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Abstract 
 

This paper considers the development and implementation of a family of 

two step second derivative method using interpolation and collocation of 

polynomial approximate solution. The system of equations obtained is 

solved using Crammer’s rule to give a continuous scheme, evaluating at 

the selected grid points to give discrete methods which are implemented 

in block form. The methods are A-stable, numerical examples show that 

the methods are efficient in handling stiff problems. 
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1 Introduction 

This paper discusses numerical solution of first order ordinary differential equations (ODEs) which arises frequently in area 

of engineering, sciences, mechanical systems among other fields in the form 

( ) ( ) ( ) bxaxyyxfxy == ,,,' 0                   (1.1) 

where  ,f a b x 
mm →  is continuously differentiable. An equidistant set of points is defined on the integration 

interval 
0 1 ,n n Na x x x b+ +=    =  where 

1
,1,,1,0,0

−

−
=−=+=

N

ab
hNnnhxxn 

 

Many of the existing numerical integration methods considered for the solution of (1.1) have poor stability properties; this 

makes it not suitable for large stiff system of ODE. The search for higher order methods with stronger stability properties is 

carried out in two main directions; use higher derivatives of the solutions and fit in additional stages, off-step points and 

super-future points. This leads into the research in the field of stiff system of ODE. Equation (1.1) is said to be stiff if it exact 

solution ( )xy  include a term that decays exponentially to zero x  increases, but whose derivatives are much greater in 

magnitude than the term itself. 

Many authors have developed Second Derivative Multistep Methods (SDMMs) for solving (1.1), among them are; the 

efficiency of SDMMs for numerical integration of stiff system using four step on grid points was investigated in [1]. The 

development and implementation of second derivative methods was discussed in [2, 3, 4, 5]. 

Like traditional Runge Kutta Methods (RKMs), second derivative block multistep collocation integrators admit the addition 

of extra stages which introduce additional degree of freedom that increase the order of the accuracy and modify the region of 

absolute stability. Block methods generally preserve the traditional advantage of one step method such as RKM of being self-

starting and permits easy change of step size during integration [6]. Their advantage over RKM is that they are less expensive 

in term of number of function evaluation per step. 

Ungraded method have been introduced in [1,7] which considered all points of interpolation against the general assertion that 

for a method to be implemented in block method, the method increase the dimension of the block. In this paper, we improve 

on this method by developing methods that do not consider upgraded points and allow evaluation at all points without 

increasing the dimension of the block. 
 

2.0 Methodology 

2.1 Mathematical Background     

Let the approximate solution ( )xy  be in the form 

( ) 
=

=
N

n

n

n xaxy
0

                                         (2.1) 
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evaluating the first and second derivatives of (2.1) at Njxx jn ,,1,0 == +
 gives a system of non-linear system of equation in 

the form.  

UXA =           (2.2) 

where 

  ' ' '' ''
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Imposing the following conditions on ( )xy  in (2.1) 

( ) sjyxy jnjn ,,2,1,0, == ++
 

( ) sjfxy jnjn ,,2,1,0,' == ++
       (2.3) 

( ) sjgxy jnjn ,,2,1,0,'' == ++
 

We solve for the unknown constants using Crammer’s rule to obtain the continuous scheme in the form. 

( ) ( )

=

−

+

=

+ +=
s

j

i

jnj

i

i

ntn fthyy
0

1
2

1


        (2.4) 

where ( ) ( ),, xx jj  are polynomials of degree s2 , ( ),jnjn xyy ++ =  
,)(

i

i

i

x

f
f


=   

( )., jnjnjn yxff +++ = .nxxth −=
 
Evaluating 

(2.4) at the grid points gives the discrete methods which is implemented in block form  
( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )1

102

1

000

1

1

+++ ++++= mmm

m

mm GGhFFhYY  (2.5) 

where  

   Tnnnm

T

snnnm fffFyyyY  21211 , −−++++ ==  

   Tnnnm

T

snnnm yyyYfffF  21211 , −−++++ ==  

   Tsnnnm

T

nnnm gggGgggG ++++−− ==  21121 ,
 

 

2.2 Stability Properties 

2.2.1. Order of the Method  

 The operation  is associated with the linear method defined by  

( )  ( ) ( )
kn

s

j

i

jnj

i

i

ntn yfthyyhxy +

=

+

=

+ −+=
0

2

1

:         (2.6) 

where ( )xy  is an arbitrary function, continuously differentiable on an interval of integration. Equation (2.6) can be written 

in Taylor expansion about the point x  to obtain 

( )  ( ) ( ) ( ) ( ) ( )  +++++= xyhcxyhcxhycxychxy pp

p''': 2

210
 

where  

( ) 








−
−=  

= =

−
r
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j

j
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p j
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j
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1
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Equation (2.6) is of order p if 

( )  ( ) 0,0,0: 110

1 ===== +

+

pp

p cccchhxy 

 Hence 1+pc  is called the error constant and ( ) ( )xyhc pp

p

11

1

++

+
 is called the local truncation error (LTE) [1]. 

