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Abstract 

The quantum mechanical system consisting of an electron in a perfectly 

periodic potential was rigorously analysed by Bloch in 1928. Bloch’s work 

also included a somewhat more speculative estimate of the electron 

motion for the case where a uniform electric field was also present. This 

work uses the Bloch’s theorem in the absence of uniform electric field to 

study the electron states in a one-dimensional periodic potential 

superimposed with an array of delta-like function. It has been found that, 

the periodic potential introduces gaps in the reduced representation. The 

regions of non-propagating states, which give rise to energy band gaps, 

become smaller with increasing values of 𝒌𝒅. The properties of wave 

functions for a finite-square well in terms of a mirror symmetry were also 

presented. 
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1.0 Introduction 
The quantum mechanical system consisting of an electron in a perfectly periodic potential was rigorously analysed by 

Bloch [1] in 1928. Bloch’s work also included a somewhat more speculative estimate [2] of the electron motion for the 

case where a uniform electric field was also present. Owing to its fundamental importance in the theory of solid state 

electronic conduction, the physical system considered by Bloch has been the subject of numerous papers since that time. 

The purpose of this work is to study the electron states in a one-dimensional periodic potential superimposed with an 

array of delta-like function. I first concentrate on bound states wave functions [3] and revisit their properties in a finite 

square well. My approach consists of a straight forward and well-known derivation of secular transcendental equations 

for a finite square-well and the energy dispersion relation for a periodic potential. My results should be useful therefore 

in the same general class of application of Kronig-Penney model to the motion of electron in a periodic potential. 
 

2.0 Theory 

2.1  Finite square well potential 
The quantum mechanical system we use in preparation for the periodic potential is described by a one-dimensional 

Schrodinger equation with a finite square well potential [4]. We use it because of it is simplicity and practical importance 

for low dimensional structures such as quantum wells [5]. For an electron in a semiconductor structure, the time-

independent Schrodinger equation in the effective mass is 

[
−ℏ2

2𝑚

𝑑2

𝑑𝑥2 + 𝑉(𝑥)] 𝜓(𝑥) = 𝐸𝜓(𝑥)                                            (1) 

where 𝐸 =
ℏ2𝑘2

2𝑚
 is the energy states of the particle. For convenience, we use in the following 2𝑚 = 1 and ℏ2 = 1, so that 

𝐸 = 𝑘2, where 𝑘 is the eigen wave number of the particle, ℏ is the Planck’s constant, 𝑚 is the effective mass of the 

particle, 𝑚 = 𝑚𝑒  for the conduction level. The potential 𝑉(𝑥) is 

𝑉(𝑥) = −𝑉0 , |𝑥| < 𝑎                                                                    (2) 
𝑉(𝑥) = 0 , |𝑥| > 𝑎                                                                          (3) 
This potential has been covered in depth in many textbooks such as [6]. The solutions to Eq. (1) in terms of plane waves 

are  

𝜓1 = 𝐴𝑒𝑘𝑥                                                                                                                (4) 

𝜓2 = 𝐶𝑒𝑞𝑥 + 𝐷𝑒 −𝑞𝑥                                                                                      (5) 
 𝜓3 = 𝐵𝑒−𝑘𝑥                                                                                                             (6) 
where A, B, C and D are the amplitude of the wave and k and q are the eigenvalues in their respective regions and are 

related as 

𝑞 = √𝑘2 + 𝑉0                                                                                         (7) 
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To find the eigenvalues, k, we require that from Eq. (1) 𝜓(𝑥) and 𝜓′(𝑥) are continuous at 𝑥 = ±𝑎. Solving C and D in terms of 

A and B we obtain 

 

𝐶 =
(𝑞+𝑘)𝑒(𝑘−𝑞)𝑎

2𝑞
𝐴                                                                             (8) 

𝐷 =
(𝑞−𝑘)𝑒(𝑘+𝑞)𝑎

2𝑞
𝐴                                                                            (9) 

𝐶 =
(𝑞−𝑘)𝑒(𝑘+𝑞)𝑎

2𝑞
𝐵                                                                           (10) 

𝐷 =
(𝑞+𝑘)𝑒(𝑘−𝑞)𝑎

2𝑞
𝐵                                                                           (11) 

This yield two equations for B in terms of A 

𝐵 =
𝑞+𝑘

𝑞−𝑘
𝑒−2𝑞𝑎𝐴                                                                                           (12) 

𝐵 =
𝑞−𝑘

𝑞+𝑘
𝑒2𝑞𝑎𝐴                                                                                        (13) 

which can only be satisfied if  

 (
𝑞+𝑘

𝑞−𝑘
)

2

= 𝑒4𝑞𝑎.                                                                                         (14) 

There are two possible solutions to Eq. (14): 

Solution 1 is: 
𝑞−𝑘

𝑞+𝑘
= −𝑒2𝑞𝑎 ,                                                                                                      (15) 

and 

solution 2 is: 

 
𝑞−𝑘

𝑞+𝑘
= 𝑒2𝑞𝑎                                                                                                         (16) 

which after some algebra leads to  

 𝑘 = −𝑞𝑐𝑜𝑡(𝑞𝑎)                                                                                                  (17) 

for odd solution. 

