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Abstract 

The Cooley-Tukey and Sande – Tukey fast Fourier transform 

algorithms are efficient techniques which reduce the prohibitive 

running time as well as the number of computational operations  of 

discrete Fourier transform (DFT) of functions. In this paper, a matrix 

argument is applied to extend the mathematical formulation of the 

Cooley–Tukey (C-T) FFT algorithm. This extension is relatively  more 

efficient and amenable to the construction of signal flow graphs and 

reduces the number of computational operations from 2N  to 

( )NNO 2log dependent operations, where N  is the number of sampled 

points over which the DFT is computed. 
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1.0 Introduction 
In mathematics, physics and computer science, difficult problems are expressed in continuous Fourier series which is a 

periodic system associated with trigonometric and other transcendental functions.  If the continuous Fourier series is 

generalized for infinite region, it is called continuous Fourier transform (CFT). Most times, the CFT can be sampled at 

regular intervals of points and as such represented by discrete Fourier transform (DFT). In practice, one frequently works 

with data that is given as a set of discrete quantities and then, the finite discrete Fourier transform may be useful because it 

approximates the continuous Fourier transform.  

In the past few decades, DFT had captured the attention of many mathematicians, numerical analysts and computer scientists 

and in many applications, large digitized data - sets are becoming available. However, such data - sets cannot be easily 

computed as a result of the running time of DFT as well as the large number of computational operations both through the 

direct method or the use of the computer machine. Efforts in the literature aimed at tackling this problem can be found in [1-

5].  

Consider the polynomial function of the form; 
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where 0na  is the leading coefficient with nfDeg = . Suppose that Equation (1) is sampled (that is, its values are 

recorded) at N number of evenly spaced points which are x units apart. The continuous function in Equation 1 now takes 

the form; 
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where x  assumes discrete values 0, 1, 2, . . . N-1, that is, ( )xxf +  as in Figure 1  
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Figure 1: Discrete Fourier transform of a polynomial 

 

The discrete Fourier transform of the function f in Equation 1 is written as 

( ) ( ) ( )3/2
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Where the functions ( )sxf are complex, 1,...2,1,0 −= Nu . A straight forward calculation using Equation (3) would require 

2N operations, where “operation” means as it will throughout this article, a complex multiplication followed by a complex 

addition.  

Example 1 

   Consider the infinite continuous polynomial function ( ) 1+= xxf sampled at four points whose x coordinate values are 

0, 1, 2, 3. The required discrete Fourier transform is the four-point type, that is N = 4. 

To compute the DFT of ( )xf at the given points, one first calculates the value of the function as follows: 
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Applying the formula of DFT, 

( ) ( ) Nuxi
N

x

exfuF /2
1

0

−
−

=

= for .3,2,1,0=u  

( ) ( ) ( )( )( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )4/312exp44/212exp34/112exp24/012exp1

/12exp1

104321321010002exp0

3

0

1

0

1

0







iiii

NxixfF

fffffixfF

X

N

x

N

x

−+−+−+−=

−=

=+++=+++==−=





=

−

=

−

=

 

( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

( ) ( )

.224321

2

9
exp43exp3

2

3
exp20exp1

4/332exp44/232exp34/132exp24/032exp1

4/32exp3

24321

4/322exp44/222exp34/122exp24/022exp1

4/22exp2

224321

3

0

3

0

iii

iii

iiii

xixfF

iiii

xixfF

ii

X

X

−−=−−+=









−+−+








−+=

−+−+−+−=

−=

−=−+−=

−+−+−+−=

−=

+−=+−−=





=

=












 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 4, (July, 2017), 37 – 40 

 
( )xnxf +0  



39 
 

Mathematical Formulation of An…  Atonuje and Tsetimi     Trans. of NAMP 
 

We can see that the number of complex multiplications for each F is 16422 ==N ,  

that is , four complex multiplications for each F. The total number of complex additions in 

( ) ( ) .12341441 ==−=−NN  

Suppose that the number of sampled points N is large, a total of N2 multiplication operations and N(N-1) complex additions 

are quite enormous and could be time consuming and discouraging. The answer to the reduction of number of complex 

operations was suggested and made popular in [6], although a similar algorithm was earlier developed in [7]. This time 

saving and computational operation reduction method is called ‘The fast Fourier transform (FFT) algorithm’. 

In [8], the Cooley – Tukey (C – T) and Sande – Tukey (S – T) FFT algorithms discussed, assumed that the number of 

sampled points N over which the discrete Fourier transform is computed satisfies the relationship = zwhereN Z2 is a 

positive integer value. The constraint appears to be too restrictive. 

In the present article, a FFT algorithm which removes the assumption that 
ZN 2= is presented and an octal – binary FFT 

algorithm is developed. This is made possible by extending the ideas in [6] and [8] to verify that significant time savings can 

be obtained if 
zN 22   but rather that 21.kkN = , which is less restrictive. 

 

2. Preliminary Notational Developments and theGeneralized Cooley – Tukey and Sande - Tukey FFT Algorithms for
zN 2= : 

In this section, the FFT algorithms in which the number N of sampled points for the continuous function ( )xf  satisfies the 

relationship ZN 2= , where z  is an integer value are presented. Detailed theoretical development of the C – T and S – T base 

2 or binary bits algorithms can be found in [8] 

Recall that the discrete Fourier transform algorithm any function f is usually given by;  

 

where
ZN 2= by the C – T and S – T FFT algorithm. The decimated indices u and x in binary bit is written as 
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By substituting 
NieW /2−=  into Equation (6) one gets 
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Applying Equation (7) to  Equation 6 we have;  
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By computing each of the summations separately, then tagging the intermediate results, the set of C – T FFT algorithm’s 

recursive formulation becomes; 
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Similarly, by defining the separate intermediate computational steps and by first separating the components of u instead of 

the components of x, one gets the Sande – Tukey FFT algorithm as  
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3. Mathematical Formulation of the Octal – Binary C – T FFT Algorithm: 

Consider the case where the number N of sampled points fails to satisfy the relationship zN 2= for some integer value z , 

which is considered to be too restrictive, but rather N satisfies the relationship 
21.kkN = , where  81 =k  and 22 =k . This is a 

case which represents the base 8 and base 2 or the simplest form of the octal – binary FFT algorithm for time savings and 

complex computational operation reduction. 

Octal – binary FFT algorithm, as it is used throughout this paper, implies that as many arrays as possible are computed with a 

base 8 and then a base 2 array. To this end, substitute 81 =k  and 22 =k  into the decimated binary equivalent to obtain 
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Recall that the DFT of the continuous function sampled at N number of points is  
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This can be re-written as 
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Applying Equation (12) into Equation (8), we have;  
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We now expands the quantity 12ux
W  using Equation (12) to get; 
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By the resulting expression in Equation (14) the inner sum of Equation (13) will now be expressed as 
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More so, the outer loop of Equation (13) can be expressed as 
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The unscrambling which result from the property of FFT is achieved according to the relation 

( ) ( ) ( )17,, 10201 uufuuF =  

Equations (15), (16) and (17) represent the octal – binary FFT algorithm.  
 

4. Conclusion 

From the theoretical development of the octal – binary FFT algorithm we can see that Equation (15) is a base 8 iteration on the data 

array. Moreover, Equation (16) is a base 2 iteration on the data array. The octal – binary FFT algorithm is more efficient than the 

binary C – T and S - T algorithms as there is obvious reduction in the computation effort. 
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