2.2.2. Consistency  

Definition 1: (2.5) is said to be consistent if it has order .1p  
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2.2.3. Zero Stability 

Definition 2.1: (2.5) is said to be zero stable if the roots nszs ,,3,2,1, =  of the first characteristics polynomial ( ),z  

defined by 

( ) ( ) ( )  0det 0

2

1

1 =−=  zz  

2.2.4 Convergence 

Definition 2.2: A method is said to be convergence if it is consistent and zero stable 

2.2.5. Linear Stability 

Definition 3 The linear stability is derived by applying the test equation ( ) ( )
n

kk yy =  to yield ( ) ( )zhzyzy mm  ,,1 ==+
 is 

the amplification equation given by 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )020011211  zzzzz ++−−−=
−

 

the matrix ( )z  has eigenvalues ( )k,,0,0   where 
k is called the stability function which is a rational function with 

real coefficient [8]. 

2.2.6 Region of Absolute Stability (RAS) 

Definition 2.3: A Region of absolute stability (RAS) of a LMM is the set  

hforhR :{= where the root of the stability polynomial are absolute less than one} [8]. 

2.3 Specification of the Method 

We consider method in the form 

( ) ( ) ( )
( ) ( )
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02
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n u n u

n t n n u n u v n v

v n u

t g t g
y y h t f t f t f h

t g
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 +
 = + + + +   
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(2.7)  

where u  and v  are real numbers, .vu   
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The order of the method is 6 with 

( )uvttuvvtttvvtvtut
th

LTE 222422233
37

168105703042105427070
151200

+−−+−++−−=  

We consider five cases that belong to the family of the method as specify below; 

2.3.1 Case One: We consider one step equidistant method (i.e.
)1,

2

1
== vu

, parameters in (2.5) become 
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 solving for z gives .1,0 21 == zz  
The block method is consistent and zero 

stable, therefore, it is convergent. The stability function 
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2.3.2 Case Two: We consider two step equidistant points ( ),2,1.. == vuei  parameters in (2.5) become 
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region of absolute stability is shown in Fig. 2 

2.3.3. Case Three: We consider a case when u and v  are even numbers ( ),4,2.. == vuei  parameters in (2.5) reduced to 
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region of absolute stability is shown in Fig. 3. 

2.3.4 Case Four: We consider a case when u and v  are odd numbers ( ),3,1.. == vuei parameters in (2.5) reduced to 
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2.3.5 Case Five: We consider a case when u and v  are rational numbers ( ),,
2
1

4
1 == vumethodstephalf  parameters 

in (2.5) reduced to 
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Figure 1: RAS for Case 1         Figure 2: RAS for Case 2 

 
Figure 3: RAS for Case 3         Figure 4: RAS for Case 4 
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           Figure 5: RAS for Case 5 

 

3.0 Numerical Experiments 

The following notations are used in the results 𝑎𝑏𝑠(𝑦 − 𝑦𝑛)𝑖 means the absolute difference between exact solution and 

computed solution for case 𝑖. The results of case 2,3 and 4 gave the same result, hence results of case 4 is given. 

Example 3.1: Four dimensional problems in [8] 
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within the range .10  x  The eigenvalues of the Jacobian matrix 

100001000,0.1,1.0 41321 −=−=−=−=  and . The exact solution is given as 

( ) xxxx eeeexy 1000010001.0

1
08999010009

98907111917

899010090

9989911

89901009

818090

89990100

89990090 −−−− +++−=  

( ) xxx eeexy 10001.0

2
9989001

9989911

8991

910

89991

9100 −−− +−=  

( ) xx eexy −− −=
9

91

9

100 1.0

3

 

( ) xexy 1.0

4

−=  

Table 1 shows the comparison with the existing results. The following notations are used in Table 1. SDEBDF represent the 

method of [8] 

 

Table 1: Results of Example 3.1 

h  iy  ( )
1

ynyabs −  ( )
4

ynyabs −  ( )
5

ynyabs −  SDEBDF 

0.1 
1y  7.3900e – 04   1.3358e – 10  1.3265e – 10 2.25e – 10 

 
2y  3.4694e – 18 3.4694e – 18  1.3010e – 16  2.29e – 09 

 
3y  6.6613e – 16  2.2204e – 16  1.4433e – 14  2.50e – 07 

 
4y  5.5511e – 17  5.5511e – 17  1.3045e – 15  2.06e – 08 

0.05 
1y  1.0735e – 10 1.3188e – 10 1.3005e – 10  5.31e – 12 

 
2y  1.7347e – 17 5.2042e – 18 8.2399e – 16 7.27e – 11 

 
3y  1.7764e – 15 4.4409e – 16 9.0150e – 14 5.90e – 09 

 
4y  1.9429e – 16 8.3267e – 17  7.9936e – 15 1.34e – 09 

Example 3.2 Consider nonlinear system on the range 20  x  

( )

( )

( )

'

1 2 1 2 1 3 1

'

2 2 1 2 2

'

3 1 3 3

( ) 0.013 1000 2500 0 0

( ) 0.013 1000 , 0 1

( ) 2500 0 1

y x y y y y y y

y x y y y y

y x y y y

   − − −   
      

= − − =      
      −     
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with the solution at 2=x  
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This problem was solved using block hybrid second derivative method of order six developed (BHSDM)6 in [9]. Results in 

Table 3 show that our methods compete favorably with the existing method. 

