𝑥 is the interpolation point, and the 

node polynomial Ɩ(𝑥) =  (𝑥 − 𝑥0), … , (𝑥 − 𝑥𝑛).  The formula (9) now requires 𝑂(𝑛2) floating point operations to evaluate the 

weights 𝑤𝑖  and does not depend on 𝑓𝑖. This feature allows for the evaluation of several functions, and it only requires 𝑂(𝑛) 
operations each provided the 𝑤𝑖  are known while other famous formulas in particular, Newtons interpolation formula requires 

the computation of a new tableau for each new function. The formula (9) in addition, does not necessarily depend on the order 

in which the nodes are arranged, it can easily be updated recursively given new data set while the Newton’s interpolation 

formula depends on the order, which increases the computational cost as 𝑛 increases.  This many orderings leads to numerical 

instability [9]. Burret and Trefethen [9] in their famous work proved further to obtain the second kind of the improved Lagrange 

formula as, 

𝑃(𝑥) = ∑
 𝑤𝑖

(𝑥−𝑥𝑖)
𝑛
𝑖=0 𝑓𝑖/∑

 𝑤𝑖

(𝑥−𝑥𝑖)
𝑛
𝑖=0  .      (10) 

The formula (10) is still a Lagrange formula, but one with special and beautiful symmetry [9]. This method (10) like the method 

(9) earlier stated, are sometime referred to as the barycentric Lagrange interpolation formulas [9,10]. Both formulas enjoy the 

advantage of updating weight 𝑤𝑖  in 𝑂(𝑛) operations to subsume a new set of 𝑓𝑖. Formulas (9,10) can all be represented in 

trigonometric forms (see [9]). It is interesting to note that when weights 𝑤𝑖  have common factor in (10), they may be cancelled 

without any impact on 𝑃(𝑥) [11]. The numerical stability of formulas (9,10) can be found in [2,12, 13].  

 

3.0 Spectral Collocation Methods 

3.1 The Collocation Points 

The composition of spectral methods, in particular, the row replacement strategy to be discussed in this paper, and the improved 

formulas (9,10), are mostly applied on different kinds of collocation points. Usually for periodic problems, equally spaced 

points are sometimes considered, and the interpolant is a trigonometric polynomial 𝑢(𝑥), while for non-periodic problems, the 

standard interval is [𝑥0, 𝑥𝑛], where 𝑥0 = −1,  𝑥𝑛 = 1, and the boundary conditions 𝑢( 𝑥0) = 𝑢( 𝑥𝑛) = 0 [11]. We state the 

three sets of collocation points 𝑥0, … , 𝑥𝑛 in Table 1. 

Table 1: Collocation Points 
No Collocation Points  (𝑥𝑖) Formulas 

1 Chebyshev point of the first kind 
cos (

𝜋(2𝑖 + 1)

2𝑛 + 2
) 

2 Chebyshev point of the second kind 
cos (

𝜋𝑖

𝑛
) 

3 Equispaced points 
−1 +

2𝑖

𝑛
 

The first two of these sets of points in table 1 are often used due to the fact that their points cluster near the boundary.  The 

interpolation based on these points converges as 𝑛 →  ∞ which can be quickly linked to theorem 1, while the last point on table 1, is 

not usually used in practice, reason being that the interpolation based on such point diverge rapidly as 𝑛 →  ∞. However, equispaced 

points are embedded in approximation investigation because they give valuable perspective on the other two collocation points [11]. In 

addition, the Chebyshev points were obtained from the equally spaced points on the unit circle down to the unit interval [-1,1] [9]. 

Illustration is given using the popular Runge function given, 

 𝑓(𝑥) =
1

(1+25𝑥2)
  𝑥 ∈ [−1,1].        (11) 

We interpolate (globally) employing Chebyshev points by choosing a high order 𝑛 =  16 and lower order 𝑛 =  4 polynomial 

for an analytic (smooth) function (11) with their maximum error. We then compare with the equivalent equispaced points. 

