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Abstract 
 

This paper presents a simple modification of Sumudu Transform method 

for the solution of the generalized extended Blasius equation with the two 

forms of boundary conditions. Pade approximation is used to deal with the 

first form of boundary conditions while Wang Transformation and Pade 

approximation are used for the second form of boundary conditions. 

Adomian Polynomials are employed to decompose the nonlinear terms 

involved.  Comparison of the results obtained with the existing results show 

the reliability and effectiveness of the method. 
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1. Introduction: 

The Blasius differential equation arises in the theory of fluid boundary layer, and in general, must be solved 

numerically and because of this it has been the major concern of many researchers and therefore much progress has 

been made to solve this equation. Blasius [1] was the first to show that this problem provided a special solution to the 

Prandtl boundary layer equations. 

The main applications of boundary-layer theory is devoted to the calculation of the skin-friction drag acting on a body 

moving through a fluid, for example the drag of: an airplane wing, a turbine blade, or a complete ship. Schlichting and 

Gersten [2] and Blasius main interest then was to compute, without worrying about existence or uniqueness of its BVP 

solution, the value of 
2

2

(0)d f

d



= i. e., the skin-friction coefficient. Due to the increasing number of applications of 

microelectronics devices, boundary-layer theory has found a renewal of interest within the study of gas and liquid flows 

at the micro-scale regime [3, 4]. 

The generalized (extended) Blasius equation considered is given as: 
( ) ( ) ( ) 0 (1)f f f    + =  

subject to either the first form of boundary condition 

(0) 0, (0) 1, ( ) 0 (2)f f f = =  =  
or the second form of boundary conditions  

(0) 0, (0) 0, ( ) 1 (3)f f f = =  =  

In recent time, many analytical, semi-analytical and numerical methods had been devised to provide the needed 

solution to the problem of Blasius equation among which are variational iterative and Hybrid variation iteration 

methods[5-9], Pade approximation[10-11], Shooting Method via Taylor Series[12], Differential Transform method 

[13], Homotopy Analysis method [14], Adomian Sumudu Transform method[15] and many other methods. Therefore, 

this paper aims at providing solution to the generalized extended Blasius equation with the two forms of boundary 

conditions via simple modification of Adomian Sumudu Transform method and compare the results with the existing 

ones.  
 

2.0 Mathematical Formulation of Adomian Sumudu Transform Decomposition Method(ASTDM)  

Given a general nonlinear non-homogeneous differential equation  

( ) ( ) ( ) ( ), (4)LU x RU x NU x g x+ + =  
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where L is the highest order linear differential operator, R is the linear differential operator of order less than L, N is the 

nonlinear differential operator, U is the dependent variable, x is an independent variable and g(x) is the source term.  

Application of the Sumudu Transform on equation (4) resulted into 

[ ( )] [ ( )] [ ( )] [ ( )], (5)S LU x S RU x S NU x S g x+ + =
 

where S denotes the Sumudu Ttransform. 

Using the differentiation property of the Sumudu transform in (5) we get 
( )1

( )

[ ( )] ( ) (0)
[ ( )] [ ( )] [ ( )],      (6)

km

m m k
k o

S U x U x
S RU x S NU x S g x

u u

−

−
=

− + + =
 

where 
( ) ( )1 1

( ) ( )

( ) (0) (0)k km m

m k m k
k o k o

U x U

u u

− −

− −
= =

= 
 

Further simplification of (6) gives 
( )1

( )

( ) (0)
[ ( )] [ [ ( )] [ ( )] [ ( )]] 0 (7)

km
m m

m k
k o

U x
S U x u u S RU x S NU x S g x

u

−

−
=

− + + − =
 

Application of Sumudu inverse Transform on (7) yields 

 1( ) ( ) [ [ ( )] [ ( )]] , (8)mU x G x S u S RU x S NU x−  = − +   
where 

( )1
1

( )

( ) (0)
( ) [ ( )] (9)

km
m

m k
k o

U x
G x S u S g x

u

−
−

−
=

  
= +  

  
  

 

Thus, G(x) represents the term arising from the source term and the prescribed initial conditions.  

The representation of the solution (8) as an infinite series is given below. 

( ) ( ) (10)n

n o

U x U x


=

=
 

The nonlinear term is been decomposed as: 

0 1

0

( ) ( , ,... ), (11)n n

r

NU x A u u u


=

=
 

where nA  are the Adomian polynomials of functions 0U , 1U , 2U … nU  and can be calculated by formula given in [16] as: 

0 0

1
0,1,2,... (12)

!

n
i

n in
r

d
A N u n

n d







= =

  
= =  

  


 
Substituting (10) and (11) into (8) yields 

1

1 0( ) ( ) [[ ( )] [ ]] , (13)m

n n n

n o n o n o

U x U x S Su R U x A
  

−

+

= = =

  
= − +  

  
  

 

where 
( )1

1

0 ( )

( ) (0)
( ) ( ) [ ( )] . (14)

km
m

m k
k o

U x
U x G x S u S g x

u

−
−

−
=

  
= = +  

  


 
We obtain from equation (13) the recursive relation given by 

 1

1( ) [[ ( )] [ ]] , 0 (15)m

n n nU x S Su RU x A n−

+
 = − +     

Simplifying equation (15), we obtain in turn 0U , 1U , 2U … .nU With these, the general solution is obtained as 

0 1 2 3( ) ( ) ( ) ( ) ( ) ... (16)U x U x U x U x U x= + + + +
  

3.0 Numerical Application of STDM 

In this section we apply STDM illustrated in previous section on the generalized Blasius equation with the two forms of 
boundary conditions for the particular cases 1

2
 =

 and 1 =  to demonstrate the efficiency of the method. The results  
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obtained are compared with existing results in the literature. 

