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Abstract 

 

In this paper, we establish the coefficient bounds of a class of close-to-

convex functions with negative coefficients using a modified Salagean 

differential operator. 
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1.0 Introduction 

Let A denote the class of functions analytic in the unit disk  1: = zzU  and of the form 

 01)0()0(:)(: =−== ffuHfA  where )(uH is the set of functions which are analytic in the unit disk 

 univalentAfS :: = . 

We present the definitions of well-known classes of starlike, convex, close-to-convex functions. 

 )

 )

RUz
zf

zfz

zf

zfz
SfM

Uz
zg

zfz
SgSfCC

Uz
zf

zfz
SfS

Uz
zf

zfz
SfS

c

































+
+


−=












=













+
=













=







 ,,0
)(

)(1

)(

)(
)1(Re::

,,0
)(

)(
Re,::

,1,0,,
)(

)(1
Re::

,1,0,,
)(

)(
Re::

*

*

 
The classes CCSS c ,,*

 
and 

M are known as star like, convex, close-to-convex and convex−  functions respectively. In 

[1], it was conjectured that if ,Sf   then the coefficients na of f satisfies .2na That is, 
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Proof: See [2].  

Definition 1. [3] 

We define the operator  ,...2,1,0,: =→ NnAADn by 

(a) );()(0 zfzfD =  

(b) );()()(1 zfzzDfzfD ==  

(c) ( ) ( ) .1,,)()()( 11 


== −− nUzzfDzzfDDzfD nnn  

The operator 
nD is named the Salagean differential operator. We note that if Af  is a function of the form 
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And ,Nn then 
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Definition 2. [4] 

The operator 0,,: →  NnAADn is defined by  

(a) )()(0 zfzfD =
 

(b) )()()()1()(1 zfDzfzzfzfD   =+−=  

(c) ( ) .,)()( 1 UzzfDDzfD nn = −


 

If Af  has the form (2), then 
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(3) is known as the Al-Oboudi differential operator. 

2. Statement of Problem and Proofs 
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Theorem 2.1. Suppose Tf  ,0,0  belongs to the class 
CCTL with respect to the function 

TLzg )( if  
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Along the real axis, letting ,1−→z we have  
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By hypothesis, 
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Corollary 2.1. Let Tf  ,0,0  belongs to the class 
CCTL
 
with respect to the function ;)( TLzg  then 

 

 




=

+



=

−+

−−+



2

1

2

)1(1

1)1(12

j

j

j

j

j

bj

a






  

Corollary 2.2. Let Tf  ,0,0  belongs to the class 
CCTL with respect to the function ,)( TLzg  then 

 

 




=



=

+

−+

−++



2

2

1

)1(12

)1(11

j

j

j

j

j

aj

b







 

Theorem 2.2. Let  ),1,0,0,0   then the function Tf  belongs to the class )(CCTL with respect to the 

function )()( TLzg 
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Corollary 2.3. Let  ),1,0,0,0   then the function Tf  belongs to the class )(CCTL with respect to the 

function )()( TLzg  if 
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Proof: From (6), 
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Corollary 2.4. Let ,10,0,0   then the function Tf  belongs to the class )(CCTL with respect to the 
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Proof: From (6) 
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Remark: When ,0= we get the same result as obtained in corollary 2.1 and 2.2 respectively. 

Corollary 4.5. Using Theorem 2.2, when )()( zfzg  we have  
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3.0   Results and Conclusion 

In this work, we discussed the coefficient bounds for certain analytic functions such as 

)(,,),(),(   CCSLCCTLCCSLSLTL and )(CCTL . These classes generalized the concepts of functions with positive 

and negative coefficients. We extended the work as in [5] by introducing the class 
CCSL and .CCTL  Our study of these 

classes of functions has thus exposed us to a number of very interesting properties of these classes of functions. 
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