 
Figure 1: The interpolation of Runge function (11) at lower order 𝑛 =  4 shows that there is a minimal difference in their 

errors which is not always sufficient to conclude that they are both efficient. 
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Figure 2: The interpolation of Runge function (11) at higher order 𝑛 =  16 shows that the error though very small at the 

middle is very large near the boundary for equispaced point while the Chebyshev point produces a cluster near the boundaries [-

1,1] which makes it preferable. 

The large error at the equispaced points implies Runge phenomenon (Runge oscillations) while the oscillation can be treated by 

choosing to collocate using Chebyshev points (unequally spaced points) [2]. However, for an increasing n, it implies that 

equispaced error increases exponentially while in the Chebyshev case, the error decreases exponentially. The good thing about 

the global interpolation with Chebyshev points is the rapid rate of convergence i.e., exponentially fast convergence (geometric 

convergence) [2] usually referred to as the spectral accuracy. Another important stability criteria for interpolation is the use of 

the Bernstein ellipse [14]. 

3.2 Spectral Differentiation of Improved Lagrange Formula  

In this section, we explore how polynomial interpolants can be employed to construct spectral differentiation matrix suitable for 

polynomial approximations using the Lagrange formula. As earlier discussed that the Lagrange formula has been criticized in 

literatures as a bad choice for numerical computation because of the Identity matrix associated with the formula, this ambiguity 

was later worked on in [9]. In the matrix version of the collocation methods, one can express the approximate solution 𝑢(𝑥) as 

an interpolating polynomial in Lagrange form similar to equation (4) as, 

𝑢(𝑥) = ∑ 𝑢𝑖 ℓ𝑖(𝑥).
𝑛
𝑖=0               (12) 

We respectively give the first and the second derivatives of 𝑢(𝑥) which is usually estimated at collocation points as,  

𝑢′(𝑥) = ∑ 𝑢𝑖  ℓ𝑖
′(𝑥)𝑛

𝑖=0    and  𝑢′′(𝑥) = ∑ 𝑢𝑖  ℓ𝑖
′′(𝑥)𝑛

𝑖=0 ,           (13) 

where 𝑢𝑖 = 𝑢(𝑥𝑖). Further derivation put forward in [9] resulted into, 

ℓ𝑖
′(𝑥𝑗) =

𝑤𝑖/𝑤𝑗

𝑥𝑗−𝑥𝑖
      and     ℓ𝑖

′′(𝑥𝑗) = −2

𝑤𝑖
𝑤𝑗

𝑥𝑗−𝑥𝑖
(∑

𝑤𝑘
𝑤𝑗

𝑥𝑗−𝑥𝑖
𝑘≠𝑗 −

1

𝑥𝑗−𝑥𝑖
).            (14) 

For 𝑘 ≠ 𝑗 and 𝑛 ≤  1, thus, Lagrange interpolation formula which computes the spectral matrices 𝐷𝑗𝑖
(1)
 and  𝐷𝑗𝑖

(2)
 is explicitly 

written as, 

𝐷𝑗𝑖
(1) = {

𝑤𝑖/𝑤𝑗

𝑥𝑗−𝑥𝑖
,                𝑖 ≠ 𝑖

−∑ 𝐷𝑗𝑘
(1)
,           𝑗 = 𝑖𝑛

𝑘=0
𝑘≠𝑗

  and  𝐷𝑗𝑖
(2) = {

2𝐷𝑗𝑖
(1) (𝐷𝑗𝑗

(1) −
1

𝑥𝑗−𝑥𝑖
) ,               𝑖 ≠ 𝑖

−∑ 𝐷𝑗𝑘
(2)
,                               𝑗 = 𝑖.𝑛

𝑘=0
𝑘≠𝑗

     (15) 

The spectral differentiation matrices obtained implies that if 𝑢 is a vector of function values associated with the collocation 

point (𝑥𝑖), then 𝐷(1) 𝑢 is the vector obtained by interpolating function 𝑢, then differentiating the interpolant at the collocation 

points. Also, the same for the case of 𝐷(2) 𝑢. The formula is valid even in the case of rational interpolation (see [5]).  