And  

𝑘 = 𝑞𝑡𝑎𝑛(𝑞𝑎)                                                                                                     (18) 

for even solution. 

Eq. (17) and (18) (secular transcendental equations) are solved together with equation (7) to find their eigen wave numbers. 

These are not presented here, but will be presented somewhere else. After I found my transcendental equations I then substitute 
𝑞−𝑘

𝑞+𝑘
= ±𝑒2𝑞𝑎 ,                                                                                                    (19) 

back into the equation giving the relations between the A, B, C and D to obtain the wave functions shown in fig. (6). I found 

that, if  
𝑞−𝑘

𝑞+𝑘
= +𝑒2𝑞𝑎 ,                                                                                                      (20) 

then 𝐶 = 𝐷, 𝐴 = 𝐵, 𝜓(−𝑥) = 𝜓(𝑥). The solutions are even and the wave functions are symmetric. If, however, 

 
𝑞−𝑘

𝑞+𝑘
= −𝑒2𝑞𝑎                                                                                                              (21) 

then 𝐶 = −𝐷, 𝐴 = −𝐵, 𝜓(−𝑥) = −𝜓(𝑥). The solutions are odd and the wave functions are antisymmetric. 

 

2.2 Periodic potential  

Having shown the symmetric and antisymmetric wave functions in a previous subsection, the next step is to derive and analyse 

the energy spectrum due to an infinite array of delta-function potentials (see fig. 1).  

 

 

 

 

 

 

 

Fig. 1. Periodic delta-function potential in a one-dimensional lattice 

 

To do this Bloch’s theorem must be applied to calculate the wave functions in a periodic potential [7]. For a periodic potential, 

the solutions to the time-independent Schrodinger equation are of the following form 

𝜓(𝑥) = 𝑢(𝑥)𝑒𝑖𝑘𝑑                                                                                                          (22)  

where  𝑢(𝑥)  is the Bloch’s periodic parts that has the periodicity of the lattice as 

𝑢(𝑥 + 𝑁𝑑) = 𝑢(𝑥)                                                                                                   (23) 

Eq. (23) is Bloch’s theorem and can be used to find the wave function at any point in the infinite lattice by applying the phase 

factor 𝑒𝑖𝑘𝑑 to the wave function. Bloch’s theorem [7] is a vital tool to derive the energy spectrum for an electron in an infinite 

lattice.  

dispersion relation for a series of delta-well potentials (see fig. 4-5) as opposed to square well used in the Kronig-Penney Model 

[8]. Using the Bloch’s theorem, I have 

𝜓(0) = 𝑢(0)                                                                                                    (24) 
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This work is based on one-dimensional periodic potential [2] and Bloch’s theorem will be used in calculating the energy  

𝜓 = 𝑢(𝑑)𝑒𝑖𝑘𝑑                                                                                                                   (25) 
𝜓(𝑑)

𝜓(0)
=

𝑢(𝑑)𝑒𝑖𝑘𝑑

𝑢(0)
= 𝑒𝑖𝑘𝑑 → 𝜓(𝑑) = 𝜓(0)𝑒𝑖𝑘𝑑                                (26) 

In fig. 1 above 𝜓1 is the wave function in region 1 and 𝜓2 is the wave function in region 2. For 𝜓1 the electron is given a wave 

function like that of a free particle as 

𝜓1(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥                                                                         (27) 

where 𝑘 = √
2𝑚𝐸

ℏ2 . 

Using Bloch’s theorem, we can write the wave function in region 2 in terms of the wave function in region 1 as 

𝜓2(𝑥) = 𝜓1(𝑥 − 𝑑)𝑒𝑖𝑘𝑑 = [𝐴𝑒𝑖𝑘(𝑥−𝑑) + 𝐵𝑒−𝑖𝑘(𝑥−𝑑)]𝑒𝑖𝑘𝑑 .                                                   (28) 

The wave function 𝜓(𝑥) must be continuous at any point as  

𝜓1(𝑑) = 𝜓2(𝑑)                                                                                                           (29) 

which gives: 

𝐴(𝑒𝑖𝑘𝑑 − 𝑒−𝑖𝑘𝑑) = 𝐵(𝑒−𝑖𝑘𝑑 − 𝑒𝑖𝑘𝑑)                                                                  (30) 

but its derivative 𝜓′(𝑥) is discontinuous at 𝑥 = ±𝑑. This is evaluated by integrating Eq. (1) across the regions of the potentials   

𝜓′(𝑑 + 0+) − 𝜓′(𝑑 − 0+) = 𝑉0𝜓2(𝑑)                                                                       (31) 