 

3.1 Blasius Equation with the First Form of Boundary Conditions 

 Consider 

( ) ( ) ( ) 0, (17)f f f    + =  

subject to the initial-boundary conditions 

(0) 0, (0) 1, ( ) 0 (18)f f f = =  =  

Let (0)f  =  

we obtain the solution of ( )f  in terms of  for 
1

2
 = and 1 =  respectively as follows: 

2 4 2 5 6 2 7

3 8 2 9

1 1 1 1 11
( )

2 48 240 960 20160

1 11 43
( ) ... (19)

21504 161280 967680

f         

    

= + − − + + +

− + − +

 

2 4 2 5 6 2 7

3 8 2 9

1 1 1 1 11
( )

2 24 120 240 5040

1 11 43
( ) ..., (20)

2688 40320 120960

f         

    

= + − − + + +

− + − +

 

where (0).f =   

In order to determine the unknown value 𝛼in (19) and (20) we have to apply the third boundary condition, that is 

( ) 0f   = . For that, Pade approximants of (19) and (20) which enlarge convergence radius of the solution are used. 

The values of (0)f   obtained for 
1

2
 =  and 1 =  are tabulated in tables 1 and 2 respectively. 

Table 1: Comparison of numerical value of  (0)f = for 
1

2
 =  

Pade 

Approximants 

Our Method Khan & 

Hussain [17] 

Wazwaz [18] Wazwaz [19] Chun et al.[20] 

[2/2] 0.5773502692 0.5773315430 0.5773502692 0.577350693 0.577350693 

[3/3] 0.5163977795 0.5163574219 0.5163977795 0.5163777793 0.5163777795 

[4/4] 0.5227030798 0.5227050781 0.5227030798 0.52277030796 0.5227030798 

 

Table 2: Numerical value of  (0)f =  for 1 =  

Pade Approximants Our Method 

[2/2] 0.816496580 

[3/3] 0.7302967333 

[4/4] 0.7392137845 

 

1.1 Blasius equation with the second form of boundary conditions. 

 Consider 

( ) ( ) ( ) 0 (21)f f f    + =  

subject to the initial-boundary conditions 
(0) 0, (0) 0, ( ) 1 (22)f f f = =  =  

Let (0)f  =  

Following the same procedure above we obtain the solution ( )f  for (21)-(22) in terms   for 1

2
 =  and 1 =  

respectively as: 
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2 2 5 3 8 4 11 5 14

6 17 7 20

1 1 11 5 9299
( )

2 240 161280 4257792 464950886400

1272379 19241647
... (23)

3793999233024000 3460127300517888000

f          

   

= − + − + −

+ +

 

2 2 5 3 8 4 11 5 14

6 17 7 20

1 1 11 5 9299
( )

2 120 40320 532224 29059430400

1272379 19241647
... (24)

118562476032000 54064489070592000

f          

   

= − + − + −

+ +

 

To determine the unknown value 𝛼in (23) and (24), Wang [18] has shown that the transformation to (18) is given as 

( ) 0 (25)
( )

x
y x

y x
 + =  

subject to the boundary conditions 

(0) , (1) 0, (0) 0, 0 1 (26)y y y x = = =    

Solving (25) by STDM alongside the condition (26) we have the truncated ( )y x for 
1

2
 =  and 1 =  respectively 

3 6 9 12 15

3 5 7 9

18 21 24

11 13 15

2099
( )

12 720 17280 304128 9580032000

31453 46061 62749793
... (27)

1954326528000 36480761856000 604121416335360000

x x x x x
y x

x x x


    

  

= − − − − − −

− − +
 

and 
3 6 9 12 15

3 5 7 9

18 21 24

11 13 15

2099
( )

6 180 2160 19008 299376000

31453 46061 62749793
... (28)

30536352000 285005952000 2359849282560000

x x x x x
y x

x x x


    

  

= − − − − − −

− − +

 

 The unknown parameter (0)f = can be found by solving (27) and (28) with (1) 0y =
to obtain the results 

obtained are tabulated in tables 3 and 4 respectively. 

Table 3: Comparison of numerical value of  (0)f =  for 
1

2
 =  

Our Method Sajid [9] Oderinu & 

Aregbesola [12] 

Howarth [21] He [22] Agbakhani et 

al. [23] 

0.3315634093 0.3320573373 0.3320573372 0.33206 0.54360 0.33205 

 

Table 4: Comparison of numerical value of  (0)f =  for 1 =  

Our Method Oderinu & 

Aregbesola 

[12] 

Zhang & Chen 

[24] 

Salama[25] Asaithambi[26] Asaithambi [27] 

0.4689014702 0.4695999884 0.469600 0.469600 0.46900 0.469601 

 

4.0 Conclusion 

The simple modification of Sumudu Transform Decomposition Method for the solution of the generalized extended 

Blasius equation with the two forms of boundary conditions is proposed in this paper. The developed algorithm 

combines the features of Sumudu Transform, Adomian Decomposition, Pade Approximation and Wang 

Transformation. The comparison of the skin-friction drag acting on a body moving through a fluid with the existing 

methods showthat thereis good agreement between the present method and the existing one. 
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