 

4.0 Numerical Experiment 

In this section, we examine the power of spectral differentiation matrix on a simple function and compare with the derivative of 

the function. As it is well known that numerous numerical methods are capable of solving differential equation [15-20], but we 

discuss herein the implementation procedure for our SCM using the row replacement strategy in the case of the first and second 

order differential equations. The implementation was carried out using Python v3 via Jupyter notebook. 

Example 1   Consider a given function and its derivative given in [21] 

𝑢(𝑥) = 8𝑥4 + 3𝑥3 + 2𝑥2 − 𝑥 + 1 and 𝑢′(𝑥) = 32𝑥3 + 9𝑥2 + 4𝑥 − 1.   (16) 

Table 2: Implementing u(x) using spectral differentiation matrix for N = 4 Chebyshev points 
Error |𝒖′(𝒙) −  𝑫 𝒖(𝒙)| 0.00000000e+00 3.55271368e-15 2.44249065e-15 3.55271368e-15 1.42108547e-14 

 𝐷4
(1)(𝑥) =

(

 
 

−5.5000e + 00  6.8284e + 00 −2.0000e + 00 1.1716e + 00 −5.0000e − 01
 −1.7071e + 00 7.0711e − 01 1.4142e + 00 −7.0711e − 01 2.9289e − 01
5.0000e − 01  −1.4142e + 00 −8.8818e − 16 1.4142e + 00 −5.0000e − 01
 −2.9289e − 01 7.0711e − 01 −1.4142e + 00 −7.0711e − 01 1.7071e + 00
5.0000e − 01 −1.1716e + 00 2.0000e + 00 −6.8284e + 00 5.5000e + 00 )

 
 
, 

where 𝐷4
(1)(𝑥) is the first spectral differentiation matrix obtained from (15). 

 

4.1 Implementation Procedure for First Order ODE 

Consider the first order linear ODE, 

𝑎(𝑥)
𝑑𝑢

𝑑𝑥
+ 𝑏(𝑥)𝑢 = 𝑓(𝑥),        (17) 

𝑢(−1) = 𝑐.         (18) 

The linear scalar problem (17) and its initial condition (18) can be discretized in the 

collocation method as, 

𝐴𝒖 = (diag(𝑎)𝐷𝑛+1 + diag(𝑏)) 𝒖 =  𝒇,       (19) 

𝐵𝒖 = (1 0 0 …  0)𝒖 =  𝑐.        (20) 
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Vectors obtained through the discretization at 𝑛 +  1 Chebyshev points are in boldface. Explicitly, the vectors are 𝑥 =
 (𝑥1, … , 𝑥𝑛+1)

𝑇, 𝑏 =  (𝑏1(𝑥), … , 𝑏𝑛+1(𝑥))
𝑇. Also, we use 𝑛 +  1 rather than 𝑛 points for vector 𝒖 in order to collocate the 

differential equation (19) at 𝑛 points. The row replacement strategy i.e., enforcing the boundary condition process is achieved 

by solving the (𝑛 +  1) × (𝑛 +  1) system, 

 (
𝐵
𝑄 𝐴

)𝒖 = (
𝑐

𝑄 𝑓(𝑥)),         (21) 

where,  

Q =  (

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ 0
0 0 0 ⋯ 1

).        (22) 

This implies that Q is a 𝑛 × (𝑛 + 1)  matrix that erases the first row of any right multiplier. It is obviously natural to pick this 

row, which corresponds to the differential equation system at the left boundary, in order to replace it with a side condition based 

on the known function value at the same location [22]. One should bear in mind that the simplifying replacement of 𝑢(−1) by 𝑐 
should be done before computation, this reduces the system to a square one of size 𝑛 + 1. Hence, system (21) can be solved. 