Using Eq. (28) obtain the second equation relating the coefficient A and B  

[𝑖𝑘𝑒𝑖𝑘𝑑 − 𝑖𝑘𝑒𝑖𝑘𝑑 − 𝑉0𝑒𝑖𝑘𝑑]𝐴 = [𝑖𝑘𝑒𝑖𝑘𝑑 − 𝑖𝑘𝑒−𝑖𝑘𝑑 + 𝑉0𝑒𝑖𝑘𝑑]𝐵                  (32) 

From Eq. (30) and (32) we obtain  

cos(𝐾𝑑) = cos(𝑘𝑑) + 𝑉0
sin (𝑘𝑑)

𝑘𝑑
,                                                                      (33) 

where K is the quasi momentum, derived from Bloch’s theorem and k is the wave number associated with the energy of the 

particle. However, for the energy above the potential, Eq. (33) is not valid since 𝑘 = √
2𝑚𝐸

ℏ2 . But for the energies below the 

potential, the trigonometric functions turn hyperbolic giving 

cos(𝐾𝑑) = cos(𝑘𝑑) + 𝑉0
sinh (𝑘𝑑)

𝑘𝑑
,                                                                    (34) 

where 𝑘 = √
−2𝑚𝐸

ℏ2 . 

Eq. (33) and (34) were solved with the help of Newton-Raphson procedure in MATLAB to show how the dispersion relation 

changes with the energy of the particle. 

 

3.0  Result and Discussion 

3.1  Regions of allowed wave numbers 

Fig. 2 and 3 shows the regions of allowed wave numbers for different strength of the potential. The allowed regions are those 

that lie between −1 ≤ cos(𝐾𝑑) ≤ 1 as found by plotting the right-hand side of Eq. (33). The regions of non-propagating states, 

which give rise to energy band gaps, become smaller with increasing values of 𝑘𝑑 [2]. As can be seen, the widths of the 

forbidden bands decreases and the width of the allowed bands increases with increasing 𝑘𝑑 is due to the decrease in the 

amplitude of the sine term. 

 
 

Fig. 2. Plot of the real solutions of equation (33) for 𝑉0 = 3    Fig. 3. Plot of the real solutions of equation (33) for 𝑉0 = 6 
 

3.2 Dispersion Relation 

The graphs of dispersion relation for a particle in a periodic potential are presented in fig. (4) and (5). This curves shows the 

extended and reduced representations respectively [9]. It can be seen that, the periodic potential introduces a gaps in the 

reduced representation. This graphs are consistent with fig. (2) and (3) as they show the lowest band gap having the greatest 

magnitude in separation and then decreasing in size as the energy increases [2]. From these figures, it was clear to see the effect 

between different potential strength (𝑉0). 

The very clear effect was that for any value of 𝑉0 used, the spectrum tends towards that of the free electron dispersion relation 

as the energy increases [8]. It was also found that, the larger the strength of the potential the wider the energy band gaps and 

vice versa. 
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Fig. 4. Plot of dispersion relation in the extended zone representation    Fig. 5(a). Plot of dispersion relation in the reduced zone representation for 𝑉0 = 3 

 
Fig. 5(b). Plot of dispersion relation in the reduced zone representation for 𝑉0 = 6 
 

3.3  Wave functions for a finite square well  

Fig. 6. shows the plots of the absolute values of the ground state, 1st excited state, and 2nd excited state wave functions for a square 

well potential. These are obtained by applying the boundary conditions to the set of eigenfunctions from two discrete sets, one remain 

unchanged under mirror transformation (i.e. if we change x to -x), and the other changes sign. As we can see from this figure the wave 

functions exhibit even and odd symmetries about x=0. Functions of this kind of behaviour are said to have a definite parity [10].  

If 𝜓(𝑥) = 𝜓(−𝑥) the parity is said to be even, and if 𝜓(−𝑥) = −𝜓(𝑥) the parity is said to be odd. 

 
Fig. 6. Normalized wave function for a finite square well 
 

4.0 Summary and Conclusion 
In this work, we study the electron states in a one-dimensional periodic potential superimposed with an array of a delta-like function. 

On implementing the boundary conditions of the continuity of the wave function, problems were solved using Schrodinger’s wave  

equation and a derivation for a secular transcendental equation has been shown. Bloch’s theorem was derived in order to calculate the 

wave function of an electron at any periodic point in the potential. These wave functions were substituted into the boundary conditions 

that defines the delta-like potential to derive the dispersion relation equation. Once the formulae had been calculated, the energy 

spectrums of different scenarios could be analysed, these were made for 𝑉0 = 3 and 𝑉0 = 6. 
From the figures generated for dispersion relation in the reduced representation it was found that for any value of 𝑉0 used, the 

spectrum tends towards that of the free electron dispersion relation as the energy increases. It was also found that, the larger the 

strength of the potential 𝑉0 the wider the energy band gaps and vice versa. However, the dispersion relation in the extended 

representation agree with the exact result in the literature. 

The wave functions for a finite square well have been shown for ground, 1st and 2nd excited states. These wave functions exhibit even 

and odd symmetries about 𝑥 = 0 
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