Table 2: Results of Example 3.2 

h  x  
iy
 

( )
1

ynyabs −  ( )
4

ynyabs −  ( )
5

ynyabs −  6BMSDM  

8
1  2 

1y  9.8387e – 07 3.7679e – 10 6.7037e – 12 9.850e – 07 

  
2y  5.4917e – 05 7.4198e – 05 1.3292e – 06 4.939e – 05 

  
3y  5.3933e – 05 7.4199e – 05 1.3292e – 06 4.840e – 05 

16
1  2 

1y  1.9223e – 08 4.7569e – 11 8.1220e – 13 1.927e – 08 

  
2y  5.1836e – 06 9.3516e – 06 1.6660e – 07 4.198e – 06 

  
3y  5.1645e – 06 9.3516e – 06 1.6660e – 07 4.179e – 06 

 

Example 3.3 Nonlinear Kap’s problem within the interval 100  x  
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with the exact solution 
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y 2

2
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0

0
 

The result of the problem is shown in Table 3. The following notations are used; SDMM10 and SDMM14 are the second 

derivative multistep method of order 10 and 14 respectively developed in [1]. It must be noted that the value of h in case five 

is higher than other cases.   

 

Table 3: Results of Example 3.3 

h  iy
 

( )
1

ynyabs −  ( )
4

ynyabs −  ( )
5

ynyabs −  10CDMM  
14CDMM  

 
2y  5.905e – 03 5.083e – 02 7.951e – 02 1.941e – 02 2.618e – 02 

150  
1y  1.087e – 06 8.878e – 06 1.571e – 05 6.388e – 04 2.468e – 04 

 
2y  1.258e – 04 1.178e – 03 1.962e – 03 6.113e – 03 5.360e – 04 

250  
1y  3.596e – 10  2.945e – 09 5.225e – 09 1.789e – 05 8.163e – 10 

 
2y  2.292e – 06 2.150e – 05 3.586e – 05 1.227e – 03 9.759e – 06 

500  
1y  7.122e – 19 5.833e – 18 1.034e – 17 1.601e – 09 1.616e – 18 

 
2y  1.020e – 10 9.571e – 10 1.596e – 09 1.526e – 05 4.343e – 10 

       

Example 3.4 Linear problem 

( )
1 95 1

'( ) , 0
1 97 1

y x y y
−   

= =   
− −   

 

within the range ,100  x with the initial condition 

( ) 








−

−
=

−−

−−

xx

xx

ee

ee
y

296

952

48

4895

47

1
0  

The eigenvalues of the Jacobian at x =0 are -2 and -96. The results are shown in Table 4. The following notations are used, 

BHSDM6 is the block hybrid second derivative method of order 6 developed in [9], SDEBDF is second derivative extended 

backward differentiation formula developed in [8]. F6 is the result of exponentially fitted scheme of order six developed in 

[10]. The dash (-) in Table 4 indicate that the result are not given for those step size. Results of Table 4 show that our method 

competes favourably with the existing methods. 
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Table 4: Results of Example 3.4 

h  iy
 

( )
1

ynyabs −  ( )
4

ynyabs −  ( )
5

ynyabs −  

125.0  1y  9.0497e – 11 5.4647e – 07 3.3359e – 12 

 
2y  1.2884e – 10 5.7780e – 07 3.5115e – 14 

0625.0  1y  3.4540e – 12 5.4678e – 10  5.2736e – 14  

 
2y  3.6358e – 14 5.7556e – 12 5.5555e – 16 

03125.0  1y  5.3901e – 14 8.9981e – 12 6.6613e – 16 

 
2y  5.6812e – 16 9.4715e – 14 6.9389e – 18 

 

Table 4: Results of Example 4 (continuation) 

h  
iy
 6BHSDM  6F  SDEBDF 

125.0  1y  9e – 11 - - 

 
2y  1e – 06 - - 

0625.0  1y  3e – 12 1.3e – 09 3.4e – 09 

 
2y  3e – 10 4.7e – 07 3.6e – 07 

03125.0  1y  5e – 14 6.0e – 11 3.4e – 09 

 
2y  5e – 12 5.0e – 08 3.5e – 07 

 

4 Conclusion 

We have developed a family of second derivative methods for the solution of stiff initial value problems. Five cases are 

considered, the results shows that the family can be divided into two lineages namely:  

(i) equal interval as shown in cases 1,2,3 and 5. This is equally shown in graph of RAS 

(ii) non equal interval as shown in case 4.  

The results show that despite the low order of the method, it gives better stability properties and approximation than the 

upgraded method of [1,7], moreover, it is observed that as the step length is decreasing, the better the accuracy, this supports 

the claim of [11]  
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