Example 2: We consider the IVP [21], 

𝑢′(𝑥) + 𝛼 𝑢(𝑥) = 0,        (23) 

with initial value condition 𝑢(−1) = 1  and 𝛼 = 0.5. The exact solution of (23) is given by 𝑢(𝑥) =  𝑒−0.5(𝑥+1). The 

computation was carried out at points 𝑛 = 10. 

Figure 3: The SCM solution and exact solution of problem (23) (left), and the error between the solutions (right) 
 

4.2   Implementation Procedure for Second Order ODE 

For higher order DEs, we also consider a linear problem of order 𝑚 and a linear functional, 
𝑎𝑚(𝑥)𝑢

𝑚 +⋯+ 𝑎1(𝑥)𝑢
′(𝑥) + 𝑎0(𝑥)𝑢(𝑥) = 𝑓(𝑥),       (24) 

𝑟(𝑢,… , 𝑢𝑚−1) = 𝑐𝑖 ,     𝑖 = 1,… ,𝑚.            (25) 

For the case 𝑚 =  2, with one condition at each boundary, we employ the row replacement strategy. In particular, we give a 

clear picture of the second order ODE case, 
𝑢′′(𝑥) = 𝑓    , 𝑢(±1) = 0.           (26) 

This can be discretized by setting 𝑟𝑖 = 𝑢
′′(𝑥𝑖), and rewriting (26) as 𝑟𝑖 = 𝑢

′′(𝑥𝑖) = 𝐷
2𝑢𝑖 = 𝑓𝑖 , 1 ≤ 𝑖 ≤ 𝑛 − 1. More explicitly 

in system form as,  

  

(

 
 

𝐷𝑛
2

)

 
 
  

(

 
 

𝑢0
𝑢1
⋮

𝑢𝑛−1
𝑢𝑛 )

 
 
=

(

 
 

𝑓0
𝑓1
⋮
𝑓𝑛−1
𝑓𝑛 )

 
 

.           (27) 

The matrix 𝐷𝑛
2 maps a vector u to a vector f. In order to impose the boundary conditions, we replace 𝑓0 and 𝑓𝑛 by 0, first and 

last row of 𝐷𝑛
2 by -1 and 1 respectively. Hence, the resolving the system (27) can be solved by obtaining the coefficients for the 

vector u. 

Example 3:  Consider the second order BVP [14], 

𝑢′′(𝑥) =  𝑒4𝑥 ,      𝑢(−1) = 0,    𝑢(1) = 0.      (28) 

The exact solution is given by 𝑢(𝑥)  =  ( 𝑒4𝑥  −  𝑥 𝑠𝑖𝑛ℎ(4)   −  𝑐𝑜𝑠ℎ(4) )/16. The numerical solution was obtained via N =15 

points. 

Figure 4: The SCM solution and exact solution of problem (28) (left), and the error between the solutions (right) 
 

Example 4 Application to non-linear Case: Consider [21], 

𝑢′(𝑥) = 2𝑢2,      𝑢(−1) = 1.       (29) 
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The exact solution is given by 𝑢(𝑥) = −
 1

2𝑥+1
. The numerical solution was obtained via 𝑁 =  25 points. 

Figure 5: The SCM solution and exact solution of problem (29) (left), and the error between the solutions (right) 

5.    Conclusion 

We have discussed about the Lagrange formula, in particular, the improved Lagrange formulas of the first kind and second 

which can be evaluated at a specifically chosen points. The improved Lagrange formulas have been used for the construction of 

spectral method based on discretization of polynomials, forcing DEs into polynomial through the row replacement strategy. Our 

results show that the SCM enjoys rapid convergence as compared with the exact solutions of the differential equations (see 

Figures 3, 4, and 5). It is our hope that the algorithm of emerging numerical codes for the DEs will be dominated by the use of 

SCMs. Emphasis are now being placed on spectral methods when approximating, for which we have introduced a concept of 

discretizing IVP, BVP and a non-linear case because they enjoy spectral convergence unlike other conventional approaches. 
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