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Abstract 

 

In this paper, we employ the technique of the Al-Oboudi 

differential operator to study certain subclasses of analytic 

functions such as )(,,,),(   CCSLCCTLCCSLSLTL and

).(CCTL These subclasses of analytic functions generalized the 

concepts of functions with positive and negative coefficients. 
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1.0 Introduction 

Let A be the class of functions ),(zf that are analytic in the unit disk  1: = zCzD , with the normalization 

that 01)0()0( =−= ff . In other words, the function )(zf in A have the power series representation 
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We denote by S , the class of univalent functions in D . The subclass of univalent functions consisting of convex 

functions is denoted by 
cS while 

*S denotes the subclass of starlike functions. Analytically, it is well-known that 
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a function 
*)( Szg  such that .,0
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 The class of close-to-convex functions defined in the unit 

disk is denoted by .CC  One can easily verify that  .* SCCSS c   

Lemma 1.1 (Kaplan’s Theorem)[1] 

Let )(zf be analytic and locally univalent in ,U then )(zf is close-to-convex, if and only if 
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for each r in (0,1) and every pair 21 , with .20 21    

In [2] the subfamily T of S consisting of functions f of the form 
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was introduced.  

The aim of this paper is to define a class of close-to-convex functions with positive and negative coefficients and 

to give some of its properties using a modified Salagean Operator. 
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2.0 Statement of the Problem 

Let 
nD be the Salagean differential operator. (See [3]) 

,,: NnAADn → Defined as: 
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Consequently, if 
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Application of equations (2.1) to (2.2) results 
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It is easy to see that if Tf  and 
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coefficient, then 
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[4] Let 0,0,,   and 
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D the linear operator defined as follows; 
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Given two functions )(zf and )(zg where 
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defined by  
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It was proved in [5] that if .0,0),1,0[   The function Tf  of the form 
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Also, in [6], it was established that if .0,0),1,0[   The function )(CCTLf  with respect to the function 

)()( TLzg  if and only if  
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3.0  Proof of the Problem 

We now present some properties of the coefficients of the close-to-convex functions for positive and negative origin and 

positive and negative coefficients for order .  

Theorem 3.1. Let ,0,0   the function Sf  belongs to the class 
CCSL with respect to the function SLzg )( if 
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Theorem 3.2. Suppose Tf  ,0,0  belongs to the class 
CCTL with respect to the function 

TLzg )( if 
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Theorem 3.3 Let ,0,0,10   the function )(CCSLf  with respect to the function )()( SLzg  if  
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Proof: Let 
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It suffices to show that   
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Along the real axis, letting ,1−→z we have  
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By hypothesis, 
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Theorem 3.4. Let ,10,0,0   then the function Tf  belongs to the class )(CCTL with respect to the 

function )()( TLzg  if 
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Proof: Let 
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Along the real axis, letting ,1−→z we have 
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By hypothesis, 
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4.0. Conclusion 

This work is concerned with analytic functions defined in an open unit disk. The classes defined generalized the concepts of 

functions with positive and negative coefficients. We use the technique of Al-Oboudi differential operator. 
 

References 

[1] Kaplan w. (1952). Close-to-convex Schlict functions. Mich. Math. J. 1:169-185. Kaplan w. (1952). Close-to-convex 

Schlict functions. Mich. Math. J. 1:169-185. 

[2] Silverman H. (1975). Univalent functions with negative coefficients. Proc. Amer. Math. Soc. 5(109-116. 

[3] Salagean G.S. (1991). On univalent functions with negative coefficients. Babes-Boleyn University, Faculty of 

Mathematics. Seminar on Mathematical analysis, Preprint No. 7, 47-54. 

[4] Al-Oboudi, F.M.(2004). On univalent functions defined by a generalized Salagean operator, Int. J. Maths. Math. 

Sci., no 25-28, 1429-1436. 

[5] Acu M. (2002). On a subclass of functions with negative coefficients, General Mathematics. Vol. 10. No 3-4, 57-66. 

[6] Acu M. and Dorca I. (2007). On some close-to-convex functions with negative coefficients. Filomat 21:2. 121-131. 

[7] Goodman A.W. (1979). An invitation to the study of univalent and multivalent functions. Internat. J. Math. & Math. 

Sci. Vol. 2, 163-186. 

[8] Kanas S. and Ronning F. (1999). Uniformly starlike and convex functions and other classes of univalent functions. 

Ann. University, Marie Curie-Sklodowska, Section A, 53:95-105. 

[9] Sahoo S.K. and Sharma N.L. (2014) On a generalization of close-to-convex functions. arXiv: 1404.3268vl [Math. 

CV]. 

[10] Salagean G.S. (1983). On some classes of Univalent functions. Seminar of geometric function theory. Cluj-Napoca. 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 4, (July, 2017), 19 – 22 


